GenSim2 / notebooks /affordance.py
gensim2's picture
init
ff66cf3
import os
import sys
import json
import numpy as np
from cliport import tasks
from cliport import agents
from cliport.utils import utils
import torch
import cv2
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from torch.utils.data import DataLoader
import IPython
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
train_demos = 10 # number training demonstrations used to train agent
n_eval = 1 # number of evaluation instances
mode = 'test' # val or test
agent_name = 'cliport'
model_task = 'place-red-in-green' # multi-task agent conditioned with language goals
task_type = 'gpt5_mixcliport2' # gpt5_mixcliport2
model_folder = f'exps/exp-{task_type}_task_new_demo{train_demos}_2023-08-01_16-13-10-smaller' # path to pre-trained checkpoint
ckpt_name = 'last.ckpt' # name of checkpoint to load
draw_grasp_lines = True
affordance_heatmap_scale = 30
### Uncomment the task you want to evaluate on ###
# eval_task = 'align-rope'
# eval_task = 'assembling-kits-seq-seen-colors'
# eval_task = 'assembling-kits-seq-unseen-colors'
# eval_task = 'packing-shapes'
# eval_task = 'packing-boxes-pairs-seen-colors'
# eval_task = 'packing-boxes-pairs-unseen-colors'
# eval_task = 'packing-seen-google-objects-seq'
# eval_task = 'packing-unseen-google-objects-seq'
# eval_task = 'packing-seen-google-objects-group'
# eval_task = 'packing-unseen-google-objects-group'
# eval_task = 'put-block-in-bowl-seen-colors'
# eval_task = 'put-block-in-bowl-unseen-colors'
eval_task = 'place-red-in-green'
# eval_task = 'stack-block-pyramid-seq-unseen-colors'
# eval_task = 'separating-piles-seen-colors'
# eval_task = 'separating-piles-unseen-colors'
# eval_task = 'towers-of-hanoi-seq-seen-colors'
# eval_task = 'towers-of-hanoi-seq-unseen-colors'
root_dir = os.environ['GENSIM_ROOT']
assets_root = os.path.join(root_dir, 'cliport/environments/assets/')
config_file = 'eval.yaml'
vcfg = utils.load_hydra_config(os.path.join(root_dir, f'cliport/cfg/{config_file}'))
vcfg['data_dir'] = os.path.join(root_dir, 'data')
vcfg['mode'] = mode
vcfg['model_task'] = model_task
vcfg['eval_task'] = eval_task
vcfg['agent'] = agent_name
# Model and training config paths
model_path = os.path.join(root_dir, model_folder)
if model_folder[-7:] == 'smaller':
vcfg['train_config'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
vcfg['model_path'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
else:
vcfg['train_config'] = f"{model_path}/{model_folder[9:]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
vcfg['model_path'] = f"{model_path}/{model_folder[9:]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
tcfg = utils.load_hydra_config(vcfg['train_config'])
# Load dataset
ds = RavensDataset(os.path.join(vcfg['data_dir'], f'{vcfg["eval_task"]}-{vcfg["mode"]}'),
tcfg,
n_demos=n_eval,
augment=False)
eval_run = 0
name = '{}-{}-{}-{}'.format(vcfg['eval_task'], vcfg['agent'], n_eval, eval_run)
print(f'\nEval ID: {name}\n')
# Initialize agent
utils.set_seed(eval_run, torch=True)
agent = agents.names[vcfg['agent']](name, tcfg, DataLoader(ds), DataLoader(ds))
# Load checkpoint
ckpt_path = os.path.join(vcfg['model_path'], ckpt_name)
print(f'\nLoading checkpoint: {ckpt_path}')
agent.load(ckpt_path)
env = Environment(
assets_root,
disp=False,
shared_memory=False,
hz=480,
record_cfg=vcfg['record']
)
episode = 0
num_eval_instances = min(n_eval, ds.n_episodes)
for i in range(num_eval_instances):
print(f'\nEvaluation Instance: {i + 1}/{num_eval_instances}')
# Load episode
episode, seed = ds.load(i)
goal = episode[-1]
total_reward = 0
np.random.seed(seed)
# Set task
task_name = vcfg['eval_task']
task = tasks.names[task_name]()
task.mode = mode
# Set environment
env.seed(seed)
env.set_task(task)
