gensim2 commited on
Commit
1cc747d
0 Parent(s):
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +36 -0
  2. BLOG.md +132 -0
  3. LICENSE +201 -0
  4. README.md +41 -0
  5. app.py +181 -0
  6. cliport.egg-info/PKG-INFO +211 -0
  7. cliport.egg-info/SOURCES.txt +220 -0
  8. cliport.egg-info/dependency_links.txt +1 -0
  9. cliport.egg-info/not-zip-safe +1 -0
  10. cliport.egg-info/top_level.txt +3 -0
  11. cliport/__init__.py +7 -0
  12. cliport/__pycache__/__init__.cpython-38.pyc +0 -0
  13. cliport/__pycache__/dataset.cpython-38.pyc +0 -0
  14. cliport/agents/__init__.py +84 -0
  15. cliport/agents/__pycache__/__init__.cpython-38.pyc +0 -0
  16. cliport/agents/__pycache__/transporter.cpython-38.pyc +0 -0
  17. cliport/agents/__pycache__/transporter_image_goal.cpython-38.pyc +0 -0
  18. cliport/agents/__pycache__/transporter_lang_goal.cpython-38.pyc +0 -0
  19. cliport/agents/transporter.py +539 -0
  20. cliport/agents/transporter_image_goal.py +161 -0
  21. cliport/agents/transporter_lang_goal.py +454 -0
  22. cliport/cfg/config.yaml +30 -0
  23. cliport/cfg/data.yaml +34 -0
  24. cliport/cfg/eval.yaml +50 -0
  25. cliport/cfg/train.yaml +61 -0
  26. cliport/dataset.py +972 -0
  27. cliport/demos.py +117 -0
  28. cliport/environments/__init__.py +0 -0
  29. cliport/environments/__pycache__/__init__.cpython-38.pyc +0 -0
  30. cliport/environments/__pycache__/environment.cpython-38.pyc +0 -0
  31. cliport/environments/assets/bags/bl_sphere_bag_basic_000.mtl +12 -0
  32. cliport/environments/assets/bags/bl_sphere_bag_basic_000.obj +1587 -0
  33. cliport/environments/assets/bags/bl_sphere_bag_basic_001.mtl +12 -0
  34. cliport/environments/assets/bags/bl_sphere_bag_basic_001.obj +1458 -0
  35. cliport/environments/assets/bags/bl_sphere_bag_basic_002.mtl +12 -0
  36. cliport/environments/assets/bags/bl_sphere_bag_basic_002.obj +1329 -0
  37. cliport/environments/assets/bags/bl_sphere_bag_basic_003.mtl +12 -0
  38. cliport/environments/assets/bags/bl_sphere_bag_basic_003.obj +1200 -0
  39. cliport/environments/assets/bags/bl_sphere_bag_basic_004.mtl +12 -0
  40. cliport/environments/assets/bags/bl_sphere_bag_basic_004.obj +1071 -0
  41. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257.mtl +10 -0
  42. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257.obj +1071 -0
  43. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257_top_ring.txt +32 -0
  44. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289.mtl +10 -0
  45. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289.obj +1200 -0
  46. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289_top_ring.txt +32 -0
  47. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321.mtl +10 -0
  48. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321.obj +1329 -0
  49. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321_top_ring.txt +32 -0
  50. cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.6_numV_353.mtl +10 -0
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.stl filter=lfs diff=lfs merge=lfs -text
BLOG.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Supersizing Simulation Task Generation in Robotics with LLM
2
+
3
+
4
+ ## Overview
5
+ Collecting real-world interaction data to train general robotic policies is prohibitively expensive, thus motivating the use of simulation data. Despite abundant single-task simulation data in terms of object instances and poses among others, the task-level diversity in simulation have remained a challenge. On the other hand, the breakthrough in language domain, such as GPT-4, has shown impressive coding skills and natural language understanding capability, but its usage in robotics has been mostly on policy execution, planning, and log summary. This repository explores the use of a LLM code generation pipeline to generate simulation environments and expert demonstrations for diverse simulation tasks. In particular, the task-level diversity is crucial for general-purpose manipulation policy learning. This simulation task generation pipeline can be top-down: given a target task, it proposes a task curriculum to iteratively approach the complexity of the target task; the pipeline can also work in a bottom-up manner: it bootstraps from previous tasks and iteratively proposes more interesting tasks, and these task code can be used to generate demonstrations to train a policy.
6
+
7
+ We develop an LLM pipeline for generating simulation environments and tasks through program synthesis, as data augmentations for robotic policy learning. The framework consists of three novel components:
8
+ 1. an automated prompting mechanism that proposes new tasks and implementations for open-world task design
9
+ 2. a task library for developing more complex simulation environments and data generations
10
+ 3. a GPT-4 generated incremental benchmark and a language-conditioned multi-task policy training method that leverages the large set of generated tasks, and close the loop on evaluating the task generation pipeline.
11
+
12
+
13
+ Note: Although the field has different opinions on what tasks and skills are, in this work we consider each simulation code defines a task. Therefore the [Ravens](https://github.com/google-research/ravens/tree/master) benchmark has 10 tasks in total.
14
+
15
+
16
+ ![](media/zoom_task.gif)
17
+
18
+
19
+
20
+ ## Prompt Recipe
21
+ Although we can prompt GPT-4 directly to generate simulation environment code for training manipulation policies, it lacks the contexts and the capability required to build an increasing task benchmark. We formulate the task and program synthesis problems into an agent prompting mechanism with a task design agent and a task library (or memory). These sub-components are all powered by few-shot and chain-of-thoughts prompts on large language models that have distilled internet-scale knowledge and offer the reasoning and exploration capability necessary for simulation task generations.
22
+
23
+
24
+ We have developed both top-down and bottom-up task approaches in our method. The top-down approach takes a desired task as a prompt and gradually generates more complex tasks to achieve this target task. This is helpful if the user apriori has a desired task or wants to design a task curriculum to build complex agents. For instance, to train a policy to accomplish long-horizon tasks such as build-house, we can ask LLM to generate more basic tasks like building a base or building a roof. The bottom-up approach shows the LLM the previous tasks that have been designed, directly requests for a new task, and further bootstraps itself iteratively. The goal is then to generate as diverse and interesting tasks as possible for downstream policy training. The details of the prompt is shown in the figure and section below.
25
+
26
+ ![](media/prompting_pipeline.gif)
27
+
28
+ ## Task Design Prompt
29
+ The goal of the task design prompt is to propose novel task descriptions and their code implementations, which can be further broken down into scene code and demonstration code. In particular, we use the [Ravens](https://github.com/google-research/ravens/tree/master) benchmark codebase with TransporterNets that use affordance prediction to solve table-top top-down manipulation tasks. The task design can handle any motion primitive like pushing, sliding, etc. that can be parameterized by two
30
+ end-effector poses at each timestep. From the figure, a standard gym-style simulation environment code, the reset function, which is inherited from a base task class and takes in the environment as an argument, efficiently represents the assets and their attributes, poses and their relative configurations, and spatial and language goals that are used to parameterize the per-step demonstration.
31
+
32
+
33
+ To reach this level of lengthy code generation, we break the prompt of the agent into several steps to enforce its logical structure (e.g. [prompt](prompts/bottomup_task_generation_prompt/)): task description generation, API and common mistake summary, few-shot reference code selection, and code generation. The input prompt to GPT-4 task generation stage consists of several components:
34
+ 1. available assets that are in the codebase
35
+ 2. samples of reference tasks from the task library (discussed in the next section) to act as few-shot examples
36
+ 3. also provide past task names to make sure the agent does not provide overlapped tasks.
37
+ 4. some examples of bad tasks and the reasons that they are bad (for example, not physically feasible)
38
+ 5. some additional rules (such as do not use assets beyond what is available) and the output format. This stage has temperature=1 to encourage diversity and the rest components would have temperature=0 to have some robustness.
39
+
40
+
41
+ The asset generation, which generates the URDFs for loading into a scene, has not been explored much in the pipeline. The API prompt consists of some major function implementations of the base task class as well as an explanation of the `goal` variable that represents the action labels. This is important to help GPT understands some useful helper functions in the base class (such as `get_random_pose` as well as some pybullet (simulation engine) basics. The common error prompt is a list of past errors that GPT-4 has made as well as some high-level errors that are summarized, to help it avoid making repeated errors. These components are optional.
42
+
43
+
44
+ Finally, reference code selection and code reference prompt will show LLM the generated task names and ask GPT which ones are useful to read, and then show GPT the corresponding code to be used as reference code. This part is critical for LLM to know exactly how to implement a task class in Ravens (such as the logic of sample asset urdfs and build scene first, and then add a spatial goal and language goals).
45
+
46
+ ![](media/code_explanation.png)
47
+
48
+ <details><summary>
49
+ Prompt Metric Ablation
50
+ </summary>
51
+
52
+ ![](media/prompt_metric.png)
53
+
54
+ </details>
55
+
56
+ ## Task Library (Memory)
57
+ An important differentiator of an agent-based LLM pipeline is that it has a memory of its past actions. In this case, our agent is a simulation task and code programmer and its environment is the physics simulation and human users. The task library has a few roles, for one it provides what past tasks are (in the task generation stage) and past codes are (in the code generation stage) to the task design agent such that it will not try to overlap tasks. It also acts as a benchmark to accumulate all past tasks and bootstrap for more novel tasks. Its saved task codes can be run offline to generate demonstration data. We can also visualize the tasks with an embedding space. The memory also contains a key component: the critic that reflects on the task and code that the agent designed and the reference code, and decides whether the new code will be added to the task memory. The task reflection stage prompt has the following component
58
+ 1. the generated task description and code
59
+ 2. the current tasks in the library
60
+ 3. some examples of accepting and rejecting new task, and then LLM is prompted to answer whether to accept this new task and this improvement will also be in the context window in the next round of the agent task design.
61
+
62
+
63
+ Note that to improve the robustness of this stage, we prompt GPT three times in parallel to get diverse answers with temperature 0.5, and only accept the task if there is an agreement. We show some selected generated tasks by GPT to explore different reasoning capability of GPT-4.
64
+
65
+ <details><summary>
66
+ Stack-Tasks Examples (Complexity)
67
+ </summary>
68
+
69
+ ![](media/stack_task.gif)
70
+
71
+ </details>
72
+
73
+ <details><summary>
74
+ Build-Task Examples (Creativity)
75
+ </summary>
76
+
77
+ ![](media/build_task.gif)
78
+
79
+ </details>
80
+
81
+ <details><summary>
82
+ Pick-and-Place-Task Examples (Compositionality)
83
+ </summary>
84
+
85
+ ![](media/pick_place_task.gif)
86
+
87
+ </details>
88
+ <!-- ![](media/generated_task.gif) -->
89
+
90
+ ## Policy Training
91
+ Once the tasks are generated, we can use these task codes to generate demonstration data and train manipulation policies. We use similar two-stream architectures and transporter architectures as in [CLIPORT](https://cliport.github.io/) to parametrize the policy $\pi$. The model first (i) attends to a local region to decide where to pick, then (ii) computes
92
+ a placement location by finding the best match through cross-correlation of deep visual features. The FCNs are extended to two-pathways: semantic and spatial where the semantic stream is conditioned with language features at the bottleneck and fused with intermediate features from the spatial stream. For more details, we refer the reader to the original papers.
93
+
94
+ <!-- <details><summary>
95
+ Policy Training Results
96
+ </summary>
97
+
98
+ ![](media/failure_case.gif)
99
+
100
+ </details> -->
101
+
102
+
103
+ ## Common Failure Cases
104
+ 0. The `common_error.txt` in the prompt folder shows some common failure cases of the generation.
105
+ 1. Since the simulation task code (reset function and class definition) is lengthy compared to simple function completions. It can be prone to bugs such as accessing missing functions or assets which cause compilation errors.
106
+ 2. When the tasks can be run, it could still have runtime errors such as in dynamics and geometry issues. For instance it can generate a huge object or generate task such as `balance a block on a rope` which is not grounded well.
107
+ 3. When the task has no runtime issues, the experts (represented by the `goal`) might not complete the task. Or the language descriptions can be too ambiguous to train an agent and require manual filtering.
108
+ 4. Some tasks are not zero-shot generated: such as `build-house`, `build-car`, and `manipulating-two-ropes` etc. Some tasks are mostly coded by the author for bootstrapping purpose such as `push-piles-into-letter` and `connect-boxes-with-rope`.
109
+
110
+ <details><summary>
111
+ Failure Cases
112
+ </summary>
113
+
114
+ ![](media/failure_case.gif)
115
+
116
+ </details>
117
+
118
+
119
+ ## Related Works
120
+ LLM has shown impressive potential to explore the environments and reflect upon its own actions, similar to an agent such as in [Voyager](https://voyager.minedojo.org/). Recent works have explored domain randomizations, [parametric task generations](https://sites.google.com/view/active-task-randomization), and procedural asset generations and text to 3D such as [Shape-E](https://github.com/openai/shap-e) and [Point-E](https://openai.com/research/point-e). Moreover, large language models have been applied to policy learning such as in [PALM-e](https://ai.googleblog.com/2023/03/palm-e-embodied-multimodal-language.html) and [Say-Can](https://say-can.github.io/), task and motion planning such as in [Inner Monologue](https://innermonologue.github.io/), synthesizing policy programs such as in [Code as Policies](https://code-as-policies.github.io/) and [Language as Rewards](https://language-to-reward.github.io/). Past work has also explored LLM's physical grounded capability such as in [Mine's Eye](https://arxiv.org/abs/2210.05359).
121
+
122
+ ## Conclusion and Future Directions
123
+ Overall we explored the use of LLM in simulation environment and task generation. It has shown impressive capability to write manipulation tasks along with expert demonstrations and yet still has several drawbacks and thus future directions.
124
+ There are a few limitations which could be interesting future directions
125
+ 1. The asset diversity limits how GPT-4 can generate high diverse and creative tasks. One interesting future direction is to explore asset generation jointly with code generation.
126
+ 2. It would be cool to generate thousands of tasks using this pipeline by bootstrapping as well as train an agent that can fit these number of tasks.
127
+ 3. It would be interesting to carefully study task-level generalization. We have generated a TSNE plot of the task code embeddings by use GPT embedding AI to encode the generated code for each task below.
128
+
129
+ ![](media/task_embedding.png)
130
+
131
+ ## Acknowledgement
132
+ I would like to acknowledge [Bailin Wang](https://berlino.github.io/), [Mohit Shridhar](https://mohitshridhar.com/), and [Yoon Kim](https://people.csail.mit.edu/yoonkim/) for the helpful discussions and collaborations.
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: GenSim
3
+ emoji: 📈
4
+ colorFrom: purple
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # Generative Simulation Interactive Demo
14
+
15
+ This demo is from the paper:
16
+
17
+ <!-- [Code as Policies: Language Model Programs for Embodied Control](https://code-as-policies.github.io/)
18
+ -->
19
+ Below is an interactive demo for the simulated tabletop manipulation domain, seen in the paper section IV.D
20
+
21
+ ## Preparations
22
+ 1. Obtain an [OpenAI API Key](https://openai.com/blog/openai-api/)
23
+
24
+ ## Usage
25
+ 1. Type in desired task name in the box. Then GenSim will try to run through the pipeline
26
+ 2. The task name has the form word separated by dash. For instance, 'place-blue-in-yellow' and 'align-rainbow-along-line'.
27
+
28
+ ## Guideline
29
+
30
+ ## Known Limitations
31
+ 1. The code generation can fail or generate infeasible tasks.
32
+ 2. The low-level pick place primitive does not do collision checking and cannot pick up certain objects.
33
+ 3. Top-down generation is typically more challenging if the task name is too vague or too distant from motions such as stacking.
34
+
35
+
36
+ ## Note
37
+ For GPT-4 model, each inference costs about $0.3. For GPT-3.5 model, each inference costs about $0.03.
