|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import cliport.utils.utils as utils |
|
from cliport.models.resnet import IdentityBlock, ConvBlock |
|
from cliport.models.core.unet import Up |
|
|
|
from cliport.models.rn50_bert_lingunet_lat import RN50BertLingUNetLat |
|
|
|
|
|
class RN50BertLingUNet(RN50BertLingUNetLat): |
|
""" ImageNet RN50 & Bert with U-Net skip connections but without lateral connections """ |
|
|
|
def __init__(self, input_shape, output_dim, cfg, device, preprocess): |
|
super().__init__(input_shape, output_dim, cfg, device, preprocess) |
|
|
|
def _build_decoder(self): |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.ReLU(True) |
|
) |
|
self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear) |
|
self.up2 = Up(1024, 512 // self.up_factor, self.bilinear) |
|
self.up3 = Up(512, 256 // self.up_factor, self.bilinear) |
|
|
|
self.layer1 = nn.Sequential( |
|
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
|
|
self.layer2 = nn.Sequential( |
|
ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
|
|
self.layer3 = nn.Sequential( |
|
ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
|
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(16, self.output_dim, kernel_size=1) |
|
) |
|
|
|
def forward(self, x, l): |
|
x = self.preprocess(x, dist='clip') |
|
|
|
in_type = x.dtype |
|
in_shape = x.shape |
|
x = x[:,:3] |
|
x, im = self.encode_image(x) |
|
x = x.to(in_type) |
|
|
|
|
|
l_enc, l_emb, l_mask = self.encode_text(l) |
|
l_input = l_emb if 'word' in self.lang_fusion_type else l_enc |
|
l_input = l_input.to(dtype=x.dtype) |
|
|
|
|
|
assert x.shape[1] == self.input_dim |
|
x = self.conv1(x) |
|
|
|
x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1) |
|
x = self.up1(x, im[-2]) |
|
|
|
x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2) |
|
x = self.up2(x, im[-3]) |
|
|
|
x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3) |
|
x = self.up3(x, im[-4]) |
|
|
|
for layer in [self.layer1, self.layer2, self.layer3, self.conv2]: |
|
x = layer(x) |
|
|
|
x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') |
|
return x |