|
|
|
|
|
""" |
|
Various positional encodings for the transformer. |
|
""" |
|
import math |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
|
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, tensor_list): |
|
x = tensor_list.tensors |
|
mask = tensor_list.mask |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module): |
|
""" |
|
Absolute pos embedding, learned. |
|
""" |
|
|
|
def __init__(self, num_pos_feats=256): |
|
super().__init__() |
|
self.row_embed = nn.Embedding(50, num_pos_feats) |
|
self.col_embed = nn.Embedding(50, num_pos_feats) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.uniform_(self.row_embed.weight) |
|
nn.init.uniform_(self.col_embed.weight) |
|
|
|
def forward(self, tensor_list): |
|
x = tensor_list.tensors |
|
h, w = x.shape[-2:] |
|
i = torch.arange(w, device=x.device) |
|
j = torch.arange(h, device=x.device) |
|
x_emb = self.col_embed(i) |
|
y_emb = self.row_embed(j) |
|
pos = ( |
|
torch.cat( |
|
[ |
|
x_emb.unsqueeze(0).repeat(h, 1, 1), |
|
y_emb.unsqueeze(1).repeat(1, w, 1), |
|
], |
|
dim=-1, |
|
) |
|
.permute(2, 0, 1) |
|
.unsqueeze(0) |
|
.repeat(x.shape[0], 1, 1, 1) |
|
) |
|
return pos |
|
|
|
|
|
def build_position_encoding(hidden_dim=256): |
|
N_steps = hidden_dim // 2 |
|
position_embedding = PositionEmbeddingSine(N_steps, normalize=True) |
|
|
|
return position_embedding |
|
|