38
+
39
+
40
+ ## Acknowledgement
41
+ Thanks to Jacky's [code-as-policies](https://huggingface.co/spaces/jackyliang42/code-as-policies/tree/main) demo.
app.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from hydra.core.global_hydra import GlobalHydra
3
+ import gradio as gr
4
+ import os
5
+ import hydra
6
+ import random
7
+
8
+ import re
9
+ import openai
10
+ import IPython
11
+ import time
12
+ import pybullet as p
13
+ import traceback
14
+ from datetime import datetime
15
+ from pprint import pprint
16
+ import cv2
17
+ import re
18
+ import random
19
+ import json
20
+
21
+ from gensim.agent import Agent
22
+ from gensim.critic import Critic
23
+ from gensim.sim_runner import SimulationRunner
24
+ from gensim.memory import Memory
25
+ from gensim.utils import set_gpt_model, clear_messages
26
+
27
+
28
+ class DemoRunner:
29
+
30
+ def __init__(self):
31
+ self._env = None
32
+ GlobalHydra.instance().clear()
33
+ hydra.initialize(version_base="1.2", config_path='cliport/cfg')
34
+ self._cfg = hydra.compose(config_name="data")
35
+
36
+ def setup(self, api_key):
37
+ cfg = self._cfg
38
+ openai.api_key = api_key
39
+ cfg['model_output_dir'] = 'temp'
40
+ cfg['prompt_folder'] = 'bottomup_task_generation_prompt'
41
+ set_gpt_model(cfg['gpt_model'])
42
+ cfg['load_memory'] = True
43
+ cfg['use_template'] = True
44
+ cfg['task_description_candidate_num'] = 10
45
+ cfg['record']['save_video'] = True
46
+
47
+ print("cfg = ", cfg)
48
+ memory = Memory(cfg)
49
+ agent = Agent(cfg, memory)
50
+ critic = Critic(cfg, memory)
51
+ self.simulation_runner = SimulationRunner(cfg, agent, critic, memory)
52
+
53
+ info = '### Set up '
54
+
55
+ return info
56
+
57
+ def setup_top_down(self, api_key, target_task_name):
58
+ cfg = self._cfg
59
+ openai.api_key = api_key
60
+ cfg['model_output_dir'] = 'temp'
61
+ cfg['prompt_folder'] = 'topdown_task_generation_prompt'
62
+ set_gpt_model(cfg['gpt_model'])
63
+ cfg['load_memory'] = True
64
+ cfg['use_template'] = True
65
+ cfg['target_task_name'] = target_task_name
66
+ cfg['task_description_candidate_num'] = 10
67
+ cfg['record']['save_video'] = True
68
+
69
+ print("cfg = ", cfg)
70
+ memory = Memory(cfg)
71
+ agent = Agent(cfg, memory)
72
+ critic = Critic(cfg, memory)
73
+ self.simulation_runner = SimulationRunner(cfg, agent, critic, memory)
74
+
75
+ info = '### Set up '
76
+
77
+ return info
78
+
79
+ def run(self, instruction, progress):
80
+ cfg = self._cfg
81
+ cfg['target_task_name'] = instruction
82
+
83
+ # self._env.cache_video = []
84
+ self.simulation_runner._md_logger = ''
85
+ # progress(0.2)
86
+ yield "Task Generating ==>", None, None
87
+ yield from self.simulation_runner.task_creation()
88
+ yield from self.simulation_runner.simulate_task()
89
+
90
+ def run_example(self):
91
+ cfg = self._cfg
92
+
93
+ # self._env.cache_video = []
94
+ self.simulation_runner._md_logger = ''
95
+ # progress(0.2)
96
+ yield "Task Generating ==>", None, None
97
+ yield from self.simulation_runner.example_task_creation()
98
+ yield from self.simulation_runner.simulate_task()
99
+
100
+
101
+ def setup(api_key, option_choice, target_task_name):
102
+ print(option_choice)
103
+ if not api_key:
104
+ return 'Please enter your OpenAI API key!', None
105
+
106
+ if option_choice is None:
107
+ return 'Please choose the mode!', None
108
+ demo_runner = DemoRunner()
109
+
110
+ if option_choice == 'top-down':
111
+ info = demo_runner.setup_top_down(api_key, target_task_name) + option_choice
112
+ elif option_choice == 'bottom-up':
113
+ info = demo_runner.setup(api_key) + option_choice
114
+ else:
115
+ raise NotImplementedError
116
+ return info, demo_runner
117
+
118
+
119
+
120
+ def run(instruction, demo_runner, progress=gr.Progress()):
121
+ yield from demo_runner.run(instruction, progress=progress)
122
+
123
+ def run_example():
124
+ demo_runner = DemoRunner()
125
+ demo_runner.setup(1)
126
+ yield from demo_runner.run_example()
127
+
128
+
129
+ if __name__ == '__main__':
130
+ os.environ['GENSIM_ROOT'] = os.getcwd()
131
+ with open('README.md', 'r') as f:
132
+ for _ in range(12):
133
+ next(f)
134
+ readme_text = f.read()
135
+
136
+ with gr.Blocks() as demo:
137
+ state = gr.State(None)
138
+
139
+ gr.Markdown(readme_text)
140
+ gr.Markdown('# Interactive Demo')
141
+ with gr.Row():
142
+ with gr.Column():
143
+
144
+
145
+ btn_example_run = gr.Button("Run Example (OpenAI API Key not required)")
146
+ with gr.Row():
147
+ inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1)
148
+
149
+ option_choice = gr.Radio(["bottom-up", "top-down"], label="Which mode?", interactive=True)
150
+ inp_instruction = gr.Textbox(label='Target Task Name (if top-down)', lines=1)
151
+ info_setup = gr.Markdown(label='Setup Info')
152
+ btn_setup = gr.Button("Setup/Reset Simulation")
153
+ btn_run = gr.Button("Run (this may take 30+ seconds)")
154
+ # with gr.Column():
155
+
156
+ with gr.Row():
157
+ with gr.Column(scale=1, min_width=600):
158
+ progress = gr.Markdown(label='Progress')
159
+ generated_task = gr.Markdown(label='Generated Task')
160
+ generated_asset = gr.Markdown(label='Generated Asset')
161
+ generated_code = gr.Code(label='Generated Code', language="python", interactive=True)
162
+ video_run = gr.Video(label='Video of Last Instruction')
163
+ btn_setup.click(
164
+ setup,
165
+ inputs=[inp_api_key, option_choice, inp_instruction],
166
+ outputs=[info_setup, state]
167
+ )
168
+ btn_run.click(
169
+ run,
170
+ inputs=[inp_instruction, state],
171
+ outputs=[progress, generated_code, video_run]
172
+ )
173
+
174
+ btn_example_run.click(
175
+ run_example,
176
+ inputs=[],
177
+ outputs=[progress, generated_code, video_run]
178
+ )
179
+
180
+
181
+ demo.queue().launch(show_error=True)
cliport.egg-info/PKG-INFO ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: cliport
3
+ Version: 0.1.0
4
+ Summary: CLIPort - What and Where Pathways for Robotic Manipulation.
5
+ Home-page: https://cliport.github.io/
6
+ Author: Mohit Shridhar
7
+ Author-email: [email protected]
8
+ License: Apache License
9
+ Version 2.0, January 2004
10
+ http://www.apache.org/licenses/
11
+
12
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
13
+
14
+ 1. Definitions.
15
+
16
+ "License" shall mean the terms and conditions for use, reproduction,
17
+ and distribution as defined by Sections 1 through 9 of this document.
18
+
19
+ "Licensor" shall mean the copyright owner or entity authorized by
20
+ the copyright owner that is granting the License.
21
+
22
+ "Legal Entity" shall mean the union of the acting entity and all
23
+ other entities that control, are controlled by, or are under common
24
+ control with that entity. For the purposes of this definition,
25
+ "control" means (i) the power, direct or indirect, to cause the
26
+ direction or management of such entity, whether by contract or
27
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
28
+ outstanding shares, or (iii) beneficial ownership of such entity.
29
+
30
+ "You" (or "Your") shall mean an individual or Legal Entity
31
+ exercising permissions granted by this License.
32
+
33
+ "Source" form shall mean the preferred form for making modifications,
34
+ including but not limited to software source code, documentation
35
+ source, and configuration files.
36
+
37
+ "Object" form shall mean any form resulting from mechanical
38
+ transformation or translation of a Source form, including but
39
+ not limited to compiled object code, generated documentation,
40
+ and conversions to other media types.
41
+
42
+ "Work" shall mean the work of authorship, whether in Source or
43
+ Object form, made available under the License, as indicated by a
44
+ copyright notice that is included in or attached to the work
45
+ (an example is provided in the Appendix below).
46
+
47
+ "Derivative Works" shall mean any work, whether in Source or Object
48
+ form, that is based on (or derived from) the Work and for which the
49
+ editorial revisions, annotations, elaborations, or other modifications
50
+ represent, as a whole, an original work of authorship. For the purposes
51
+ of this License, Derivative Works shall not include works that remain
52
+ separable from, or merely link (or bind by name) to the interfaces of,
53
+ the Work and Derivative Works thereof.
54
+
55
+ "Contribution" shall mean any work of authorship, including
56
+ the original version of the Work and any modifications or additions
57
+ to that Work or Derivative Works thereof, that is intentionally
58
+ submitted to Licensor for inclusion in the Work by the copyright owner
59
+ or by an individual or Legal Entity authorized to submit on behalf of
60
+ the copyright owner. For the purposes of this definition, "submitted"
61
+ means any form of electronic, verbal, or written communication sent
62
+ to the Licensor or its representatives, including but not limited to
63
+ communication on electronic mailing lists, source code control systems,
64
+ and issue tracking systems that are managed by, or on behalf of, the
65
+ Licensor for the purpose of discussing and improving the Work, but
66
+ excluding communication that is conspicuously marked or otherwise
67
+ designated in writing by the copyright owner as "Not a Contribution."
68
+
69
+ "Contributor" shall mean Licensor and any individual or Legal Entity
70
+ on behalf of whom a Contribution has been received by Licensor and
71
+ subsequently incorporated within the Work.
72
+
73
+ 2. Grant of Copyright License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ copyright license to reproduce, prepare Derivative Works of,
77
+ publicly display, publicly perform, sublicense, and distribute the
78
+ Work and such Derivative Works in Source or Object form.
79
+
80
+ 3. Grant of Patent License. Subject to the terms and conditions of
81
+ this License, each Contributor hereby grants to You a perpetual,
82
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
83
+ (except as stated in this section) patent license to make, have made,
84
+ use, offer to sell, sell, import, and otherwise transfer the Work,
85
+ where such license applies only to those patent claims licensable
86
+ by such Contributor that are necessarily infringed by their
87
+ Contribution(s) alone or by combination of their Contribution(s)
88
+ with the Work to which such Contribution(s) was submitted. If You
89
+ institute patent litigation against any entity (including a
90
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
91
+ or a Contribution incorporated within the Work constitutes direct
92
+ or contributory patent infringement, then any patent licenses
93
+ granted to You under this License for that Work shall terminate
94
+ as of the date such litigation is filed.
95
+
96
+ 4. Redistribution. You may reproduce and distribute copies of the
97
+ Work or Derivative Works thereof in any medium, with or without
98
+ modifications, and in Source or Object form, provided that You
99
+ meet the following conditions:
100
+
101
+ (a) You must give any other recipients of the Work or
102
+ Derivative Works a copy of this License; and
103
+
104
+ (b) You must cause any modified files to carry prominent notices
105
+ stating that You changed the files; and
106
+
107
+ (c) You must retain, in the Source form of any Derivative Works
108
+ that You distribute, all copyright, patent, trademark, and
109
+ attribution notices from the Source form of the Work,
110
+ excluding those notices that do not pertain to any part of
111
+ the Derivative Works; and
112
+
113
+ (d) If the Work includes a "NOTICE" text file as part of its
114
+ distribution, then any Derivative Works that You distribute must
115
+ include a readable copy of the attribution notices contained
116
+ within such NOTICE file, excluding those notices that do not
117
+ pertain to any part of the Derivative Works, in at least one
118
+ of the following places: within a NOTICE text file distributed
119
+ as part of the Derivative Works; within the Source form or
120
+ documentation, if provided along with the Derivative Works; or,
121
+ within a display generated by the Derivative Works, if and
122
+ wherever such third-party notices normally appear. The contents
123
+ of the NOTICE file are for informational purposes only and
124
+ do not modify the License. You may add Your own attribution
125
+ notices within Derivative Works that You distribute, alongside
126
+ or as an addendum to the NOTICE text from the Work, provided
127
+ that such additional attribution notices cannot be construed
128
+ as modifying the License.
129
+
130
+ You may add Your own copyright statement to Your modifications and
131
+ may provide additional or different license terms and conditions
132
+ for use, reproduction, or distribution of Your modifications, or
133
+ for any such Derivative Works as a whole, provided Your use,
134
+ reproduction, and distribution of the Work otherwise complies with
135
+ the conditions stated in this License.
136
+
137
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
138
+ any Contribution intentionally submitted for inclusion in the Work
139
+ by You to the Licensor shall be under the terms and conditions of
140
+ this License, without any additional terms or conditions.
141
+ Notwithstanding the above, nothing herein shall supersede or modify
142
+ the terms of any separate license agreement you may have executed
143
+ with Licensor regarding such Contributions.
144
+
145
+ 6. Trademarks. This License does not grant permission to use the trade
146
+ names, trademarks, service marks, or product names of the Licensor,
147
+ except as required for reasonable and customary use in describing the
148
+ origin of the Work and reproducing the content of the NOTICE file.
149
+
150
+ 7. Disclaimer of Warranty. Unless required by applicable law or
151
+ agreed to in writing, Licensor provides the Work (and each
152
+ Contributor provides its Contributions) on an "AS IS" BASIS,
153
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
154
+ implied, including, without limitation, any warranties or conditions
155
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
156
+ PARTICULAR PURPOSE. You are solely responsible for determining the
157
+ appropriateness of using or redistributing the Work and assume any
158
+ risks associated with Your exercise of permissions under this License.
159
+
160
+ 8. Limitation of Liability. In no event and under no legal theory,
161
+ whether in tort (including negligence), contract, or otherwise,
162
+ unless required by applicable law (such as deliberate and grossly
163
+ negligent acts) or agreed to in writing, shall any Contributor be
164
+ liable to You for damages, including any direct, indirect, special,
165
+ incidental, or consequential damages of any character arising as a
166
+ result of this License or out of the use or inability to use the
167
+ Work (including but not limited to damages for loss of goodwill,
168
+ work stoppage, computer failure or malfunction, or any and all
169
+ other commercial damages or losses), even if such Contributor
170
+ has been advised of the possibility of such damages.
171
+
172
+ 9. Accepting Warranty or Additional Liability. While redistributing
173
+ the Work or Derivative Works thereof, You may choose to offer,
174
+ and charge a fee for, acceptance of support, warranty, indemnity,
175
+ or other liability obligations and/or rights consistent with this
176
+ License. However, in accepting such obligations, You may act only
177
+ on Your own behalf and on Your sole responsibility, not on behalf
178
+ of any other Contributor, and only if You agree to indemnify,
179
+ defend, and hold each Contributor harmless for any liability
180
+ incurred by, or claims asserted against, such Contributor by reason
181
+ of your accepting any such warranty or additional liability.
182
+
183
+ END OF TERMS AND CONDITIONS
184
+
185
+ APPENDIX: How to apply the Apache License to your work.
186
+
187
+ To apply the Apache License to your work, attach the following
188
+ boilerplate notice, with the fields enclosed by brackets "[]"
189
+ replaced with your own identifying information. (Don't include
190
+ the brackets!) The text should be enclosed in the appropriate
191
+ comment syntax for the file format. We also recommend that a
192
+ file or class name and description of purpose be included on the
193
+ same "printed page" as the copyright notice for easier
194
+ identification within third-party archives.
195
+
196
+ Copyright [yyyy] [name of copyright owner]
197
+
198
+ Licensed under the Apache License, Version 2.0 (the "License");
199
+ you may not use this file except in compliance with the License.
200
+ You may obtain a copy of the License at
201
+
202
+ http://www.apache.org/licenses/LICENSE-2.0
203
+
204
+ Unless required by applicable law or agreed to in writing, software
205
+ distributed under the License is distributed on an "AS IS" BASIS,
206
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
207
+ See the License for the specific language governing permissions and
208
+ limitations under the License.
