GenSim2 / cliport /train.py
gensim2's picture
init
ff66cf3
raw
history blame
4.76 kB
"""Main training script."""
import os
from pathlib import Path
import torch
from cliport import agents
from cliport.dataset import RavensDataset, RavensMultiTaskDataset, RavenMultiTaskDatasetBalance
import hydra
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import numpy as np
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import IPython
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_only
import datetime
import time
import random
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
@hydra.main(config_path="./cfg", config_name='train', version_base="1.2")
def main(cfg):
# Logger
set_seed_everywhere(1)
wandb_logger = None
if cfg['train']['log']:
try:
wandb_logger = WandbLogger(name=cfg['tag'])
except:
pass
# Checkpoint saver
hydra_dir = Path(os.getcwd())
checkpoint_path = os.path.join(cfg['train']['train_dir'], 'checkpoints')
last_checkpoint_path = os.path.join(checkpoint_path, 'last.ckpt')
last_checkpoint = last_checkpoint_path if os.path.exists(last_checkpoint_path) and cfg['train']['load_from_last_ckpt'] else None
checkpoint_callback = [ModelCheckpoint(
# monitor=cfg['wandb']['saver']['monitor'],
dirpath=os.path.join(checkpoint_path, 'best'),
save_top_k=1,
every_n_epochs=3,
save_last=True,
# every_n_train_steps=100
)]
# Trainer
max_epochs = cfg['train']['n_steps'] * cfg['train']['batch_size'] // cfg['train']['n_demos']
if cfg['train']['training_step_scale'] > 0:
# scale training time depending on the tasks to ensure coverage.
max_epochs = cfg['train']['training_step_scale'] # // cfg['train']['batch_size']
trainer = Trainer(
accelerator='gpu',
devices=cfg['train']['gpu'],
fast_dev_run=cfg['debug'],
logger=wandb_logger,
callbacks=checkpoint_callback,
max_epochs=max_epochs,
# check_val_every_n_epoch=max_epochs // 50,
# resume_from_checkpoint=last_checkpoint,
sync_batchnorm=True,
log_every_n_steps=30,
)
print(f"max epochs: {max_epochs}!")
# Resume epoch and global_steps
if last_checkpoint:
print(f"Resuming: {last_checkpoint}")
# Config
data_dir = cfg['train']['data_dir']
task = cfg['train']['task']
agent_type = cfg['train']['agent']
n_demos = cfg['train']['n_demos']
if agent_type == 'mdetr':
print('======import torch.multiprocessing to avioid shared memory issue======')
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
# n_demos = cfg['train']['n_demos']
# n_demos = cfg['train']['n_demos']
n_val = cfg['train']['n_val']
name = '{}-{}-{}'.format(task, agent_type, n_demos)
# Datasets
dataset_type = cfg['dataset']['type']
if 'multi' in dataset_type:
train_ds = RavensMultiTaskDataset(data_dir, cfg, group=task, mode='train',
n_demos=n_demos, augment=True)
val_ds = RavensMultiTaskDataset(data_dir, cfg, group=task, mode='val', n_demos=n_val, augment=False)
elif 'weighted' in dataset_type:
train_ds = RavenMultiTaskDatasetBalance(data_dir, cfg, group=task, mode='train', n_demos=n_demos, augment=True)
val_ds = RavenMultiTaskDatasetBalance(data_dir, cfg, group=task, mode='val', n_demos=n_val, augment=False)
else:
train_ds = RavensDataset(os.path.join(data_dir, '{}-train'.format(task)), cfg, n_demos=n_demos, augment=True)
val_ds = RavensDataset(os.path.join(data_dir, '{}-val'.format(task)), cfg, n_demos=n_val, augment=False)
# Initialize agent
train_loader = DataLoader(train_ds, shuffle=True,
pin_memory=True,
batch_size=cfg['train']['batch_size'],
num_workers=1 )
test_loader = DataLoader(val_ds, shuffle=False,
num_workers=1,
batch_size=cfg['train']['batch_size'],
pin_memory=True)
agent = agents.names[agent_type](name, cfg, train_loader, test_loader)
dt_string = datetime.datetime.now().strftime("%d_%m_%Y_%H:%M:%S")
print("current time:", dt_string)
start_time = time.time()
# Main training loop
trainer.fit(agent, ckpt_path=last_checkpoint)
print("current time:", time.time() - start_time)
if __name__ == '__main__':
main()