|
|
|
|
|
""" |
|
Backbone modules. |
|
""" |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision |
|
from timm.models import create_model |
|
from torch import nn |
|
from torchvision.models._utils import IntermediateLayerGetter |
|
|
|
from cliport.models.misc import NestedTensor |
|
|
|
|
|
|
|
class FrozenBatchNorm2d(torch.nn.Module): |
|
""" |
|
BatchNorm2d where the batch statistics and the affine parameters are fixed. |
|
|
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt, |
|
without which any other models than torchvision.models.resnet[18,34,50,101] |
|
produce nans. |
|
""" |
|
|
|
def __init__(self, n): |
|
super(FrozenBatchNorm2d, self).__init__() |
|
self.register_buffer("weight", torch.ones(n)) |
|
self.register_buffer("bias", torch.zeros(n)) |
|
self.register_buffer("running_mean", torch.zeros(n)) |
|
self.register_buffer("running_var", torch.ones(n)) |
|
|
|
def _load_from_state_dict( |
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs |
|
): |
|
num_batches_tracked_key = prefix + "num_batches_tracked" |
|
if num_batches_tracked_key in state_dict: |
|
del state_dict[num_batches_tracked_key] |
|
|
|
super(FrozenBatchNorm2d, self)._load_from_state_dict( |
|
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs |
|
) |
|
|
|
def forward(self, x): |
|
|
|
|
|
w = self.weight.reshape(1, -1, 1, 1) |
|
b = self.bias.reshape(1, -1, 1, 1) |
|
rv = self.running_var.reshape(1, -1, 1, 1) |
|
rm = self.running_mean.reshape(1, -1, 1, 1) |
|
eps = 1e-5 |
|
scale = w * (rv + eps).rsqrt() |
|
bias = b - rm * scale |
|
return x * scale + bias |
|
|
|
|
|
class BackboneBase(nn.Module): |
|
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): |
|
super().__init__() |
|
for name, parameter in backbone.named_parameters(): |
|
if not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name: |
|
parameter.requires_grad_(False) |
|
if return_interm_layers: |
|
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} |
|
else: |
|
return_layers = {"layer4": 0} |
|
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) |
|
self.num_channels = num_channels |
|
|
|
def forward(self, tensor_list): |
|
xs = self.body(tensor_list.tensors) |
|
out = OrderedDict() |
|
for name, x in xs.items(): |
|
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] |
|
out[name] = NestedTensor(x, mask) |
|
return out |
|
|
|
|
|
class Backbone(BackboneBase): |
|
"""ResNet backbone with frozen BatchNorm.""" |
|
|
|
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): |
|
backbone = getattr(torchvision.models, name)( |
|
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=FrozenBatchNorm2d |
|
) |
|
num_channels = 512 if name in ("resnet18", "resnet34") else 2048 |
|
super().__init__(backbone, train_backbone, num_channels, return_interm_layers) |
|
|
|
|
|
class GroupNorm32(torch.nn.GroupNorm): |
|
def __init__(self, num_channels, num_groups=32, **kargs): |
|
super().__init__(num_groups, num_channels, **kargs) |
|
|
|
|
|
class GroupNormBackbone(BackboneBase): |
|
"""ResNet backbone with GroupNorm with 32 channels.""" |
|
|
|
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): |
|
name_map = { |
|
"resnet50-gn": ("resnet50", "/checkpoint/szagoruyko/imagenet/22014122/checkpoint.pth"), |
|
"resnet101-gn": ("resnet101", "/checkpoint/szagoruyko/imagenet/22080524/checkpoint.pth"), |
|
} |
|
backbone = getattr(torchvision.models, name_map[name][0])( |
|
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=GroupNorm32 |
|
) |
|
checkpoint = torch.load(name_map[name][1], map_location="cpu") |
|
state_dict = {k[7:]: p for k, p in checkpoint["model"].items()} |
|
backbone.load_state_dict(state_dict) |
|
num_channels = 512 if name_map[name][0] in ("resnet18", "resnet34") else 2048 |
|
super().__init__(backbone, train_backbone, num_channels, return_interm_layers) |
|
|
|
|
|
def replace_bn(m, name=""): |
|
for attr_str in dir(m): |
|
target_attr = getattr(m, attr_str) |
|
if isinstance(target_attr, torch.nn.BatchNorm2d): |
|
frozen = FrozenBatchNorm2d(target_attr.num_features) |
|
bn = getattr(m, attr_str) |
|
frozen.weight.data.copy_(bn.weight) |
|
frozen.bias.data.copy_(bn.bias) |
|
frozen.running_mean.data.copy_(bn.running_mean) |
|
frozen.running_var.data.copy_(bn.running_var) |
|
setattr(m, attr_str, frozen) |
|
for n, ch in m.named_children(): |
|
replace_bn(ch, n) |
|
|
|
|
|
class GN_8(nn.Module): |
|
def __init__(self, num_channels): |
|
super().__init__() |
|
self.gn = torch.nn.GroupNorm(8, num_channels) |
|
|
|
def forward(self, x): |
|
return self.gn(x) |
|
|
|
|
|
class TimmBackbone(nn.Module): |
|
def __init__(self, name, return_interm_layers, main_layer=-1, group_norm=False): |
|
super().__init__() |
|
backbone = create_model(name, pretrained=True, in_chans=3, features_only=True, out_indices=(1, 2, 3, 4)) |
|
|
|
with torch.no_grad(): |
|
replace_bn(backbone) |
|
num_channels = backbone.feature_info.channels()[-1] |
|
self.body = backbone |
|
self.num_channels = num_channels |
|
self.interm = return_interm_layers |
|
self.main_layer = main_layer |
|
|
|
def forward(self, tensor_list): |
|
xs = self.body(tensor_list.tensors) |
|
if not self.interm: |
|
xs = [xs[self.main_layer]] |
|
out = OrderedDict() |
|
for i, x in enumerate(xs): |
|
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0] |
|
out[f"layer{i}"] = NestedTensor(x, mask) |
|
return out |
|
|
|
|
|
|