209
+
210
+ Keywords: CLIP,Vision Language Grounding,Robotics,Manipulation
211
+ License-File: LICENSE
cliport.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LICENSE
2
+ README.md
3
+ setup.py
4
+ cliport/__init__.py
5
+ cliport/dataset.py
6
+ cliport/demos.py
7
+ cliport/eval.py
8
+ cliport/train.py
9
+ cliport.egg-info/PKG-INFO
10
+ cliport.egg-info/SOURCES.txt
11
+ cliport.egg-info/dependency_links.txt
12
+ cliport.egg-info/not-zip-safe
13
+ cliport.egg-info/top_level.txt
14
+ cliport/agents/__init__.py
15
+ cliport/agents/transporter.py
16
+ cliport/agents/transporter_image_goal.py
17
+ cliport/agents/transporter_lang_goal.py
18
+ cliport/environments/__init__.py
19
+ cliport/environments/environment.py
20
+ cliport/environments/environment_test.py
21
+ cliport/generated_tasks/Four_corner_pyramid_challenge.py
22
+ cliport/generated_tasks/__init__.py
23
+ cliport/generated_tasks/align_balls_in_colored_boxes.py
24
+ cliport/generated_tasks/align_balls_in_colored_zones.py
25
+ cliport/generated_tasks/align_cylinders_in_zones.py
26
+ cliport/generated_tasks/align_pair_colored_blocks_along_line.py
27
+ cliport/generated_tasks/align_rope_along_line.py
28
+ cliport/generated_tasks/align_rope_cross_zone.py
29
+ cliport/generated_tasks/align_spheres_in_colored_zones.py
30
+ cliport/generated_tasks/assemble_single_car.py
31
+ cliport/generated_tasks/ball_in_bowl_obstacle_course.py
32
+ cliport/generated_tasks/ball_in_bowl_obstacle_course_new.py
33
+ cliport/generated_tasks/ball_on_box_on_container.py
34
+ cliport/generated_tasks/ball_sorting_with_blocks_barrier.py
35
+ cliport/generated_tasks/block_on_cylinder_on_pallet.py
36
+ cliport/generated_tasks/block_pyramid_with_limited_space.py
37
+ cliport/generated_tasks/build_bridge.py
38
+ cliport/generated_tasks/build_car.py
39
+ cliport/generated_tasks/build_cylinder_structure.py
40
+ cliport/generated_tasks/build_house.py
41
+ cliport/generated_tasks/build_two_circles.py
42
+ cliport/generated_tasks/build_wheel.py
43
+ cliport/generated_tasks/color_blocks_in_cylinder_maze.py
44
+ cliport/generated_tasks/color_coded_blocks_on_corner.py
45
+ cliport/generated_tasks/color_coordinated_arch_construction.py
46
+ cliport/generated_tasks/color_coordinated_ball_insertion.py
47
+ cliport/generated_tasks/color_coordinated_ball_stacking.py
48
+ cliport/generated_tasks/color_coordinated_block_bridge.py
49
+ cliport/generated_tasks/color_coordinated_block_shifting.py
50
+ cliport/generated_tasks/color_coordinated_block_tower.py
51
+ cliport/generated_tasks/color_coordinated_box_ball_matching.py
52
+ cliport/generated_tasks/color_coordinated_cylinder_ball_match.py
53
+ cliport/generated_tasks/color_coordinated_cylinder_pyramid.py
54
+ cliport/generated_tasks/color_coordinated_cylinder_stand_assembly.py
55
+ cliport/generated_tasks/color_coordinated_cylinder_tower.py
56
+ cliport/generated_tasks/color_coordinated_insertion.py
57
+ cliport/generated_tasks/color_coordinated_sphere_and_cylinder_assembly.py
58
+ cliport/generated_tasks/color_coordinated_sphere_insertion.py
59
+ cliport/generated_tasks/color_coordinated_sphere_on_pallet_pyramid.py
60
+ cliport/generated_tasks/color_coordinated_zone_arrangement.py
61
+ cliport/generated_tasks/color_coordinated_zone_stacking.py
62
+ cliport/generated_tasks/color_cued_ball_corner_sorting.py
63
+ cliport/generated_tasks/color_ordered_blocks_on_pallet.py
64
+ cliport/generated_tasks/color_ordered_container_arrangement.py
65
+ cliport/generated_tasks/color_ordered_insertion.py
66
+ cliport/generated_tasks/color_ordered_insertion_new.py
67
+ cliport/generated_tasks/color_sequenced_pyramid_packing.py
68
+ cliport/generated_tasks/color_sequenced_sphere_placement.py
69
+ cliport/generated_tasks/color_sorted_block_race.py
70
+ cliport/generated_tasks/color_sorted_container_stack.py
71
+ cliport/generated_tasks/color_specific_container_fill.py
72
+ cliport/generated_tasks/color_structured_block_tower.py
73
+ cliport/generated_tasks/colored_balls_sorting_in_corner.py
74
+ cliport/generated_tasks/colored_cylinder_in_square.py
75
+ cliport/generated_tasks/colorful_block_tower_on_cylinder_base.py
76
+ cliport/generated_tasks/connect_boxes_with_rope.py
77
+ cliport/generated_tasks/construct_colorful_arch.py
78
+ cliport/generated_tasks/construct_corner_blocks.py
79
+ cliport/generated_tasks/construct_corner_building.py
80
+ cliport/generated_tasks/corner_block_challenge.py
81
+ cliport/generated_tasks/corner_sort_cylinders.py
82
+ cliport/generated_tasks/create_pyramid_blocks_and_container.py
83
+ cliport/generated_tasks/create_pyramid_with_color_coded_ells.py
84
+ cliport/generated_tasks/cylinder_balancing_and_placement.py
85
+ cliport/generated_tasks/cylinder_ring_stack.py
86
+ cliport/generated_tasks/cylinder_stand_alignment.py
87
+ cliport/generated_tasks/guided_block_path.py
88
+ cliport/generated_tasks/insert_blocks_lineup.py
89
+ cliport/generated_tasks/insert_ell_along_square_path.py
90
+ cliport/generated_tasks/insert_sphere_into_container.py
91
+ cliport/generated_tasks/insertion_in_color_sequenced_zones.py
92
+ cliport/generated_tasks/kit_in_bowl_in_zone.py
93
+ cliport/generated_tasks/manipulating_two_ropes.py
94
+ cliport/generated_tasks/mix_piles.py
95
+ cliport/generated_tasks/mixed_color_block_barrier_insertion.py
96
+ cliport/generated_tasks/move_bowl_from_pallet_to_corner.py
97
+ cliport/generated_tasks/move_kit_from_zone_to_cylinder.py
98
+ cliport/generated_tasks/move_piles_along_line.py
99
+ cliport/generated_tasks/multi_level_block_construction.py
100
+ cliport/generated_tasks/multi_level_insertion_and_zone_matching.py
101
+ cliport/generated_tasks/multi_level_pyramid_construction.py
102
+ cliport/generated_tasks/multicolor_block_bridge.py
103
+ cliport/generated_tasks/place_ball_in_elevated_bowl.py
104
+ cliport/generated_tasks/place_blue_on_line_ends.py
105
+ cliport/generated_tasks/push_piles_into_letter.py
106
+ cliport/generated_tasks/put_blocks_between_zones.py
107
+ cliport/generated_tasks/put_blues_around_red.py
108
+ cliport/generated_tasks/put_kit_in_bowl.py
109
+ cliport/generated_tasks/pyramid_blocks_assemble.py
110
+ cliport/generated_tasks/rainbow_stack.py
111
+ cliport/generated_tasks/sequential_block_insertion.py
112
+ cliport/generated_tasks/sequential_insertion_and_stacking.py
113
+ cliport/generated_tasks/sort_and_assemble_block_castle.py
114
+ cliport/generated_tasks/sort_and_stack_clr_blocks.py
115
+ cliport/generated_tasks/sort_insert_color_coordinated_blocks.py
116
+ cliport/generated_tasks/sorting_blocks_into_pallets.py
117
+ cliport/generated_tasks/sphere_align_stand.py
118
+ cliport/generated_tasks/sphere_container_color_match.py
119
+ cliport/generated_tasks/stack_blocks_in_container.py
120
+ cliport/generated_tasks/stack_color_coordinated_blocks.py
121
+ cliport/generated_tasks/stack_three_layer_red_wall.py
122
+ cliport/generated_tasks/sweep_and_sort_blocks.py
123
+ cliport/generated_tasks/symmetric_block_bridge_construction.py
124
+ cliport/generated_tasks/vertical_insertion_blocks.py
125
+ cliport/models/__init__.py
126
+ cliport/models/backbone_full.py
127
+ cliport/models/clip_film_lingunet_lat.py
128
+ cliport/models/clip_ling.py
129
+ cliport/models/clip_lingunet.py
130
+ cliport/models/clip_lingunet_lat.py
131
+ cliport/models/clip_unet.py
132
+ cliport/models/clip_unet_lat.py
133
+ cliport/models/clip_wo_skip.py
134
+ cliport/models/mdetr_lingunet_lat_fuse.py
135
+ cliport/models/misc.py
136
+ cliport/models/position_encoding.py
137
+ cliport/models/pretrain_resnet.py
138
+ cliport/models/resnet.py
139
+ cliport/models/resnet_lang.py
140
+ cliport/models/resnet_lat.py
141
+ cliport/models/resnet_lat_origin.py
142
+ cliport/models/resnet_lat_reduce.py
143
+ cliport/models/rn50_bert_lingunet.py
144
+ cliport/models/rn50_bert_lingunet_lat.py
145
+ cliport/models/rn50_bert_unet.py
146
+ cliport/models/untrained_rn50_bert_lingunet.py
147
+ cliport/models/core/__init__.py
148
+ cliport/models/core/attention.py
149
+ cliport/models/core/attention_image_goal.py
150
+ cliport/models/core/clip.py
151
+ cliport/models/core/fusion.py
152
+ cliport/models/core/transport.py
153
+ cliport/models/core/transport_image_goal.py
154
+ cliport/models/core/unet.py
155
+ cliport/tasks/__init__.py
156
+ cliport/tasks/align_box_corner.py
157
+ cliport/tasks/align_rope.py
158
+ cliport/tasks/assembling_kits.py
159
+ cliport/tasks/assembling_kits_seq.py
160
+ cliport/tasks/block_insertion.py
161
+ cliport/tasks/cameras.py
162
+ cliport/tasks/extended_tasks.py
163
+ cliport/tasks/generated_task.py
164
+ cliport/tasks/grippers.py
165
+ cliport/tasks/manipulating_rope.py
166
+ cliport/tasks/packing_boxes.py
167
+ cliport/tasks/packing_boxes_pairs.py
168
+ cliport/tasks/packing_google_objects.py
169
+ cliport/tasks/packing_shapes.py
170
+ cliport/tasks/palletizing_boxes.py
171
+ cliport/tasks/place_red_in_green.py
172
+ cliport/tasks/primitives.py
173
+ cliport/tasks/put_block_in_bowl.py
174
+ cliport/tasks/separating_piles.py
175
+ cliport/tasks/stack_block_pyramid.py
176
+ cliport/tasks/stack_block_pyramid_seq.py
177
+ cliport/tasks/sweeping_piles.py
178
+ cliport/tasks/task.py
179
+ cliport/tasks/towers_of_hanoi.py
180
+ cliport/tasks/towers_of_hanoi_seq.py
181
+ cliport/utils/__init__.py
182
+ cliport/utils/dataaug.py
183
+ cliport/utils/model_checkpoint.py
184
+ cliport/utils/pybullet_utils.py
185
+ cliport/utils/simple_tokenizer.py
186
+ cliport/utils/utils.py
187
+ gensim/__init__.py
188
+ gensim/agent.py
189
+ gensim/critic.py
190
+ gensim/evaluate_finetune_model.py
191
+ gensim/memory.py
192
+ gensim/prepare_finetune_gpt.py
193
+ gensim/prepare_finetune_gpt_new.py
194
+ gensim/run_simulation.py
195
+ gensim/sim_runner.py
196
+ gensim/topdown_sim_runner.py
197
+ gensim/use_finetune_model.py
198
+ gensim/utils.py
199
+ misc/__init__.py
200
+ misc/add_task_from_code.py
201
+ misc/analyze_stats.py
202
+ misc/analyze_stats_order.py
203
+ misc/compare_stats.py
204
+ misc/compute_embedding_neighbor_tasks.py
205
+ misc/concat_video.py
206
+ misc/copy_all_videos.py
207
+ misc/generate_all_gif.py
208
+ misc/generate_primitive_mesh.py
209
+ misc/job_create.py
210
+ misc/job_query.py
211
+ misc/list_remaining_tasks.py
212
+ misc/make_grid_video.py
213
+ misc/make_zoom_grid.py
214
+ misc/prepare_finetune_gpt.py
215
+ misc/prepare_finetune_gpt_new.py
216
+ misc/purge_task.py
217
+ misc/pyBulletSimImporter.py
218
+ misc/pyBulletSimRecorder.py
219
+ misc/snapshot_all_tasks.py
220
+ misc/tsne_visualize_chatgpt_embeddings_for_task.py
cliport.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
cliport.egg-info/not-zip-safe ADDED
@@ -0,0 +1 @@
 
 
1
+
cliport.egg-info/top_level.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ cliport
2
+ gensim
3
+ misc
cliport/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ """Package init."""
