|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.models as models |
|
|
|
import cliport.utils.utils as utils |
|
from transformers import DistilBertTokenizer, DistilBertModel |
|
from cliport.models.resnet import IdentityBlock, ConvBlock |
|
from cliport.models.core.unet import Up |
|
|
|
from cliport.models.core import fusion |
|
from cliport.models.core.fusion import FusionConvLat |
|
|
|
|
|
class RN50BertLingUNetLat(nn.Module): |
|
""" ImageNet RN50 & Bert with U-Net skip connections """ |
|
|
|
def __init__(self, input_shape, output_dim, cfg, device, preprocess): |
|
super(RN50BertLingUNetLat, self).__init__() |
|
self.input_shape = input_shape |
|
self.output_dim = output_dim |
|
self.input_dim = 2048 |
|
self.cfg = cfg |
|
self.batchnorm = self.cfg['train']['batchnorm'] |
|
self.lang_fusion_type = self.cfg['train']['lang_fusion_type'] |
|
self.bilinear = True |
|
self.up_factor = 2 if self.bilinear else 1 |
|
self.device = device |
|
self.preprocess = preprocess |
|
|
|
self._load_vision_fcn() |
|
self._load_lang_enc() |
|
self._build_decoder() |
|
|
|
def _load_vision_fcn(self): |
|
resnet50 = models.resnet50(pretrained=True) |
|
modules = list(resnet50.children())[:-2] |
|
|
|
self.stem = nn.Sequential(*modules[:4]) |
|
self.layer1 = modules[4] |
|
self.layer2 = modules[5] |
|
self.layer3 = modules[6] |
|
self.layer4 = modules[7] |
|
|
|
def _load_lang_enc(self): |
|
self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') |
|
self.text_encoder = DistilBertModel.from_pretrained('distilbert-base-uncased') |
|
self.text_fc = nn.Linear(768, 1024) |
|
|
|
self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2) |
|
self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4) |
|
self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8) |
|
|
|
self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024 |
|
self.lang_proj1 = nn.Linear(self.proj_input_dim, 1024) |
|
self.lang_proj2 = nn.Linear(self.proj_input_dim, 512) |
|
self.lang_proj3 = nn.Linear(self.proj_input_dim, 256) |
|
|
|
def _build_decoder(self): |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.ReLU(True) |
|
) |
|
self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear) |
|
self.lat_fusion1 = FusionConvLat(input_dim=1024+512, output_dim=512) |
|
|
|
self.up2 = Up(1024, 512 // self.up_factor, self.bilinear) |
|
self.lat_fusion2 = FusionConvLat(input_dim=512+256, output_dim=256) |
|
|
|
self.up3 = Up(512, 256 // self.up_factor, self.bilinear) |
|
self.lat_fusion3 = FusionConvLat(input_dim=256+128, output_dim=128) |
|
|
|
self.layer1 = nn.Sequential( |
|
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
self.lat_fusion4 = FusionConvLat(input_dim=128+64, output_dim=64) |
|
|
|
self.layer2 = nn.Sequential( |
|
ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
self.lat_fusion5 = FusionConvLat(input_dim=64+32, output_dim=32) |
|
|
|
self.layer3 = nn.Sequential( |
|
ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), |
|
nn.UpsamplingBilinear2d(scale_factor=2), |
|
) |
|
self.lat_fusion6 = FusionConvLat(input_dim=32+16, output_dim=16) |
|
|
|
self.conv2 = nn.Sequential( |
|
nn.Conv2d(16, self.output_dim, kernel_size=1) |
|
) |
|
|
|
def resnet50(self, x): |
|
im = [] |
|
for layer in [self.stem, self.layer1, self.layer2, self.layer3, self.layer4]: |
|
x = layer(x) |
|
im.append(x) |
|
return x, im |
|
|
|
def encode_image(self, img): |
|
with torch.no_grad(): |
|
img_encoding, img_im = self.resnet50(img) |
|
return img_encoding, img_im |
|
|
|
def encode_text(self, x): |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(x, return_tensors='pt') |
|
input_ids, attention_mask = inputs['input_ids'].to(self.device), inputs['attention_mask'].to(self.device) |
|
text_embeddings = self.text_encoder(input_ids, attention_mask) |
|
text_encodings = text_embeddings.last_hidden_state.mean(1) |
|
text_feat = self.text_fc(text_encodings) |
|
text_mask = torch.ones_like(input_ids) |
|
return text_feat, text_embeddings.last_hidden_state, text_mask |
|
|
|
def forward(self, x, lat, l): |
|
x = self.preprocess(x, dist='clip') |
|
|
|
in_type = x.dtype |
|
in_shape = x.shape |
|
x = x[:,:3] |
|
x, im = self.encode_image(x) |
|
x = x.to(in_type) |
|
|
|
l_enc, l_emb, l_mask = self.encode_text(l) |
|
l_input = l_emb if 'word' in self.lang_fusion_type else l_enc |
|
l_input = l_input.to(dtype=x.dtype) |
|
|
|
assert x.shape[1] == self.input_dim |
|
x = self.conv1(x) |
|
|
|
x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1) |
|
x = self.up1(x, im[-2]) |
|
x = self.lat_fusion1(x, lat[-6]) |
|
|
|
x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2) |
|
x = self.up2(x, im[-3]) |
|
x = self.lat_fusion2(x, lat[-5]) |
|
|
|
x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3) |
|
x = self.up3(x, im[-4]) |
|
x = self.lat_fusion3(x, lat[-4]) |
|
|
|
x = self.layer1(x) |
|
x = self.lat_fusion4(x, lat[-3]) |
|
|
|
x = self.layer2(x) |
|
x = self.lat_fusion5(x, lat[-2]) |
|
|
|
x = self.layer3(x) |
|
x = self.lat_fusion6(x, lat[-1]) |
|
|
|
x = self.conv2(x) |
|
x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') |
|
return x |