|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import cliport.utils.utils as utils |
|
from cliport.models.resnet import IdentityBlock, ConvBlock |
|
from cliport.models.clip_lingunet_lat import CLIPLingUNetLat |
|
|
|
|
|
class CLIPWithoutSkipConnections(CLIPLingUNetLat): |
|
""" CLIP RN50 with decoders (no skip connections) """ |
|
|
|
def __init__(self, input_shape, output_dim, cfg, device, preprocess): |
|
super().__init__(input_shape, output_dim, cfg, device, preprocess) |
|
|
|
def _build_decoder(self): |
|
self.layers = nn.Sequential( |
|
|
|
nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.ReLU(True), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
|
|
|
|
ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
|
|
ConvBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
|
|
ConvBlock(512, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
|
|
ConvBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
|
|
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
|
|
ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
|
|
ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
|
|
ConvBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
|
|
|
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
nn.Conv2d(32, self.output_dim, kernel_size=1) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.preprocess(x, dist='clip') |
|
|
|
in_type = x.dtype |
|
in_shape = x.shape |
|
x = x[:,:3] |
|
x, _ = self.encode_image(x) |
|
x = x.to(in_type) |
|
|
|
assert x.shape[1] == self.input_dim |
|
x = self.layers(x) |
|
x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') |
|
return x |