2
+
3
+ from cliport import agents
4
+ from cliport import models
5
+ from cliport import tasks
6
+ from cliport.dataset import RavensDataset
7
+ from cliport.environments.environment import Environment
cliport/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (399 Bytes). View file
 
cliport/__pycache__/dataset.cpython-38.pyc ADDED
Binary file (15.3 kB). View file
 
cliport/agents/__init__.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from cliport.agents.transporter import OriginalTransporterAgent
2
+ from cliport.agents.transporter import ClipUNetTransporterAgent
3
+ from cliport.agents.transporter import TwoStreamClipWithoutSkipsTransporterAgent
4
+ from cliport.agents.transporter import TwoStreamRN50BertUNetTransporterAgent
5
+ from cliport.agents.transporter import TwoStreamClipUNetTransporterAgent
6
+
7
+ from cliport.agents.transporter_lang_goal import TwoStreamClipLingUNetTransporterAgent
8
+ from cliport.agents.transporter_lang_goal import TwoStreamRN50BertLingUNetTransporterAgent
9
+ from cliport.agents.transporter_lang_goal import TwoStreamUntrainedRN50BertLingUNetTransporterAgent
10
+ from cliport.agents.transporter_lang_goal import OriginalTransporterLangFusionAgent
11
+ from cliport.agents.transporter_lang_goal import ClipLingUNetTransporterAgent
12
+ from cliport.agents.transporter_lang_goal import TwoStreamRN50BertLingUNetLatTransporterAgent
13
+
14
+ from cliport.agents.transporter_image_goal import ImageGoalTransporterAgent
15
+
16
+ from cliport.agents.transporter import TwoStreamClipUNetLatTransporterAgent
17
+ from cliport.agents.transporter_lang_goal import TwoStreamClipLingUNetLatTransporterAgent
18
+ from cliport.agents.transporter_lang_goal import TwoStreamClipFilmLingUNetLatTransporterAgent
19
+ from cliport.agents.transporter_lang_goal import TwoStreamClipFilmLingUNetLatTransporterAgent, TwoStreamClipLingUNetLatTransporterAgentReduce, TwoStreamClipLingUNetLatTransporterAgentReducePretrained
20
+ from cliport.agents.transporter_lang_goal import TwoStreamClipLingUNetLatTransporterAgentReduceOneStream
21
+ from cliport.agents.transporter_lang_goal import TwoStreamMdetrLingUNetLatTransporterAgent
22
+
23
+ names = {
24
+ ################################
25
+ ### CLIPort ###
26
+ 'cliport': TwoStreamClipLingUNetLatTransporterAgent,
27
+ 'cliport_reduce': TwoStreamClipLingUNetLatTransporterAgentReduce,
28
+ 'cliport_reduce_pretrain': TwoStreamClipLingUNetLatTransporterAgentReducePretrained,
29
+ 'cliport_reduce_onestream': TwoStreamClipLingUNetLatTransporterAgentReduceOneStream,
30
+ 'two_stream_clip_lingunet_lat_transporter': TwoStreamClipLingUNetLatTransporterAgent,
31
+
32
+ ################################
33
+ ### Two-Stream Architectures ###
34
+ # CLIPort without language
35
+ 'two_stream_clip_unet_lat_transporter': TwoStreamClipUNetLatTransporterAgent,
36
+
37
+ # CLIPort without lateral connections
38
+ 'two_stream_clip_lingunet_transporter': TwoStreamClipLingUNetTransporterAgent,
39
+
40
+ # CLIPort without language and lateral connections
41
+ 'two_stream_clip_unet_transporter': TwoStreamClipUNetTransporterAgent,
42
+
43
+ # CLIPort without language, lateral, or skip connections
44
+ 'two_stream_clip_woskip_transporter': TwoStreamClipWithoutSkipsTransporterAgent,
45
+
46
+ # RN50-BERT
47
+ 'two_stream_full_rn50_bert_lingunet_lat_transporter': TwoStreamRN50BertLingUNetLatTransporterAgent,
48
+
49
+ # RN50-BERT without language
50
+ 'two_stream_full_rn50_bert_unet_transporter': TwoStreamRN50BertUNetTransporterAgent,
51
+
52
+ # RN50-BERT without lateral connections
53
+ 'two_stream_full_rn50_bert_lingunet_transporter': TwoStreamRN50BertLingUNetTransporterAgent,
54
+
55
+ # Untrained RN50-BERT (similar to untrained CLIP)
56
+ 'two_stream_full_untrained_rn50_bert_lingunet_transporter': TwoStreamUntrainedRN50BertLingUNetTransporterAgent,
57
+
58
+ ###################################
59
+ ### Single-Stream Architectures ###
60
+ # Transporter-only
61
+ 'transporter': OriginalTransporterAgent,
62
+
63
+ # CLIP-only without language
64
+ 'clip_unet_transporter': ClipUNetTransporterAgent,
65
+
66
+ # CLIP-only
67
+ 'clip_lingunet_transporter': ClipLingUNetTransporterAgent,
68
+
69
+ # Transporter with language (at bottleneck)
70
+ 'transporter_lang': OriginalTransporterLangFusionAgent,
71
+
72
+ # Image-Goal Transporter
73
+ 'image_goal_transporter': ImageGoalTransporterAgent,
74
+
75
+ ##############################################
76
+ ### New variants NOT reported in the paper ###
77
+
78
+ # CLIPort with FiLM language fusion
79
+ 'two_stream_clip_film_lingunet_lat_transporter': TwoStreamClipFilmLingUNetLatTransporterAgent,
80
+
81
+ # MDETR
82
+ 'mdetr': TwoStreamMdetrLingUNetLatTransporterAgent
83
+
84
+ }
cliport/agents/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (2.16 kB). View file
 
cliport/agents/__pycache__/transporter.cpython-38.pyc ADDED
Binary file (15.8 kB). View file
 
cliport/agents/__pycache__/transporter_image_goal.cpython-38.pyc ADDED
Binary file (5.02 kB). View file
 
cliport/agents/__pycache__/transporter_lang_goal.cpython-38.pyc ADDED
Binary file (12.7 kB). View file
 
cliport/agents/transporter.py ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ from pytorch_lightning import LightningModule
7
+
8
+ from cliport.tasks import cameras
9
+ from cliport.utils import utils
10
+ from cliport.models.core.attention import Attention
11
+ from cliport.models.core.transport import Transport
12
+ from cliport.models.streams.two_stream_attention import TwoStreamAttention
13
+ from cliport.models.streams.two_stream_transport import TwoStreamTransport
14
+
15
+ from cliport.models.streams.two_stream_attention import TwoStreamAttentionLat
16
+ from cliport.models.streams.two_stream_transport import TwoStreamTransportLat
17
+ import time
18
+ import IPython
19
+
20
+ class TransporterAgent(LightningModule):
21
+ def __init__(self, name, cfg, train_ds, test_ds):
22
+ super().__init__()
23
+ utils.set_seed(0)
24
+ self.automatic_optimization=False
25
+ self.device_type = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # this is bad for PL :(
26
+ self.name = name
27
+ self.cfg = cfg
28
+ self.train_loader = train_ds
29
+ self.test_loader = test_ds
30
+
31
+ self.train_ds = train_ds.dataset
32
+ self.test_ds = test_ds.dataset
33
+
34
+ self.name = name
35
+ self.task = cfg['train']['task']
36
+ self.total_steps = 0
37
+ self.crop_size = 64
38
+ self.n_rotations = cfg['train']['n_rotations']
39
+
40
+ self.pix_size = 0.003125
41
+ self.in_shape = (320, 160, 6)
42
+ self.cam_config = cameras.RealSenseD415.CONFIG
43
+ self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
44
+
45
+ self.val_repeats = cfg['train']['val_repeats']
46
+ self.save_steps = cfg['train']['save_steps']
47
+
48
+ self._build_model()
49
+ ##
50
+ # reduce the number of parameters here
51
+ ##
52
+ self._optimizers = {
53
+ 'attn': torch.optim.Adam(self.attention.parameters(), lr=self.cfg['train']['lr']),
54
+ 'trans': torch.optim.Adam(self.transport.parameters(), lr=self.cfg['train']['lr'])
55
+ }
56
+ print("Agent: {}, Logging: {}".format(name, cfg['train']['log']))
57
+
58
+ def configure_optimizers(self):
59
+ return self._optimizers
60
+
61
+ def _build_model(self):
62
+ self.attention = None
63
+ self.transport = None
64
+ raise NotImplementedError()
65
+
66
+ def forward(self, x):
67
+ raise NotImplementedError()
68
+
69
+ def cross_entropy_with_logits(self, pred, labels, reduction='mean'):
70
+ # Lucas found that both sum and mean work equally well
71
+ x = (-labels.view(len(labels), -1) * F.log_softmax(pred.view(len(labels), -1), -1))
72
+ if reduction == 'sum':
73
+ return x.sum()
74
+ elif reduction == 'mean':
75
+ return x.mean()
76
+ else:
77
+ raise NotImplementedError()
78
+
79
+ def attn_forward(self, inp, softmax=True):
80
+ inp_img = inp['inp_img']
81
+ output = self.attention.forward(inp_img, softmax=softmax)
82
+ return output
83
+
84
+ def attn_training_step(self, frame, backprop=True, compute_err=False):
85
+ inp_img = frame['img']
86
+ p0, p0_theta = frame['p0'], frame['p0_theta']
87
+
88
+ inp = {'inp_img': inp_img}
89
+ out = self.attn_forward(inp, softmax=False)
90
+ return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta)
91
+
92
+ def attn_criterion(self, backprop, compute_err, inp, out, p, theta):
93
+ # Get label.
94
+ if type(theta) is torch.Tensor:
95
+ theta = theta.detach().cpu().numpy()
96
+
97
+ theta_i = theta / (2 * np.pi / self.attention.n_rotations)
98
+ theta_i = np.int32(np.round(theta_i)) % self.attention.n_rotations
99
+ inp_img = inp['inp_img'].float()
100
+
101
+ label_size = inp_img.shape[:3] + (self.attention.n_rotations,)
102
+ label = torch.zeros(label_size, dtype=torch.float, device=out.device)
103
+
104
+ # remove this for-loop laters
105
+ for idx, p_i in enumerate(p):
106
+ label[idx, int(p_i[0]), int(p_i[1]), theta_i[idx]] = 1
107
+ label = label.permute((0, 3, 1, 2)).contiguous()
108
+
109
+ # Get loss.
110
+ loss = self.cross_entropy_with_logits(out, label)
111
+
112
+ # Backpropagate.
113
+ if backprop:
114
+ attn_optim = self._optimizers['attn']
115
+ self.manual_backward(loss)
116
+ attn_optim.step()
117
+ attn_optim.zero_grad()
118
+
119
+ # Pixel and Rotation error (not used anywhere).
120
+ err = {}
121
+ if compute_err:
122
+ with torch.no_grad():
123
+ pick_conf = self.attn_forward(inp)
124
+ pick_conf = pick_conf[0].permute(1,2,0)
125
+ pick_conf = pick_conf.detach().cpu().numpy()
126
+ p = p[0]
127
+ theta = theta[0]
128
+
129
+ # single batch
130
+ argmax = np.argmax(pick_conf)
131
+ argmax = np.unravel_index(argmax, shape=pick_conf.shape)
132
+ p0_pix = argmax[:2]
133
+ p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
134
+
135
+ err = {
136
+ 'dist': np.linalg.norm(np.array(p.detach().cpu().numpy()) - p0_pix, ord=1),
137
+ 'theta': np.absolute((theta - p0_theta) % np.pi)
138
+ }
139
+ return loss, err
140
+
141
+ def trans_forward(self, inp, softmax=True):
142
+ inp_img = inp['inp_img']
143
+ p0 = inp['p0']
144
+
145
+ output = self.transport.forward(inp_img, p0, softmax=softmax)
146
+ return output
147
+
148
+ def transport_training_step(self, frame, backprop=True, compute_err=False):
149
+ inp_img = frame['img'].float()
150
+ p0 = frame['p0']
151
+ p1, p1_theta = frame['p1'], frame['p1_theta']
152
+
153
+ inp = {'inp_img': inp_img, 'p0': p0}
154
+ output = self.trans_forward(inp, softmax=False)
155
+ err, loss = self.transport_criterion(backprop, compute_err, inp, output, p0, p1, p1_theta)
156
+ return loss, err
157
+
158
+ def transport_criterion(self, backprop, compute_err, inp, output, p, q, theta):
159
+ s = time.time()
160
+ if type(theta) is torch.Tensor:
161
+ theta = theta.detach().cpu().numpy()
162
+
163
+ itheta = theta / (2 * np.pi / self.transport.n_rotations)
164
+ itheta = np.int32(np.round(itheta)) % self.transport.n_rotations
165
+
166
+ # Get one-hot pixel label map.
167
+ inp_img = inp['inp_img']
168
+
169
+ # label_size = inp_img.shape[:2] + (self.transport.n_rotations,)
170
+ label_size = inp_img.shape[:3] + (self.transport.n_rotations,)
171
+ label = torch.zeros(label_size, dtype=torch.float, device=output.device)
172
+
173
+ # remove this for-loop laters
174
+ q[:,0] = torch.clamp(q[:,0], 0, label.shape[1]-1)
175
+ q[:,1] = torch.clamp(q[:,1], 0, label.shape[2]-1)
176
+
177
+ for idx, q_i in enumerate(q):
178
+ label[idx, int(q_i[0]), int(q_i[1]), itheta[idx]] = 1
179
+ label = label.permute((0, 3, 1, 2)).contiguous()
180
+
181
+ # Get loss.
182
+ loss = self.cross_entropy_with_logits(output, label)
183
+
184
+ if backprop:
185
+ transport_optim = self._optimizers['trans']
186
+ transport_optim.zero_grad()
187
+ self.manual_backward(loss)
188
+ transport_optim.step()
189
+
190
+ # Pixel and Rotation error (not used anywhere).
191
+ err = {}
192
+ if compute_err:
193
+ with torch.no_grad():
194
+ place_conf = self.trans_forward(inp)
195
+ # pick the first batch
196
+ place_conf = place_conf[0]
197
+ q = q[0]
198
+ theta = theta[0]
199
+ place_conf = place_conf.permute(1, 2, 0)
200
+ place_conf = place_conf.detach().cpu().numpy()
201
+ argmax = np.argmax(place_conf)
202
+ argmax = np.unravel_index(argmax, shape=place_conf.shape)
203
+ p1_pix = argmax[:2]
204
+ p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
205
+
206
+ err = {
207
+ 'dist': np.linalg.norm(np.array(q.detach().cpu().numpy()) - p1_pix, ord=1),
208
+ 'theta': np.absolute((theta - p1_theta) % np.pi)
209
+ }
210
+
211
+ self.transport.iters += 1
212
+ return err, loss
213
+
214
+ def training_step(self, batch, batch_idx):
215
+
216
+ self.attention.train()
217
+ self.transport.train()
218
+
219
+ frame, _ = batch
220
+ self.start_time = time.time()
221
+
222
+ # Get training losses.
223
+ step = self.total_steps + 1
224
+ loss0, err0 = self.attn_training_step(frame)
225
+
226
+ self.start_time = time.time()
227
+
228
+ if isinstance(self.transport, Attention):
229
+ loss1, err1 = self.attn_training_step(frame)
230
+ else:
231
+ loss1, err1 = self.transport_training_step(frame)
232
+
233
+ total_loss = loss0 + loss1
234
+ self.total_steps = step
235
+ self.start_time = time.time()
236
+ self.log('tr/attn/loss', loss0)
237
+ self.log('tr/trans/loss', loss1)
238
+ self.log('tr/loss', total_loss)
239
+ self.check_save_iteration()
240
+
241
+ return dict(
242
+ loss=total_loss,
243
+ )
244
+
245
+ def check_save_iteration(self):
246
+ global_step = self.total_steps
247
+
248
+ if (global_step + 1) % 100 == 0:
249
+ # save lastest checkpoint
250
+ print(f"Saving last.ckpt Epoch: {self.trainer.current_epoch} | Global Step: {self.trainer.global_step}")
251
+ self.save_last_checkpoint()
252
+
253
+ def save_last_checkpoint(self):
254
+ checkpoint_path = os.path.join(self.cfg['train']['train_dir'], 'checkpoints')
255
+ ckpt_path = os.path.join(checkpoint_path, 'last.ckpt')
256
+ self.trainer.save_checkpoint(ckpt_path)
257
+
258
+ def validation_step(self, batch, batch_idx):
259
+ self.attention.eval()
260
+ self.transport.eval()
261
+
262
+ loss0, loss1 = 0, 0
263
+ assert self.val_repeats >= 1
264
+ for i in range(self.val_repeats):
265
+ frame, _ = batch
266
+ l0, err0 = self.attn_training_step(frame, backprop=False, compute_err=True)
267
+ loss0 += l0
268
+ if isinstance(self.transport, Attention):
269
+ l1, err1 = self.attn_training_step(frame, backprop=False, compute_err=True)
270
+ loss1 += l1
271
+ else:
272
+ l1, err1 = self.transport_training_step(frame, backprop=False, compute_err=True)
273
+ loss1 += l1
274
+ loss0 /= self.val_repeats
275
+ loss1 /= self.val_repeats
276
+ val_total_loss = loss0 + loss1
277
+
278
+ return dict(
279
+ val_loss=val_total_loss,
280
+ val_loss0=loss0,
281
+ val_loss1=loss1,
282
+ val_attn_dist_err=err0['dist'],
283
+ val_attn_theta_err=err0['theta'],
284
+ val_trans_dist_err=err1['dist'],
285
+ val_trans_theta_err=err1['theta'],
286
+ )
287
+
288
+ def training_epoch_end(self, all_outputs):
289
+ super().training_epoch_end(all_outputs)
290
+ utils.set_seed(self.trainer.current_epoch+1)
291
+
292
+ def validation_epoch_end(self, all_outputs):
293
+ mean_val_total_loss = np.mean([v['val_loss'].item() for v in all_outputs])
294
+ mean_val_loss0 = np.mean([v['val_loss0'].item() for v in all_outputs])
295
+ mean_val_loss1 = np.mean([v['val_loss1'].item() for v in all_outputs])
296
+ total_attn_dist_err = np.sum([v['val_attn_dist_err'].sum() for v in all_outputs])
297
+ total_attn_theta_err = np.sum([v['val_attn_theta_err'].sum() for v in all_outputs])
298
+ total_trans_dist_err = np.sum([v['val_trans_dist_err'].sum() for v in all_outputs])
299
+ total_trans_theta_err = np.sum([v['val_trans_theta_err'].sum() for v in all_outputs])
300
+
301
+
302
+ self.log('vl/attn/loss', mean_val_loss0)
303
+ self.log('vl/trans/loss', mean_val_loss1)
304
+ self.log('vl/loss', mean_val_total_loss)
305
+ self.log('vl/total_attn_dist_err', total_attn_dist_err)
306
+ self.log('vl/total_attn_theta_err', total_attn_theta_err)
307
+ self.log('vl/total_trans_dist_err', total_trans_dist_err)
308
+ self.log('vl/total_trans_theta_err', total_trans_theta_err)
309
+
310
+ print("\nAttn Err - Dist: {:.2f}, Theta: {:.2f}".format(total_attn_dist_err, total_attn_theta_err))
311
+ print("Transport Err - Dist: {:.2f}, Theta: {:.2f}".format(total_trans_dist_err, total_trans_theta_err))
312
+
313
+ return dict(
314
+ val_loss=mean_val_total_loss,
315
+ val_loss0=mean_val_loss0,
316
+ mean_val_loss1=mean_val_loss1,
317
+ total_attn_dist_err=total_attn_dist_err,
318
+ total_attn_theta_err=total_attn_theta_err,
319
+ total_trans_dist_err=total_trans_dist_err,
320
+ total_trans_theta_err=total_trans_theta_err,
321
+ )
322
+
323
+ def act(self, obs, info=None, goal=None): # pylint: disable=unused-argument
324
+ """Run inference and return best action given visual observations."""
325
+ # Get heightmap from RGB-D images.
326
+ img = self.test_ds.get_image(obs)
327
+
328
+ # Attention model forward pass.
329
+ pick_inp = {'inp_img': img}
330
+ pick_conf = self.attn_forward(pick_inp)
331
+
332
+
333
+ pick_conf = pick_conf.detach().cpu().numpy()
334
+ argmax = np.argmax(pick_conf)
335
+ argmax = np.unravel_index(argmax, shape=pick_conf.shape)
336
+ p0_pix = argmax[:2]
337
+ p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
338
+
339
+ # Transport model forward pass.
