# Training defaults: - config hydra: run: dir: ${train.train_dir} dataset: type: 'single' # 'single' or 'multi' images: True cache: True # load episodes to memory instead of reading from disk augment: theta_sigma: 60 # rotation sigma in degrees; N(mu = 0, sigma = theta_sigma). train: # folders model_task: ${train.task} exp_folder: exps train_dir: ${root_dir}/${train.exp_folder}/${train.model_task}-${train.agent}-n${train.n_demos}-train data_dir: ${root_dir}/data # task configs task: packing-boxes-pairs-seen-colors agent: two_stream_full_clip_lingunet_lat_transporter n_demos: 100 n_steps: 61000 # original paper use 200000 for single task and use 601000 for multi-task models # hyper params n_rotations: 36 batch_size: 8 batchnorm: False # important: False because batch_size=1 lr: 1e-4 attn_stream_fusion_type: 'add' trans_stream_fusion_type: 'conv' lang_fusion_type: 'mult' training_step_scale: 200 # How many epochs are needed. 100 data sample requires 20000 steps. -1 means ignored. # script configs gpu: -1 # -1 for all log: False # log metrics and stats to wandb n_val: 1 val_repeats: 1 save_steps: [1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 40000, 80000, 120000, 160000, 200000, 300000, 400000, 500000, 600000, 800000, 1000000, 1200000] load_from_last_ckpt: False # still change to True # sim to real data_augmentation: False # additional data augmentation for simtoreal wandb: run_name: 'cliport0' logger: entity: cliport project: cliport tags: [] group: train offline: False saver: upload: False monitor: 'val_loss'