import os import numpy as np from cliport.tasks.task import Task from cliport.utils import utils import pybullet as p class PalletizingBoxes(Task): """Pick up homogeneous fixed-sized boxes and stack them in transposed layers on the pallet.""" def __init__(self): super().__init__() self.max_steps = 30 self.lang_template = "stack all the boxes on the pallet" self.task_completed_desc = "done stacking boxes." self.additional_reset() def reset(self, env): super().reset(env) # Add pallet. zone_size = (0.3, 0.25, 0.25) zone_urdf = 'pallet/pallet.urdf' rotation = utils.eulerXYZ_to_quatXYZW((0, 0, 0)) zone_pose = ((0.5, 0.25, 0.02), rotation) env.add_object(zone_urdf, zone_pose, 'fixed') # Add stack of boxes on pallet. margin = 0.01 object_ids = [] # x, y, z dimensions for the asset size stack_size = (0.19, 0.19, 0.19) box_template = 'box/box-template.urdf' stack_dim = np.int32([2, 3, 3]) box_size = (stack_size - (stack_dim - 1) * margin) / stack_dim for z in range(stack_dim[2]): # Transpose every layer. stack_dim[0], stack_dim[1] = stack_dim[1], stack_dim[0] box_size[0], box_size[1] = box_size[1], box_size[0] # IMPORTANT: Compute object points and store as a dictionary for the `goal` for y in range(stack_dim[1]): for x in range(stack_dim[0]): position = list((x + 0.5, y + 0.5, z + 0.5) * box_size) position[0] += x * margin - stack_size[0] / 2 position[1] += y * margin - stack_size[1] / 2 position[2] += z * margin + 0.03 pose = (position, (0, 0, 0, 1)) pose = utils.multiply(zone_pose, pose) # IMPORTANT: REPLACE THE TEMPLATE URDF urdf = self.fill_template(box_template, {'DIM': box_size}) box_id = env.add_object(urdf, pose) object_ids.append(box_id) self.color_random_brown(box_id) # Randomly select top box on pallet and save ground truth pose. targets = [] self.steps = [] boxes = object_ids[:] # make copy while boxes: _, height, object_mask = self.get_true_image(env) top = np.argwhere(height > (np.max(height) - 0.03)) rpixel = top[int(np.floor(np.random.random() * len(top)))] # y, x box_id = int(object_mask[rpixel[0], rpixel[1]]) if box_id in boxes: position, rotation = p.getBasePositionAndOrientation(box_id) rposition = np.float32(position) + np.float32([0, -10, 0]) p.resetBasePositionAndOrientation(box_id, rposition, rotation) self.steps.append(box_id) targets.append((position, rotation)) boxes.remove(box_id) self.steps.reverse() # Time-reversed depalletizing. self.add_goal(objs=object_ids, matches=np.eye(len(object_ids)), targ_poses=targets, replace=False, rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1, language_goal=self.lang_template) self.spawn_box() def reward(self): reward, info = super().reward() self.spawn_box() return reward, info