340
+ place_inp = {'inp_img': img, 'p0': p0_pix}
341
+ place_conf = self.trans_forward(place_inp)
342
+ place_conf = place_conf.permute(1, 2, 0)
343
+ place_conf = place_conf.detach().cpu().numpy()
344
+ argmax = np.argmax(place_conf)
345
+ argmax = np.unravel_index(argmax, shape=place_conf.shape)
346
+ p1_pix = argmax[:2]
347
+ p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
348
+
349
+ # Pixels to end effector poses.
350
+ hmap = img[:, :, 3]
351
+ p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
352
+ p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
353
+ p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
354
+ p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))
355
+
356
+ return {
357
+ 'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
358
+ 'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
359
+ 'pick': p0_pix,
360
+ 'place': p1_pix,
361
+ }
362
+
363
+ def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_i, second_order_closure, on_tpu, using_native_amp, using_lbfgs):
364
+ pass
365
+
366
+ def configure_optimizers(self):
367
+ pass
368
+
369
+ def train_dataloader(self):
370
+ return self.train_loader
371
+
372
+ def val_dataloader(self):
373
+ return self.test_loader
374
+
375
+ def load(self, model_path):
376
+ self.load_state_dict(torch.load(model_path)['state_dict'])
377
+ self.to(device=self.device_type)
378
+
379
+
380
+ class OriginalTransporterAgent(TransporterAgent):
381
+
382
+ def __init__(self, name, cfg, train_ds, test_ds):
383
+ super().__init__(name, cfg, train_ds, test_ds)
384
+
385
+ def _build_model(self):
386
+ stream_fcn = 'plain_resnet'
387
+ self.attention = Attention(
388
+ stream_fcn=(stream_fcn, None),
389
+ in_shape=self.in_shape,
390
+ n_rotations=1,
391
+ preprocess=utils.preprocess,
392
+ cfg=self.cfg,
393
+ device=self.device_type,
394
+ )
395
+ self.transport = Transport(
396
+ stream_fcn=(stream_fcn, None),
397
+ in_shape=self.in_shape,
398
+ n_rotations=self.n_rotations,
399
+ crop_size=self.crop_size,
400
+ preprocess=utils.preprocess,
401
+ cfg=self.cfg,
402
+ device=self.device_type,
403
+ )
404
+
405
+
406
+ class ClipUNetTransporterAgent(TransporterAgent):
407
+
408
+ def __init__(self, name, cfg, train_ds, test_ds):
409
+ super().__init__(name, cfg, train_ds, test_ds)
410
+
411
+ def _build_model(self):
412
+ stream_fcn = 'clip_unet'
413
+ self.attention = Attention(
414
+ stream_fcn=(stream_fcn, None),
415
+ in_shape=self.in_shape,
416
+ n_rotations=1,
417
+ preprocess=utils.preprocess,
418
+ cfg=self.cfg,
419
+ device=self.device_type,
420
+ )
421
+ self.transport = Transport(
422
+ stream_fcn=(stream_fcn, None),
423
+ in_shape=self.in_shape,
424
+ n_rotations=self.n_rotations,
425
+ crop_size=self.crop_size,
426
+ preprocess=utils.preprocess,
427
+ cfg=self.cfg,
428
+ device=self.device_type,
429
+ )
430
+
431
+
432
+ class TwoStreamClipUNetTransporterAgent(TransporterAgent):
433
+
434
+ def __init__(self, name, cfg, train_ds, test_ds):
435
+ super().__init__(name, cfg, train_ds, test_ds)
436
+
437
+ def _build_model(self):
438
+ stream_one_fcn = 'plain_resnet'
439
+ stream_two_fcn = 'clip_unet'
440
+ self.attention = TwoStreamAttention(
441
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
442
+ in_shape=self.in_shape,
443
+ n_rotations=1,
444
+ preprocess=utils.preprocess,
445
+ cfg=self.cfg,
446
+ device=self.device_type,
447
+ )
448
+ self.transport = TwoStreamTransport(
449
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
450
+ in_shape=self.in_shape,
451
+ n_rotations=self.n_rotations,
452
+ crop_size=self.crop_size,
453
+ preprocess=utils.preprocess,
454
+ cfg=self.cfg,
455
+ device=self.device_type,
456
+ )
457
+
458
+
459
+ class TwoStreamClipUNetLatTransporterAgent(TransporterAgent):
460
+
461
+ def __init__(self, name, cfg, train_ds, test_ds):
462
+ super().__init__(name, cfg, train_ds, test_ds)
463
+
464
+ def _build_model(self):
465
+ stream_one_fcn = 'plain_resnet_lat'
466
+ stream_two_fcn = 'clip_unet_lat'
467
+ self.attention = TwoStreamAttentionLat(
468
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
469
+ in_shape=self.in_shape,
470
+ n_rotations=1,
471
+ preprocess=utils.preprocess,
472
+ cfg=self.cfg,
473
+ device=self.device_type,
474
+ )
475
+ self.transport = TwoStreamTransportLat(
476
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
477
+ in_shape=self.in_shape,
478
+ n_rotations=self.n_rotations,
479
+ crop_size=self.crop_size,
480
+ preprocess=utils.preprocess,
481
+ cfg=self.cfg,
482
+ device=self.device_type,
483
+ )
484
+
485
+
486
+ class TwoStreamClipWithoutSkipsTransporterAgent(TransporterAgent):
487
+
488
+ def __init__(self, name, cfg, train_ds, test_ds):
489
+ super().__init__(name, cfg, train_ds, test_ds)
490
+
491
+ def _build_model(self):
492
+ # TODO: lateral version
493
+ stream_one_fcn = 'plain_resnet'
494
+ stream_two_fcn = 'clip_woskip'
495
+ self.attention = TwoStreamAttention(
496
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
497
+ in_shape=self.in_shape,
498
+ n_rotations=1,
499
+ preprocess=utils.preprocess,
500
+ cfg=self.cfg,
501
+ device=self.device_type,
502
+ )
503
+ self.transport = TwoStreamTransport(
504
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
505
+ in_shape=self.in_shape,
506
+ n_rotations=self.n_rotations,
507
+ crop_size=self.crop_size,
508
+ preprocess=utils.preprocess,
509
+ cfg=self.cfg,
510
+ device=self.device_type,
511
+ )
512
+
513
+
514
+ class TwoStreamRN50BertUNetTransporterAgent(TransporterAgent):
515
+
516
+ def __init__(self, name, cfg, train_ds, test_ds):
517
+ super().__init__(name, cfg, train_ds, test_ds)
518
+
519
+ def _build_model(self):
520
+ # TODO: lateral version
521
+ stream_one_fcn = 'plain_resnet'
522
+ stream_two_fcn = 'rn50_bert_unet'
523
+ self.attention = TwoStreamAttention(
524
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
525
+ in_shape=self.in_shape,
526
+ n_rotations=1,
527
+ preprocess=utils.preprocess,
528
+ cfg=self.cfg,
529
+ device=self.device_type,
530
+ )
531
+ self.transport = TwoStreamTransport(
532
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
533
+ in_shape=self.in_shape,
534
+ n_rotations=self.n_rotations,
535
+ crop_size=self.crop_size,
536
+ preprocess=utils.preprocess,
537
+ cfg=self.cfg,
538
+ device=self.device_type,
539
+ )
cliport/agents/transporter_image_goal.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from cliport.utils import utils
4
+ from cliport.agents.transporter import OriginalTransporterAgent
5
+ from cliport.models.core.attention import Attention
6
+ from cliport.models.core.attention_image_goal import AttentionImageGoal
7
+ from cliport.models.core.transport_image_goal import TransportImageGoal
8
+
9
+
10
+ class ImageGoalTransporterAgent(OriginalTransporterAgent):
11
+ def __init__(self, name, cfg, train_ds, test_ds):
12
+ super().__init__(name, cfg, train_ds, test_ds)
13
+
14
+ def _build_model(self):
15
+ stream_fcn = 'plain_resnet'
16
+ self.attention = AttentionImageGoal(
17
+ stream_fcn=(stream_fcn, None),
18
+ in_shape=self.in_shape,
19
+ n_rotations=1,
20
+ preprocess=utils.preprocess,
21
+ cfg=self.cfg,
22
+ device=self.device_type,
23
+ )
24
+ self.transport = TransportImageGoal(
25
+ stream_fcn=(stream_fcn, None),
26
+ in_shape=self.in_shape,
27
+ n_rotations=self.n_rotations,
28
+ crop_size=self.crop_size,
29
+ preprocess=utils.preprocess,
30
+ cfg=self.cfg,
31
+ device=self.device_type,
32
+ )
33
+
34
+ def attn_forward(self, inp, softmax=True):
35
+ inp_img = inp['inp_img']
36
+ goal_img = inp['goal_img']
37
+
38
+ out = self.attention.forward(inp_img, goal_img, softmax=softmax)
39
+ return out
40
+
41
+ def attn_training_step(self, frame, goal, backprop=True, compute_err=False):
42
+ inp_img = frame['img']
43
+ goal_img = goal['img']
44
+ p0, p0_theta = frame['p0'], frame['p0_theta']
45
+
46
+ inp = {'inp_img': inp_img, 'goal_img': goal_img}
47
+ out = self.attn_forward(inp, softmax=False)
48
+ return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta)
49
+
50
+ def trans_forward(self, inp, softmax=True):
51
+ inp_img = inp['inp_img']
52
+ goal_img = inp['goal_img']
53
+ p0 = inp['p0']
54
+
55
+ out = self.transport.forward(inp_img, goal_img, p0, softmax=softmax)
56
+ return out
57
+
58
+ def transport_training_step(self, frame, goal, backprop=True, compute_err=False):
59
+ inp_img = frame['img']
60
+ goal_img = goal['img']
61
+ p0 = frame['p0']
62
+ p1, p1_theta = frame['p1'], frame['p1_theta']
63
+
64
+ inp = {'inp_img': inp_img, 'goal_img': goal_img, 'p0': p0}
65
+ out = self.trans_forward(inp, softmax=False)
66
+ err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta)
67
+ return loss, err
68
+
69
+ def training_step(self, batch, batch_idx):
70
+ self.attention.train()
71
+ self.transport.train()
72
+ frame, goal = batch
73
+
74
+ # Get training losses.
75
+ step = self.total_steps + 1
76
+ loss0, err0 = self.attn_training_step(frame, goal)
77
+ if isinstance(self.transport, Attention):
78
+ loss1, err1 = self.attn_training_step(frame, goal)
79
+ else:
80
+ loss1, err1 = self.transport_training_step(frame, goal)
81
+ total_loss = loss0 + loss1
82
+ self.log('tr/attn/loss', loss0)
83
+ self.log('tr/trans/loss', loss1)
84
+ self.log('tr/loss', total_loss)
85
+ self.total_steps = step
86
+
87
+ self.trainer.train_loop.running_loss.append(total_loss)
88
+
89
+ self.check_save_iteration()
90
+
91
+ return dict(
92
+ loss=total_loss,
93
+ )
94
+
95
+ def validation_step(self, batch, batch_idx):
96
+ self.attention.eval()
97
+ self.transport.eval()
98
+
99
+ loss0, loss1 = 0, 0
100
+ for i in range(self.val_repeats):
101
+ frame, goal = batch
102
+ l0, err0 = self.attn_training_step(frame, goal, backprop=False, compute_err=True)
103
+ loss0 += l0
104
+ if isinstance(self.transport, Attention):
105
+ l1, err1 = self.attn_training_step(frame, goal, backprop=False, compute_err=True)
106
+ loss1 += l1
107
+ else:
108
+ l1, err1 = self.transport_training_step(frame, goal, backprop=False, compute_err=True)
109
+ loss1 += l1
110
+ loss0 /= self.val_repeats
111
+ loss1 /= self.val_repeats
112
+ val_total_loss = loss0 + loss1
113
+
114
+ self.trainer.evaluation_loop.trainer.train_loop.running_loss.append(val_total_loss)
115
+
116
+ return dict(
117
+ val_loss=val_total_loss,
118
+ val_loss0=loss0,
119
+ val_loss1=loss1,
120
+ val_attn_dist_err=err0['dist'],
121
+ val_attn_theta_err=err0['theta'],
122
+ val_trans_dist_err=err1['dist'],
123
+ val_trans_theta_err=err1['theta'],
124
+ )
125
+
126
+ def act(self, obs, info=None, goal=None): # pylint: disable=unused-argument
127
+ """Run inference and return best action given visual observations."""
128
+ # Get heightmap from RGB-D images.
129
+ img = self.test_ds.get_image(obs)
130
+ goal_img = self.test_ds.get_image(goal[0])
131
+
132
+ # Attention model forward pass.
133
+ pick_conf = self.attention.forward(img, goal_img)
134
+ pick_conf = pick_conf.detach().cpu().numpy()
135
+ argmax = np.argmax(pick_conf)
136
+ argmax = np.unravel_index(argmax, shape=pick_conf.shape)
137
+ p0_pix = argmax[:2]
138
+ p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
139
+
140
+ # Transport model forward pass.
141
+ place_conf = self.transport.forward(img, goal_img, p0_pix)
142
+ place_conf = place_conf.permute(1, 2, 0)
143
+ place_conf = place_conf.detach().cpu().numpy()
144
+ argmax = np.argmax(place_conf)
145
+ argmax = np.unravel_index(argmax, shape=place_conf.shape)
146
+ p1_pix = argmax[:2]
147
+ p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
148
+
149
+ # Pixels to end effector poses.
150
+ hmap = img[:, :, 3]
151
+ p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
152
+ p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
153
+ p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
154
+ p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))
155
+
156
+ return {
157
+ 'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
158
+ 'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
159
+ 'pick': p0_pix,
160
+ 'place': p1_pix,
161
+ }
cliport/agents/transporter_lang_goal.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from cliport.utils import utils
4
+ from cliport.agents.transporter import TransporterAgent
5
+
6
+ from cliport.models.streams.one_stream_attention_lang_fusion import OneStreamAttentionLangFusion
7
+ from cliport.models.streams.one_stream_transport_lang_fusion import OneStreamTransportLangFusion
8
+ from cliport.models.streams.two_stream_attention_lang_fusion import TwoStreamAttentionLangFusion
9
+ from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusion, TwoStreamTransportLangFusionLatReduce, TwoStreamTransportLangFusionLatPretrained18
10
+ from cliport.models.streams.two_stream_attention_lang_fusion import TwoStreamAttentionLangFusionLat, TwoStreamAttentionLangFusionLatReduce
11
+
12
+ from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusionLatReduceOneStream
13
+ from cliport.models.streams.two_stream_transport_lang_fusion import TwoStreamTransportLangFusionLat
14
+ import torch
15
+ import time
16
+
17
+
18
+ class TwoStreamClipLingUNetTransporterAgent(TransporterAgent):
19
+ def __init__(self, name, cfg, train_ds, test_ds):
20
+ super().__init__(name, cfg, train_ds, test_ds)
21
+
22
+ def _build_model(self):
23
+ stream_one_fcn = 'plain_resnet'
24
+ stream_two_fcn = 'clip_lingunet'
25
+ self.attention = TwoStreamAttentionLangFusion(
26
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
27
+ in_shape=self.in_shape,
28
+ n_rotations=1,
29
+ preprocess=utils.preprocess,
30
+ cfg=self.cfg,
31
+ device=self.device_type,
32
+ )
33
+ self.transport = TwoStreamTransportLangFusion(
34
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
35
+ in_shape=self.in_shape,
36
+ n_rotations=self.n_rotations,
37
+ crop_size=self.crop_size,
38
+ preprocess=utils.preprocess,
39
+ cfg=self.cfg,
40
+ device=self.device_type,
41
+ )
42
+
43
+ def attn_forward(self, inp, softmax=True):
44
+ inp_img = inp['inp_img']
45
+ if type(inp_img) is not torch.Tensor:
46
+ inp_img = torch.from_numpy(inp_img).to('cuda').float().contiguous()
47
+ lang_goal = inp['lang_goal']
48
+
49
+ out = self.attention.forward(inp_img.float(), lang_goal, softmax=softmax)
50
+ return out
51
+
52
+ def attn_training_step(self, frame, backprop=True, compute_err=False):
53
+ inp_img = frame['img']
54
+ if type(inp_img) is not torch.Tensor:
55
+ inp_img = torch.from_numpy(inp_img).to('cuda').float()
56
+ p0, p0_theta = frame['p0'], frame['p0_theta']
57
+ lang_goal = frame['lang_goal']
58
+
59
+ inp = {'inp_img': inp_img, 'lang_goal': lang_goal}
60
+ out = self.attn_forward(inp, softmax=False)
61
+ return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta)
62
+
63
+ def trans_forward(self, inp, softmax=True):
64
+ inp_img = inp['inp_img']
65
+ if type(inp_img) is not torch.Tensor:
66
+ inp_img = torch.from_numpy(inp_img).to('cuda').float()
67
+ p0 = inp['p0']
68
+ lang_goal = inp['lang_goal']
69
+ out = self.transport.forward(inp_img.float(), p0, lang_goal, softmax=softmax)
70
+ return out
71
+
72
+ def transport_training_step(self, frame, backprop=True, compute_err=False):
73
+ inp_img = frame['img']
74
+ p0 = frame['p0']
75
+ p1, p1_theta = frame['p1'], frame['p1_theta']
76
+ lang_goal = frame['lang_goal']
77
+
78
+ inp = {'inp_img': inp_img, 'p0': p0, 'lang_goal': lang_goal}
79
+ out = self.trans_forward(inp, softmax=False)
80
+ err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta)
81
+ return loss, err
82
+
83
+ def act(self, obs, info, goal=None): # pylint: disable=unused-argument
84
+ """Run inference and return best action given visual observations."""