obs = env.reset()
info = env.info
reward = 0
step = 0
done = False
# Rollout
while (step <= task.max_steps) and not done:
print(f"Step: {step} ({task.max_steps} max)")
# Get batch
if step == task.max_steps-1:
batch = ds.process_goal((obs, None, reward, info), perturb_params=None)
else:
batch = ds.process_sample((obs, None, reward, info), augment=False)
fig, axs = plt.subplots(2, 2, figsize=(13, 7))
# Get color and depth inputs
img = batch['img']
img = torch.from_numpy(img)
color = np.uint8(img.detach().cpu().numpy())[:,:,:3]
color = color.transpose(1,0,2)
depth = np.array(img.detach().cpu().numpy())[:,:,3]
depth = depth.transpose(1,0)
# Display input color
axs[0,0].imshow(color)
axs[0,0].axes.xaxis.set_visible(False)
axs[0,0].axes.yaxis.set_visible(False)
axs[0,0].set_title('Input RGB')
# Display input depth
axs[0,1].imshow(depth)
axs[0,1].axes.xaxis.set_visible(False)
axs[0,1].axes.yaxis.set_visible(False)
axs[0,1].set_title('Input Depth')
# Display predicted pick affordance
axs[1,0].imshow(color)
axs[1,0].axes.xaxis.set_visible(False)
axs[1,0].axes.yaxis.set_visible(False)
axs[1,0].set_title('Pick Affordance')
# Display predicted place affordance
axs[1,1].imshow(color)
axs[1,1].axes.xaxis.set_visible(False)
axs[1,1].axes.yaxis.set_visible(False)
axs[1,1].set_title('Place Affordance')
# Get action predictions
l = str(info['lang_goal'])
act = agent.act(obs, info, goal=None)
pick, place = act['pick'], act['place']
# Visualize pick affordance
pick_inp = {'inp_img': batch['img'], 'lang_goal': l}
pick_conf = agent.attn_forward(pick_inp)[0]
print("pick_conf:", pick_conf.shape, pick, place)
# IPython.embed()
logits = pick_conf.detach().cpu().numpy()
pick_conf = pick_conf.detach().cpu().numpy()
argmax = np.argmax(pick_conf)
argmax = np.unravel_index(argmax, shape=pick_conf.shape)
p0 = argmax[:2]
p0_theta = (argmax[2] * (2 * np.pi / pick_conf.shape[2])) * -1.0
line_len = 30
pick0 = (pick[0] + line_len/2.0 * np.sin(p0_theta), pick[1] + line_len/2.0 * np.cos(p0_theta))
pick1 = (pick[0] - line_len/2.0 * np.sin(p0_theta), pick[1] - line_len/2.0 * np.cos(p0_theta))
if draw_grasp_lines:
axs[1,0].plot((pick1[0], pick0[0]), (pick1[1], pick0[1]), color='r', linewidth=1)
# Visualize place affordance
place_inp = {'inp_img': batch['img'], 'p0': pick, 'lang_goal': l}
place_conf = agent.trans_forward(place_inp)[0]
place_conf = place_conf.permute(1, 2, 0)
place_conf = place_conf.detach().cpu().numpy()
argmax = np.argmax(place_conf)
argmax = np.unravel_index(argmax, shape=place_conf.shape)
p1_pix = argmax[:2]
p1_theta = (argmax[2] * (2 * np.pi / place_conf.shape[2]) + p0_theta) * -1.0
line_len = 30
place0 = (place[0] + line_len/2.0 * np.sin(p1_theta), place[1] + line_len/2.0 * np.cos(p1_theta))
place1 = (place[0] - line_len/2.0 * np.sin(p1_theta), place[1] - line_len/2.0 * np.cos(p1_theta))
if draw_grasp_lines:
axs[1,1].plot((place1[0], place0[0]), (place1[1], place0[1]), color='g', linewidth=1)
# Overlay affordances on RGB input
pick_logits_disp = np.uint8(logits * 255 * affordance_heatmap_scale).transpose(2,1,0)
place_logits_disp = np.uint8(np.sum(place_conf, axis=2)[:,:,None] * 255 * affordance_heatmap_scale).transpose(1,0,2)# .transpose(1,2,0)
pick_logits_disp_masked = np.ma.masked_where(pick_logits_disp < 0, pick_logits_disp)
place_logits_disp_masked = np.ma.masked_where(place_logits_disp < 0, place_logits_disp)
# IPython.embed()
axs[1][0].imshow(pick_logits_disp_masked, alpha=0.75)
axs[1][1].imshow(place_logits_disp_masked, cmap='viridis', alpha=0.75)
print(f"Lang Goal: {str(info['lang_goal'])}")
print(os.getcwd())
plt.savefig(f'./test_{step}.png')
# Act with the predicted actions
obs, reward, done, info = env.step(act)
step += 1
if done:
print("Done. Success.")
else:
print("Max steps reached. Task failed.")