85
+ # Get heightmap from RGB-D images.
86
+ img = self.test_ds.get_image(obs)
87
+ lang_goal = info['lang_goal']
88
+
89
+ # Attention model forward pass.
90
+ pick_inp = {'inp_img': img, 'lang_goal': lang_goal}
91
+ pick_conf = self.attn_forward(pick_inp)
92
+ pick_conf = pick_conf[0].permute(1, 2, 0).detach().cpu().numpy()
93
+ #
94
+ argmax = np.argmax(pick_conf)
95
+ # import IPython; IPython.embed()
96
+ argmax = np.unravel_index(argmax, shape=pick_conf.shape)
97
+ p0_pix = argmax[:2]
98
+ p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
99
+
100
+ # Transport model forward pass.
101
+ place_inp = {'inp_img': img, 'p0': p0_pix, 'lang_goal': lang_goal}
102
+ place_conf = self.trans_forward(place_inp)
103
+ place_conf = place_conf.squeeze().permute(1, 2, 0)
104
+ place_conf = place_conf.detach().cpu().numpy()
105
+ argmax = np.argmax(place_conf)
106
+ argmax = np.unravel_index(argmax, shape=place_conf.shape)
107
+ p1_pix = argmax[:2]
108
+ p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
109
+
110
+ # Pixels to end effector poses.
111
+ hmap = img[:, :, 3]
112
+ p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
113
+ p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
114
+ p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
115
+ p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))
116
+
117
+ return {
118
+ 'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
119
+ 'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
120
+ 'pick': [p0_pix[0], p0_pix[1], p0_theta],
121
+ 'place': [p1_pix[0], p1_pix[1], p1_theta],
122
+ }
123
+
124
+
125
+ def real_act(self, obs, info, goal=None):
126
+ """Run inference and return best action given real images."""
127
+
128
+ img = obs
129
+ lang_goal = info['lang_goal']
130
+ # Attention model forward pass.
131
+ pick_inp = {'inp_img': img, 'lang_goal': lang_goal}
132
+ pick_conf = self.attn_forward(pick_inp)
133
+ pick_conf = pick_conf[0].permute(1, 2, 0).detach().cpu().numpy()
134
+ #
135
+ argmax = np.argmax(pick_conf)
136
+ # import IPython; IPython.embed()
137
+ argmax = np.unravel_index(argmax, shape=pick_conf.shape)
138
+ p0_pix = argmax[:2]
139
+ p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2])
140
+
141
+ # Transport model forward pass.
142
+ place_inp = {'inp_img': img, 'p0': p0_pix, 'lang_goal': lang_goal}
143
+ place_conf = self.trans_forward(place_inp)
144
+ place_conf = place_conf.squeeze().permute(1, 2, 0)
145
+ place_conf = place_conf.detach().cpu().numpy()
146
+ argmax = np.argmax(place_conf)
147
+ argmax = np.unravel_index(argmax, shape=place_conf.shape)
148
+ p1_pix = argmax[:2]
149
+ p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2])
150
+
151
+ # Pixels to end effector poses.
152
+ hmap = img[:, :, 3]
153
+ p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size)
154
+ p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size)
155
+ p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
156
+ p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta))
157
+
158
+ return {
159
+ 'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)),
160
+ 'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)),
161
+ 'pick': [p0_pix[0], p0_pix[1], p0_theta],
162
+ 'place': [p1_pix[0], p1_pix[1], p1_theta],
163
+ }
164
+
165
+
166
+ class TwoStreamClipFilmLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
167
+ def __init__(self, name, cfg, train_ds, test_ds):
168
+ super().__init__(name, cfg, train_ds, test_ds)
169
+
170
+ def _build_model(self):
171
+ stream_one_fcn = 'plain_resnet_lat'
172
+ stream_two_fcn = 'clip_film_lingunet_lat'
173
+ self.attention = TwoStreamAttentionLangFusionLat(
174
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
175
+ in_shape=self.in_shape,
176
+ n_rotations=1,
177
+ preprocess=utils.preprocess,
178
+ cfg=self.cfg,
179
+ device=self.device_type,
180
+ )
181
+ self.transport = TwoStreamTransportLangFusionLat(
182
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
183
+ in_shape=self.in_shape,
184
+ n_rotations=self.n_rotations,
185
+ crop_size=self.crop_size,
186
+ preprocess=utils.preprocess,
187
+ cfg=self.cfg,
188
+ device=self.device_type,
189
+ )
190
+
191
+
192
+ class TwoStreamClipLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent): # This is our model
193
+ def __init__(self, name, cfg, train_ds, test_ds):
194
+ super().__init__(name, cfg, train_ds, test_ds)
195
+
196
+ def _build_model(self):
197
+ stream_one_fcn = 'plain_resnet_lat'
198
+ stream_two_fcn = 'clip_lingunet_lat'
199
+ self.attention = TwoStreamAttentionLangFusionLat(
200
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
201
+ in_shape=self.in_shape,
202
+ n_rotations=1,
203
+ preprocess=utils.preprocess,
204
+ cfg=self.cfg,
205
+ device=self.device_type,
206
+ )
207
+ self.transport = TwoStreamTransportLangFusionLat(
208
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
209
+ in_shape=self.in_shape,
210
+ n_rotations=self.n_rotations,
211
+ crop_size=self.crop_size,
212
+ preprocess=utils.preprocess,
213
+ cfg=self.cfg,
214
+ device=self.device_type,
215
+ )
216
+
217
+ class TwoStreamMdetrLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
218
+ def __init__(self, name, cfg, train_ds, test_ds):
219
+ super().__init__(name, cfg, train_ds, test_ds)
220
+
221
+ def _build_model(self):
222
+ stream_one_fcn = 'plain_resnet_lat_origin'
223
+ stream_two_fcn = 'mdetr_lingunet_lat_fuse'
224
+
225
+ self.attention = TwoStreamAttentionLangFusionLat(
226
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
227
+ in_shape=self.in_shape,
228
+ n_rotations=1,
229
+ preprocess=utils.preprocess,
230
+ cfg=self.cfg,
231
+ device=self.device_type,
232
+ )
233
+ self.transport = TwoStreamTransportLangFusionLat(
234
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
235
+ in_shape=self.in_shape,
236
+ n_rotations=self.n_rotations,
237
+ crop_size=self.crop_size,
238
+ preprocess=utils.preprocess,
239
+ cfg=self.cfg,
240
+ device=self.device_type,
241
+ )
242
+
243
+
244
+
245
+
246
+ class TwoStreamClipLingUNetLatTransporterAgentReduce(TwoStreamClipLingUNetTransporterAgent): # This is our model
247
+ def __init__(self, name, cfg, train_ds, test_ds):
248
+ super().__init__(name, cfg, train_ds, test_ds)
249
+
250
+ def _build_model(self):
251
+ stream_one_fcn = 'plain_resnet_lat'
252
+ stream_two_fcn = 'clip_lingunet_lat'
253
+ self.attention = TwoStreamAttentionLangFusionLat(
254
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
255
+ in_shape=self.in_shape,
256
+ n_rotations=1,
257
+ preprocess=utils.preprocess,
258
+ cfg=self.cfg,
259
+ device=self.device_type,
260
+ )
261
+ self.transport = TwoStreamTransportLangFusionLatReduce(
262
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
263
+ in_shape=self.in_shape,
264
+ n_rotations=self.n_rotations,
265
+ crop_size=self.crop_size,
266
+ preprocess=utils.preprocess,
267
+ cfg=self.cfg,
268
+ device=self.device_type,
269
+ )
270
+
271
+
272
+
273
+ class TwoStreamClipLingUNetLatTransporterAgentReduceOneStream(TwoStreamClipLingUNetTransporterAgent): # This is our model
274
+ def __init__(self, name, cfg, train_ds, test_ds):
275
+ super().__init__(name, cfg, train_ds, test_ds)
276
+
277
+ def _build_model(self):
278
+ stream_one_fcn = 'plain_resnet_lat'
279
+ stream_two_fcn = 'clip_lingunet_lat'
280
+ self.attention = TwoStreamAttentionLangFusionLatReduce(
281
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
282
+ in_shape=self.in_shape,
283
+ n_rotations=1,
284
+ preprocess=utils.preprocess,
285
+ cfg=self.cfg,
286
+ device=self.device_type,
287
+ )
288
+ self.transport = TwoStreamTransportLangFusionLatReduceOneStream(
289
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
290
+ in_shape=self.in_shape,
291
+ n_rotations=self.n_rotations,
292
+ crop_size=self.crop_size,
293
+ preprocess=utils.preprocess,
294
+ cfg=self.cfg,
295
+ device=self.device_type,
296
+ )
297
+
298
+
299
+ class TwoStreamClipLingUNetLatTransporterAgentReducePretrained(TwoStreamClipLingUNetTransporterAgent): # This is our model
300
+ def __init__(self, name, cfg, train_ds, test_ds):
301
+ super().__init__(name, cfg, train_ds, test_ds)
302
+
303
+ def _build_model(self):
304
+ stream_one_fcn = 'plain_resnet_lat'
305
+ stream_two_fcn = 'clip_lingunet_lat'
306
+ self.attention = TwoStreamAttentionLangFusionLat(
307
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
308
+ in_shape=self.in_shape,
309
+ n_rotations=1,
310
+ preprocess=utils.preprocess,
311
+ cfg=self.cfg,
312
+ device=self.device_type,
313
+ )
314
+ self.transport = TwoStreamTransportLangFusionLatPretrained18(
315
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
316
+ in_shape=self.in_shape,
317
+ n_rotations=self.n_rotations,
318
+ crop_size=self.crop_size,
319
+ preprocess=utils.preprocess,
320
+ cfg=self.cfg,
321
+ device=self.device_type,
322
+ )
323
+
324
+
325
+
326
+ class TwoStreamRN50BertLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
327
+ def __init__(self, name, cfg, train_ds, test_ds):
328
+ super().__init__(name, cfg, train_ds, test_ds)
329
+
330
+ def _build_model(self):
331
+ stream_one_fcn = 'plain_resnet'
332
+ stream_two_fcn = 'rn50_bert_lingunet'
333
+ self.attention = TwoStreamAttentionLangFusion(
334
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
335
+ in_shape=self.in_shape,
336
+ n_rotations=1,
337
+ preprocess=utils.preprocess,
338
+ cfg=self.cfg,
339
+ device=self.device_type,
340
+ )
341
+ self.transport = TwoStreamTransportLangFusion(
342
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
343
+ in_shape=self.in_shape,
344
+ n_rotations=self.n_rotations,
345
+ crop_size=self.crop_size,
346
+ preprocess=utils.preprocess,
347
+ cfg=self.cfg,
348
+ device=self.device_type,
349
+ )
350
+
351
+
352
+ class TwoStreamUntrainedRN50BertLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
353
+ def __init__(self, name, cfg, train_ds, test_ds):
354
+ super().__init__(name, cfg, train_ds, test_ds)
355
+
356
+ def _build_model(self):
357
+ stream_one_fcn = 'plain_resnet'
358
+ stream_two_fcn = 'untrained_rn50_bert_lingunet'
359
+ self.attention = TwoStreamAttentionLangFusion(
360
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
361
+ in_shape=self.in_shape,
362
+ n_rotations=1,
363
+ preprocess=utils.preprocess,
364
+ cfg=self.cfg,
365
+ device=self.device_type,
366
+ )
367
+ self.transport = TwoStreamTransportLangFusion(
368
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
369
+ in_shape=self.in_shape,
370
+ n_rotations=self.n_rotations,
371
+ crop_size=self.crop_size,
372
+ preprocess=utils.preprocess,
373
+ cfg=self.cfg,
374
+ device=self.device_type,
375
+ )
376
+
377
+
378
+ class TwoStreamRN50BertLingUNetLatTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
379
+ def __init__(self, name, cfg, train_ds, test_ds):
380
+ super().__init__(name, cfg, train_ds, test_ds)
381
+
382
+ def _build_model(self):
383
+ stream_one_fcn = 'plain_resnet_lat'
384
+ stream_two_fcn = 'rn50_bert_lingunet_lat'
385
+ self.attention = TwoStreamAttentionLangFusionLat(
386
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
387
+ in_shape=self.in_shape,
388
+ n_rotations=1,
389
+ preprocess=utils.preprocess,
390
+ cfg=self.cfg,
391
+ device=self.device_type,
392
+ )
393
+ self.transport = TwoStreamTransportLangFusionLat(
394
+ stream_fcn=(stream_one_fcn, stream_two_fcn),
395
+ in_shape=self.in_shape,
396
+ n_rotations=self.n_rotations,
397
+ crop_size=self.crop_size,
398
+ preprocess=utils.preprocess,
399
+ cfg=self.cfg,
400
+ device=self.device_type,
401
+ )
402
+
403
+
404
+ class OriginalTransporterLangFusionAgent(TwoStreamClipLingUNetTransporterAgent):
405
+
406
+ def __init__(self, name, cfg, train_ds, test_ds):
407
+ super().__init__(name, cfg, train_ds, test_ds)
408
+
409
+ def _build_model(self):
410
+ stream_fcn = 'plain_resnet_lang'
411
+ self.attention = OneStreamAttentionLangFusion(
412
+ stream_fcn=(stream_fcn, None),
413
+ in_shape=self.in_shape,
414
+ n_rotations=1,
415
+ preprocess=utils.preprocess,
416
+ cfg=self.cfg,
417
+ device=self.device_type,
418
+ )
419
+ self.transport = OneStreamTransportLangFusion(
420
+ stream_fcn=(stream_fcn, None),
421
+ in_shape=self.in_shape,
422
+ n_rotations=self.n_rotations,
423
+ crop_size=self.crop_size,
424
+ preprocess=utils.preprocess,
425
+ cfg=self.cfg,
426
+ device=self.device_type,
427
+ )
428
+
429
+
430
+
431
+ class ClipLingUNetTransporterAgent(TwoStreamClipLingUNetTransporterAgent):
432
+
433
+ def __init__(self, name, cfg, train_ds, test_ds):
434
+ super().__init__(name, cfg, train_ds, test_ds)
435
+
436
+ def _build_model(self):
437
+ stream_fcn = 'clip_lingunet'
438
+ self.attention = OneStreamAttentionLangFusion(
439
+ stream_fcn=(stream_fcn, None),
440
+ in_shape=self.in_shape,
441
+ n_rotations=1,
442
+ preprocess=utils.preprocess,
443
+ cfg=self.cfg,
444
+ device=self.device_type,
445
+ )
446
+ self.transport = OneStreamTransportLangFusion(
447
+ stream_fcn=(stream_fcn, None),
448
+ in_shape=self.in_shape,
449
+ n_rotations=self.n_rotations,
450
+ crop_size=self.crop_size,
451
+ preprocess=utils.preprocess,
452
+ cfg=self.cfg,
453
+ device=self.device_type,
454
+ )
cliport/cfg/config.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+ root_dir: ${oc.env:GENSIM_ROOT} # set this ENV variable if you didn't `python setup.py develop`
3
+
4
+ tag: default
5
+ debug: False
6
+ gpt_temperature: 0.8 # GPT-4 response temperature. higher means more diversity
7
+ prompt_folder: vanilla_task_generation_prompt # the prompt folder that stores the prompt chain
8
+ max_env_run_cnt: 3 # maximum number of runs for each environment
9
+ trials: 10 # how many times of spawning each environment generated
10
+ output_folder: 'output/output_stats'
11
+ model_output_dir: '' # to be filled in with date
12
+ gpt_model: "gpt-4-0613" # which openai gpt model to use
13
+ openai_key: ${oc.env:OPENAI_KEY}
14
+
15
+ # Advanced options
16
+ task_description_candidate_num: -1 # the number of sample task descriptions. -1 means all
17
+ task_asset_candidate_num: -1 # the number of sample task descriptions. -1 means all
18
+ task_code_candidate_num: 4 # the number of sample task code. -1 means all
19
+
20
+
21
+ # Save and Load Memory
22
+ prompt_data_path: prompts/data/
23
+ save_memory: False # save the assets, task code, task descriptions generated offline
24
+ load_memory: False # load the assets, task code, task descriptions generated offline
25
+ use_template: False # use template when constructing prompts, better for scaling
26
+ reflection_agreement_num: 2 # how many models that need to agree to add a new task in reflection
27
+
28
+ target_task_name: "" # specific desired task name
29
+ save_code_early: False # ignore test and save the code after implementation
30
+ load_task_num: -1 # how many tasks to load from offline
cliport/cfg/data.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Generation
2
+
3
+ defaults:
4
+ - config
5
+
6
+ hydra:
7
+ run:
8
+ dir: ${root_dir}
9
+
10
+ data_dir: ${root_dir}/data # where to store dataset
11
+ assets_root: ${root_dir}/cliport/environments/assets/
12
+ disp: False # visualize PyBullet
13
+ shared_memory: False
14
+ task: packing-boxes-pairs-seen-colors
15
+ mode: train # 'train' or 'val' or 'test'
16
+ n: 1000 # number of demos to generate
17
+ save_data: True # write episodes to disk
18
+
19
+ dataset:
20
+ type: 'single' # 'single' or 'multi'
21
+ images: True
22
+ cache: True # load episodes to memory instead of reading from disk
23
+ augment:
24
+ theta_sigma: 60 # rotation sigma in degrees; N(mu = 0, sigma = theta_sigma).
25
+
26
+ # record videos (super slow)
27
+ record:
28
+ save_video: False
29
+ save_video_path: ${data_dir}/${task}-${mode}/videos/
30
+ add_text: False
31
+ add_task_text: True
32
+ fps: 20
33
+ video_height: 640
34
+ video_width: 720
cliport/cfg/eval.yaml ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Evaluation
2
+
3
+ defaults:
4
+ - config
5
+
6
+ hydra:
7
+ run:
8
+ dir: ${root_dir}
9
+
10
+ mode: val # 'val' or 'test'
11
+
12
+ # eval settings
13
+ agent: cliport
14
+ n_demos: 100 # number of val instances
15
+ train_demos: 100 # training demos used to train model
16
+ n_repeats: 1 # number of repeats
17
+ gpu: [0]
18
+ save_results: True # write results to json
19
+ update_results: False # overwrite existing json results?
20
+ checkpoint_type: 'val_missing'
21
+ val_on_heldout: True
22
+
23
+ disp: False
24
+ shared_memory: False
25
+ eval_task: packing-boxes-pairs-seen-colors # task to evaluate the model on
26
+ model_task: ${eval_task} # task the model was trained on (e.g. multi-language-conditioned or packing-boxes-pairs-seen-colors)
27
+ type: single # 'single' or 'multi'
28
+
29
+ # paths
30
+ model_dir: ${root_dir}
31
+ exp_folder: exps
32
+ data_dir: ${root_dir}/data
33
+ assets_root: ${root_dir}/cliport/environments/assets/
34
+
35
+ model_path: ${model_dir}/${exp_folder}/${model_task}-${agent}-n${train_demos}-train/checkpoints/ # path to pre-trained models
36
+ train_config: ${model_dir}/${exp_folder}/${model_task}-${agent}-n${train_demos}-train/.hydra/config.yaml # path to train config
37
+ save_path: ${model_dir}/${exp_folder}/${eval_task}-${agent}-n${train_demos}-train/checkpoints/ # path to save results
38
+ results_path: ${model_dir}/${exp_folder}/${eval_task}-${agent}-n${train_demos}-train/checkpoints/ # path to existing results
39
+
40
+
41
+ # record videos (super slow)
42
+ record:
43
+ save_video: False
44
+ save_video_path: ${model_dir}/${exp_folder}/${eval_task}-${agent}-n${train_demos}-train/videos/
45
+ add_text: True
46
+ fps: 20
47
+ video_height: 640
48
+ video_width: 720
49
+ add_task_text: False
50
+ blender_render: False # new: use blender recorder for rendering
cliport/cfg/train.yaml ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Training
2
+
3
+ defaults:
4
+ - config
5
+
6
+ hydra:
7
+ run:
8
+ dir: ${train.train_dir}
9
+
10
+ dataset:
11
+ type: 'single' # 'single' or 'multi'
12
+ images: True
13
+ cache: True # load episodes to memory instead of reading from disk
14
+ augment:
15
+ theta_sigma: 60 # rotation sigma in degrees; N(mu = 0, sigma = theta_sigma).
16
+
17
+ train:
18
+ # folders
19
+ model_task: ${train.task}
20
+ exp_folder: exps
21
+ train_dir: ${root_dir}/${train.exp_folder}/${train.model_task}-${train.agent}-n${train.n_demos}-train
22
+ data_dir: ${root_dir}/data
23
+
24
+ # task configs
25
+ task: packing-boxes-pairs-seen-colors
26
+ agent: two_stream_full_clip_lingunet_lat_transporter
27
+ n_demos: 100
28
+ n_steps: 61000 # original paper use 200000 for single task and use 601000 for multi-task models
29
+
30
+ # hyper params
31
+ n_rotations: 36
32
+ batch_size: 8
33
+ batchnorm: False # important: False because batch_size=1
34
+ lr: 1e-4
35
+
36
+ attn_stream_fusion_type: 'add'
37
+ trans_stream_fusion_type: 'conv'
38
+ lang_fusion_type: 'mult'
39
+ training_step_scale: 200 # How many epochs are needed. 100 data sample requires 20000 steps. -1 means ignored.
40
+
41
+ # script configs
42
+ gpu: -1 # -1 for all
43
+ log: False # log metrics and stats to wandb
44
+ n_val: 1
45
+ val_repeats: 1
46
+ save_steps: [1000, 2000, 3000, 4000, 5000, 7000, 10000, 20000, 40000, 80000, 120000, 160000, 200000, 300000, 400000, 500000, 600000, 800000, 1000000, 1200000]
47
+ load_from_last_ckpt: False # still change to True
48
+
49
+ # sim to real
50
+ data_augmentation: False # additional data augmentation for simtoreal
51
+ wandb:
52
+ run_name: 'cliport0'
53
+ logger:
54
+ entity: cliport
55
+ project: cliport
56
+ tags: []
57
+ group: train
58
+ offline: False
59
+ saver:
60
+ upload: False
61
+ monitor: 'val_loss'
cliport/dataset.py ADDED
@@ -0,0 +1,972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Image dataset."""
2
+
3
+ import os
4
+ import pickle
5
+ import warnings
6
+
7
+ import numpy as np
8
+ from torch.utils.data import Dataset
9
+
10
+ from cliport import tasks
11
+ from cliport.tasks import cameras
12
+ from cliport.utils import utils
13
+ import traceback
14
+
15
+ # See transporter.py, regression.py, dummy.py, task.py, etc.
16
+ PIXEL_SIZE = 0.003125
17
+ CAMERA_CONFIG = cameras.RealSenseD415.CONFIG
18
+ BOUNDS = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
19
+
20
+ # Names as strings, REVERSE-sorted so longer (more specific) names are first.
21
+ TASK_NAMES = (tasks.names).keys()
22
+ TASK_NAMES = sorted(TASK_NAMES)[::-1]
23
+
24
+
25
+ class RavensDataset(Dataset):
26
+ """A simple image dataset class."""
27
+
28
+ def __init__(self, path, cfg, n_demos=0, augment=False):
29
+ """A simple RGB-D image dataset."""
30
+ self._path = path
31
+
32
+ self.cfg = cfg
33
+ self.sample_set = []
34
+ self.max_seed = -1
35
+ self.n_episodes = 0
36
+ self.images = self.cfg['dataset']['images']
37
+ self.cache = self.cfg['dataset']['cache']
38
+ self.n_demos = n_demos
39
+ self.augment = augment
40
+
41
+ self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
42
+ self.pix_size = 0.003125
43
+ self.in_shape = (320, 160, 6)
44
+ self.cam_config = cameras.RealSenseD415.CONFIG
45
+ self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
46
+
47
+ # Track existing dataset if it exists.
48
+ color_path = os.path.join(self._path, 'action')
49
+ if os.path.exists(color_path):
50
+ for fname in sorted(os.listdir(color_path)):
51
+ if '.pkl' in fname:
52
+ seed = int(fname[(fname.find('-') + 1):-4])
53
+ self.n_episodes += 1
54
+ self.max_seed = max(self.max_seed, seed)
55
+
56
+ self._cache = {}
57
+
58
+ if self.n_demos > 0:
59
+ self.images = self.cfg['dataset']['images']
60
+ self.cache = self.cfg['dataset']['cache']
61
+
62
+ # Check if there sufficient demos in the dataset
63
+ if self.n_demos > self.n_episodes:
64
+ # raise Exception(f"Requested training on {self.n_demos} demos, but only {self.n_episodes} demos exist in the dataset path: {self._path}.")
65
+ print(f"Requested training on {self.n_demos} demos, but only {self.n_episodes} demos exist in the dataset path: {self._path}.")
66
+ self.n_demos = self.n_episodes
67
+
68
+ episodes = np.random.choice(range(self.n_episodes), self.n_demos, False)
69
+ self.set(episodes)
70
+
71
+
72
+ def add(self, seed, episode):
73
+ """Add an episode to the dataset.
74
+
75
+ Args:
76
+ seed: random seed used to initialize the episode.
77
+ episode: list of (obs, act, reward, info) tuples.
78
+ """
79
+ color, depth, action, reward, info = [], [], [], [], []
80
+ for obs, act, r, i in episode:
81
+ color.append(obs['color'])
82
+ depth.append(obs['depth'])
83
+ action.append(act)
84
+ reward.append(r)
85
+ info.append(i)
86
+
87
+ color = np.uint8(color)
88
+ depth = np.float32(depth)
89
+
90
+ def dump(data, field):
91
+ field_path = os.path.join(self._path, field)
92
+ if not os.path.exists(field_path):
93
+ os.makedirs(field_path)
94
+ fname = f'{self.n_episodes:06d}-{seed}.pkl' # -{len(episode):06d}
95
+ with open(os.path.join(field_path, fname), 'wb') as f:
96
+ pickle.dump(data, f)
97
+
98
+ dump(color, 'color')
99
+ dump(depth, 'depth')
100
+ dump(action, 'action')
101
+ dump(reward, 'reward')
102
+ dump(info, 'info')
103
+
104
+ self.n_episodes += 1
105
+ self.max_seed = max(self.max_seed, seed)
106
+
107
+ def set(self, episodes):
108
+ """Limit random samples to specific fixed set."""
109
+ self.sample_set = episodes
110
+
111
+ def load(self, episode_id, images=True, cache=False):
112
+ # TODO(lirui): consider loading into memory
113
+ def load_field(episode_id, field, fname):
114
+
115
+ # Check if sample is in cache.
116
+ if cache:
117
+ if episode_id in self._cache:
118
+ if field in self._cache[episode_id]:
119
+ return self._cache[episode_id][field]
120
+ else:
121
+ self._cache[episode_id] = {}
122
+
123
+ # Load sample from files.
124
+ path = os.path.join(self._path, field)
125
+ data = pickle.load(open(os.path.join(path, fname), 'rb'))
126
+ if cache:
127
+ self._cache[episode_id][field] = data
128
+ return data
129
+
130
+ # Get filename and random seed used to initialize episode.
131
+ seed = None
132
+ path = os.path.join(self._path, 'action')
133
+ for fname in sorted(os.listdir(path)):
134
+ if f'{episode_id:06d}' in fname:
135
+ seed = int(fname[(fname.find('-') + 1):-4])
136
+
137
+ # Load data.
138
+ color = load_field(episode_id, 'color', fname)
139
+ depth = load_field(episode_id, 'depth', fname)
140
+ action = load_field(episode_id, 'action', fname)
141
+ reward = load_field(episode_id, 'reward', fname)
142
+ info = load_field(episode_id, 'info', fname)
143
+
144
+ # Reconstruct episode.
145
+ episode = []
146
+ for i in range(len(action)):
147
+ obs = {'color': color[i], 'depth': depth[i]} if images else {}
148
+ episode.append((obs, action[i], reward[i], info[i]))
149
+ return episode, seed
150
+
151
+ print(f'{episode_id:06d} not in ', path)
152
+
153
+ def get_image(self, obs, cam_config=None):
154
+ """Stack color and height images image."""
155
+
156
+ # if self.use_goal_image:
157
+ # colormap_g, heightmap_g = utils.get_fused_heightmap(goal, configs)
158
+ # goal_image = self.concatenate_c_h(colormap_g, heightmap_g)
159
+ # input_image = np.concatenate((input_image, goal_image), axis=2)
160
+ # assert input_image.shape[2] == 12, input_image.shape
161
+
162
+ if cam_config is None:
163
+ cam_config = self.cam_config
164
+
165
+ # Get color and height maps from RGB-D images.
166
+ cmap, hmap = utils.get_fused_heightmap(
167
+ obs, cam_config, self.bounds, self.pix_size)
168
+ img = np.concatenate((cmap,
169
+ hmap[Ellipsis, None],
170
+ hmap[Ellipsis, None],
171
+ hmap[Ellipsis, None]), axis=2)
172
+ assert img.shape == self.in_shape, img.shape
173
+ return img
174
+
175
+ def process_sample(self, datum, augment=True):
176
+ # Get training labels from data sample.
177
+ (obs, act, _, info) = datum
178
+ img = self.get_image(obs)
179
+
180
+ # p0, p1 = None, None
181
+ # p0_theta, p1_theta = None, None
182
+ # perturb_params = None
183
+ p0, p1 = np.zeros(1), np.zeros(1)
184
+ p0_theta, p1_theta = np.zeros(1), np.zeros(1)
185
+ perturb_params = np.zeros(5)
186
+
187
+ if act:
188
+ p0_xyz, p0_xyzw = act['pose0']
189
+ p1_xyz, p1_xyzw = act['pose1']
190
+ p0 = utils.xyz_to_pix(p0_xyz, self.bounds, self.pix_size)
191
+ p0_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p0_xyzw)[2])
192
+ p1 = utils.xyz_to_pix(p1_xyz, self.bounds, self.pix_size)
193
+ p1_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p1_xyzw)[2])
194
+ p1_theta = p1_theta - p0_theta
195
+ p0_theta = 0
196
+
197
+ # Data augmentation.
198
+ if augment:
199
+ img, _, (p0, p1), perturb_params = utils.perturb(img, [p0, p1], theta_sigma=self.aug_theta_sigma)
200
+ # print("augment:", self.cfg['train']['data_augmentation'])
201
+ if self.cfg['train']['data_augmentation']:
202
+ # visualize original color, depth and augmented color and depth
203
+ # import IPython
204
+ # IPython.embed()
205
+ color = img[...,:3]
206
+ depth = img[...,3:]
207
+ original_color = color.copy()
208
+ original_depth = depth.copy()
209
+
210
+ from cliport.utils.dataaug import chromatic_transform, add_noise, add_noise_depth
211
+ if np.random.rand(1) > 0.1:
212
+ color = chromatic_transform(color.astype(np.uint8))
213
+ if np.random.rand(1) > 0.1:
214
+ color = add_noise(color)
215
+ if np.random.rand(1) > 0.1:
216
+ depth = add_noise_depth(depth)
217
+
218
+ # visualization
219
+ # import matplotlib.pyplot as plt
220
+ # fig = plt.figure(figsize=(32, 18))
221
+ # ax = fig.add_subplot(2, 2, 1)
222
+ # plt.imshow(original_color.astype(np.uint8))
223
+ # ax = fig.add_subplot(2, 2, 2)
224
+ # plt.imshow(color.astype(np.uint8))
225
+ # ax = fig.add_subplot(2, 2, 3)
226
+ # plt.imshow(original_depth)
227
+ # ax = fig.add_subplot(2, 2, 4)
228
+ # plt.imshow(depth)
229
+ # plt.show()
230
+
231
+ color = color.astype(np.float32)
232
+ im = np.concatenate((color, depth), axis=-1)
233
+ # print("sample", p0,p1,p0_theta,p1_theta,perturb_params)
234
+ sample = {
235
+ 'img': img.copy(),
236
+ 'p0': np.array(p0).copy(), 'p0_theta': np.array(p0_theta).copy(),
237
+ 'p1': np.array(p1).copy(), 'p1_theta': np.array(p1_theta).copy() ,
238
+ 'perturb_params': np.array(perturb_params).copy()
239
+ }
240
+
241
+ # Add language goal if available.
242
+ if 'lang_goal' not in info:
243
+ warnings.warn("No language goal. Defaulting to 'task completed.'")
244
+
245
+ if info and 'lang_goal' in info:
246
+ sample['lang_goal'] = info['lang_goal']
247
+ else:
248
+ sample['lang_goal'] = "task completed."
249
+
250
+ return sample
251
+
252
+ def process_goal(self, goal, perturb_params):
253
+ # Get goal sample.
254
+ (obs, act, _, info) = goal
255
+ img = self.get_image(obs)
256
+
257
+ # p0, p1 = None, None
258
+ # p0_theta, p1_theta = None, None
259
+
260
+ p0, p1 = np.zeros(1), np.zeros(1)
261
+ p0_theta, p1_theta = np.zeros(1), np.zeros(1)
262
+
263
+ # Data augmentation with specific params.
264
+ # try:
265
+ if perturb_params is not None and len(perturb_params) > 1:
266
+ img = utils.apply_perturbation(img, perturb_params)
267
+
268
+ sample = {
269
+ 'img': img.copy(),
270
+ 'p0': p0 , 'p0_theta': np.array(p0_theta).copy(),
271
+ 'p1': p1, 'p1_theta': np.array(p1_theta).copy(),
272
+ 'perturb_params': np.array(perturb_params).copy()
273
+ }
274
+
275
+ # Add language goal if available.
276
+ if 'lang_goal' not in info:
277
+ warnings.warn("No language goal. Defaulting to 'task completed.'")
278
+ # print("goal",p0,p1,p0_theta,p1_theta,perturb_params)
279
+
280
+ if info and 'lang_goal' in info:
281
+ sample['lang_goal'] = info['lang_goal']
282
+ else:
283
+ sample['lang_goal'] = "task completed."
284
+
285
+ return sample
286
+
287
+ def __len__(self):
288
+ return len(self.sample_set)
289
+
290
+ def __getitem__(self, idx):
291
+ # Choose random episode.
292
+ # if len(self.sample_set) > 0:
293
+ # episode_id = np.random.choice(self.sample_set)
294
+ # else:
295
+ # episode_id = np.random.choice(range(self.n_episodes))
296
+ episode_id = self.sample_set[idx]
297
+ res = self.load(episode_id, self.images, self.cache)
298
+ if res is None:
299
+ print("in get item", episode_id, self._path)
300
+ print("load sample return None. Reload")
301
+ print("Exception:", str(traceback.format_exc()))
302
+ return self[0] #
303
+
304
+ episode, _ = res
305
+ # Is the task sequential like stack-block-pyramid-seq?
306
+ is_sequential_task = '-seq' in self._path.split("/")[-1]
307
+
308
+ # Return random observation action pair (and goal) from episode.
309
+ i = np.random.choice(range(len(episode)-1))
310
+ g = i+1 if is_sequential_task else -1
311
+ sample, goal = episode[i], episode[g]
312
+
313
+ # Process sample.
314
+ sample = self.process_sample(sample, augment=self.augment)
315
+ goal = self.process_goal(goal, perturb_params=sample['perturb_params'])
316
+ return sample, goal
317
+
318
+
319
+ class RavensMultiTaskDataset(RavensDataset):
320
+
321
+
322
+ def __init__(self, path, cfg, group='multi-all',
323
+ mode='train', n_demos=100, augment=False):
324
+ """A multi-task dataset."""
325
+ self.root_path = path
326
+ self.mode = mode
327
+ if group not in self.MULTI_TASKS:
328
+ # generate the groups on the fly
329
+ self.tasks = list(set(group)) # .split(" ")
330
+ else:
331
+ self.tasks = self.MULTI_TASKS[group][mode]
332
+
333
+ print("self.tasks:", self.tasks)
334
+ self.attr_train_task = self.MULTI_TASKS[group]['attr_train_task'] if group in self.MULTI_TASKS and 'attr_train_task' in self.MULTI_TASKS[group] else None
335
+
336
+ self.cfg = cfg
337
+ self.sample_set = {}
338
+ self.max_seed = -1
339
+ self.n_episodes = 0
340
+ self.images = self.cfg['dataset']['images']
341
+ self.cache = self.cfg['dataset']['cache']
342
+ self.n_demos = n_demos
343
+ self.augment = augment
344
+
345
+ self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
346
+ self.pix_size = 0.003125
347
+ self.in_shape = (320, 160, 6)
348
+ self.cam_config = cameras.RealSenseD415.CONFIG
349
+ self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
350
+
351
+ self.n_episodes = {}
352
+ episodes = {}
353
+
354
+ for task in self.tasks:
355
+ task_path = os.path.join(self.root_path, f'{task}-{mode}')
356
+ action_path = os.path.join(task_path, 'action')
357
+ n_episodes = 0
358
+ if os.path.exists(action_path):
359
+ for fname in sorted(os.listdir(action_path)):
360
+ if '.pkl' in fname:
361
+ n_episodes += 1
362
+ self.n_episodes[task] = n_episodes
363
+
364
+ if n_episodes == 0:
365
+ raise Exception(f"{task}-{mode} has 0 episodes. Remove it from the list in dataset.py")
366
+
367
+ # Select random episode depending on the size of the dataset.
368
+ episodes[task] = np.random.choice(range(self.n_demos), min(self.n_demos, n_episodes), False)
369
+
370
+ if self.n_demos > 0:
371
+ self.images = self.cfg['dataset']['images']
372
+ self.cache = False # TODO(mohit): fix caching for multi-task dataset
373
+ self.set(episodes)
374
+
375
+ self._path = None
376
+ self._task = None
377
+
378
+ def __len__(self):
379
+ # Average number of episodes across all tasks
380
+ total_episodes = 0
381
+ for _, episode_ids in self.sample_set.items():
382
+ total_episodes += len(episode_ids)
383
+ avg_episodes = total_episodes # // len(self.sample_set)
384
+ return avg_episodes
385
+
386
+ def __getitem__(self, idx):
387
+ # Choose random task.
388
+ self._task = self.tasks[idx % len(self.tasks)] # np.random.choice(self.tasks)
389
+ self._path = os.path.join(self.root_path, f'{self._task}')
390
+
391
+ # Choose random episode.
392
+ if len(self.sample_set[self._task]) > 0:
393
+ episode_id = np.random.choice(self.sample_set[self._task])
394
+ else:
395
+ episode_id = np.random.choice(range(self.n_episodes[self._task]))
396
+
397
+ res = self.load(episode_id, self.images, self.cache)
398
+ if res is None:
399
+ print("failed in get item", episode_id, self._task, self._path)
400
+ print("Exception:", str(traceback.format_exc()))
401
+
402
+ return self[np.random.randint(len(self))] #
403
+
404
+ episode, _ = res
405
+
406
+ # Is the task sequential like stack-block-pyramid-seq?
407
+ is_sequential_task = '-seq' in self._path.split("/")[-1]
408
+
409
+ # Return observation action pair (and goal) from episode.
410
+ if len(episode) > 1:
411
+ i = np.random.choice(range(len(episode)-1))
412
+ g = i+1 if is_sequential_task else -1
413
+ sample, goal = episode[i], episode[g]
414
+ else:
415
+ sample, goal = episode[0], episode[0]
416
+
417
+ # Process sample
418
+ sample = self.process_sample(sample, augment=self.augment)
419
+ goal = self.process_goal(goal, perturb_params=sample['perturb_params'])
420
+
421
+ return sample, goal
422
+
423
+ def add(self, seed, episode):
424
+ raise Exception("Adding tasks not supported with multi-task dataset")
425
+
426
+ def load(self, episode_id, images=True, cache=False):
427
+ # if self.attr_train_task is None or self.mode in ['val', 'test']:
428
+ # self._task = np.random.choice(self.tasks)
429
+ # else:
430
+ # all_other_tasks = list(self.tasks)
431
+ # all_other_tasks.remove(self.attr_train_task)
432
+ # all_tasks = [self.attr_train_task] + all_other_tasks # add seen task in the front
433
+
434
+ # # 50% chance of sampling the main seen task and 50% chance of sampling any other seen-unseen task
435
+ # mult_attr_seen_sample_prob = 0.5
436
+ # sampling_probs = [(1-mult_attr_seen_sample_prob) / (len(all_tasks)-1)] * len(all_tasks)
437
+ # sampling_probs[0] = mult_attr_seen_sample_prob
438
+
439
+ # self._task = np.random.choice(all_tasks, p=sampling_probs)
440
+
441
+ self._path = os.path.join(self.root_path, f'{self._task}-{self.mode}')
442
+ return super().load(episode_id, images, cache)
443
+
444
+ def get_curr_task(self):
445
+ return self._task
446
+
447
+
448
+ MULTI_TASKS = {
449
+ # new expeeriments
450
+ 'multi-gpt-test': {
451
+ 'train': ['align-box-corner', 'rainbow-stack'],
452
+ 'val': ['align-box-corner', 'rainbow-stack'],
453
+ 'test': ['align-box-corner', 'rainbow-stack']
454
+ },
455
+
456
+ # all tasks
457
+ 'multi-all': {
458
+ 'train': [
459
+ 'align-box-corner',
460
+ 'assembling-kits',
461
+ 'block-insertion',
462
+ 'manipulating-rope',
463
+ 'packing-boxes',
464
+ 'palletizing-boxes',
465
+ 'place-red-in-green',
466
+ 'stack-block-pyramid',
467
+ 'sweeping-piles',
468
+ 'towers-of-hanoi',
469
+ 'align-rope',
470
+ 'assembling-kits-seq-unseen-colors',
471
+ 'packing-boxes-pairs-unseen-colors',
472
+ 'packing-shapes',
473
+ 'packing-unseen-google-objects-seq',
474
+ 'packing-unseen-google-objects-group',
475
+ 'put-block-in-bowl-unseen-colors',
476
+ 'stack-block-pyramid-seq-unseen-colors',
477
+ 'separating-piles-unseen-colors',
478
+ 'towers-of-hanoi-seq-unseen-colors',
479
+ ],
480
+ 'val': [
481
+ 'align-box-corner',
482
+ 'assembling-kits',
483
+ 'block-insertion',
484
+ 'manipulating-rope',
485
+ 'packing-boxes',
486
+ 'palletizing-boxes',
487
+ 'place-red-in-green',
488
+ 'stack-block-pyramid',
489
+ 'sweeping-piles',
490
+ 'towers-of-hanoi',
491
+ 'align-rope',
492
+ 'assembling-kits-seq-seen-colors',
493
+ 'assembling-kits-seq-unseen-colors',
494
+ 'packing-boxes-pairs-seen-colors',
495
+ 'packing-boxes-pairs-unseen-colors',
496
+ 'packing-shapes',
497
+ 'packing-seen-google-objects-seq',
498
+ 'packing-unseen-google-objects-seq',
499
+ 'packing-seen-google-objects-group',
500
+ 'packing-unseen-google-objects-group',
501
+ 'put-block-in-bowl-seen-colors',
502
+ 'put-block-in-bowl-unseen-colors',
503
+ 'stack-block-pyramid-seq-seen-colors',
504
+ 'stack-block-pyramid-seq-unseen-colors',
505
+ 'separating-piles-seen-colors',
506
+ 'separating-piles-unseen-colors',
507
+ 'towers-of-hanoi-seq-seen-colors',
508
+ 'towers-of-hanoi-seq-unseen-colors',
509
+ ],
510
+ 'test': [
511
+ 'align-box-corner',
512
+ 'assembling-kits',
513
+ 'block-insertion',
514
+ 'manipulating-rope',
515
+ 'packing-boxes',
516
+ 'palletizing-boxes',
517
+ 'place-red-in-green',
518
+ 'stack-block-pyramid',
519
+ 'sweeping-piles',
520
+ 'towers-of-hanoi',
521
+ 'align-rope',
522
+ 'assembling-kits-seq-seen-colors',
523
+ 'assembling-kits-seq-unseen-colors',
524
+ 'packing-boxes-pairs-seen-colors',
525
+ 'packing-boxes-pairs-unseen-colors',
526
+ 'packing-shapes',
527
+ 'packing-seen-google-objects-seq',
528
+ 'packing-unseen-google-objects-seq',
529
+ 'packing-seen-google-objects-group',
530
+ 'packing-unseen-google-objects-group',
531
+ 'put-block-in-bowl-seen-colors',
532
+ 'put-block-in-bowl-unseen-colors',
533
+ 'stack-block-pyramid-seq-seen-colors',
534
+ 'stack-block-pyramid-seq-unseen-colors',
535
+ 'separating-piles-seen-colors',
536
+ 'separating-piles-unseen-colors',
537
+ 'towers-of-hanoi-seq-seen-colors',
538
+ 'towers-of-hanoi-seq-unseen-colors',
539
+ ],
540
+ },
541
+
542
+ # demo-conditioned tasks
543
+ 'multi-demo-conditioned': {
544
+ 'train': [
545
+ 'align-box-corner',
546
+ 'assembling-kits',
547
+ 'block-insertion',
548
+ 'manipulating-rope',
549
+ 'packing-boxes',
550
+ 'palletizing-boxes',
551
+ 'place-red-in-green',
552
+ 'stack-block-pyramid',
553
+ 'sweeping-piles',
554
+ 'towers-of-hanoi',
555
+ ],
556
+ 'val': [
557
+ 'align-box-corner',
558
+ 'assembling-kits',
559
+ 'block-insertion',
560
+ 'manipulating-rope',
561
+ 'packing-boxes',
562
+ 'palletizing-boxes',
563
+ 'place-red-in-green',
564
+ 'stack-block-pyramid',
565
+ 'sweeping-piles',
566
+ 'towers-of-hanoi',
567
+ ],
568
+ 'test': [
569
+ 'align-box-corner',
570
+ 'assembling-kits',
571
+ 'block-insertion',
572
+ 'manipulating-rope',
573
+ 'packing-boxes',
574
+ 'palletizing-boxes',
575
+ 'place-red-in-green',
576
+ 'stack-block-pyramid',
577
+ 'sweeping-piles',
578
+ 'towers-of-hanoi',
579
+ ],
580
+ },
581
+
582
+ # goal-conditioned tasks
583
+ 'multi-language-conditioned': {
584
+ 'train': [
585
+ 'align-rope',
586
+ 'assembling-kits-seq-unseen-colors', # unseen here refers to training only seen splits to be consitent with single-task setting
587
+ 'packing-boxes-pairs-unseen-colors',
588
+ 'packing-shapes',
589
+ 'packing-unseen-google-objects-seq',
590
+ 'packing-unseen-google-objects-group',
591
+ 'put-block-in-bowl-unseen-colors',
592
+ 'stack-block-pyramid-seq-unseen-colors',
593
+ 'separating-piles-unseen-colors',
594
+ 'towers-of-hanoi-seq-unseen-colors',
595
+ ],
596
+ 'val': [
597
+ 'align-rope',
598
+ 'assembling-kits-seq-seen-colors',
599
+ 'assembling-kits-seq-unseen-colors',
600
+ 'packing-boxes-pairs-seen-colors',
601
+ 'packing-boxes-pairs-unseen-colors',
602
+ 'packing-shapes',
603
+ 'packing-seen-google-objects-seq',
604
+ 'packing-unseen-google-objects-seq',
605
+ 'packing-seen-google-objects-group',
606
+ 'packing-unseen-google-objects-group',
607
+ 'put-block-in-bowl-seen-colors',
608
+ 'put-block-in-bowl-unseen-colors',
609
+ 'stack-block-pyramid-seq-seen-colors',
610
+ 'stack-block-pyramid-seq-unseen-colors',
611
+ 'separating-piles-seen-colors',
612
+ 'separating-piles-unseen-colors',
613
+ 'towers-of-hanoi-seq-seen-colors',
614
+ 'towers-of-hanoi-seq-unseen-colors',
615
+ ],
616
+ 'test': [
617
+ 'align-rope',
618
+ 'assembling-kits-seq-seen-colors',
619
+ 'assembling-kits-seq-unseen-colors',
620
+ 'packing-boxes-pairs-seen-colors',
621
+ 'packing-boxes-pairs-unseen-colors',
622
+ 'packing-shapes',
623
+ 'packing-seen-google-objects-seq',
624
+ 'packing-unseen-google-objects-seq',
625
+ 'packing-seen-google-objects-group',
626
+ 'packing-unseen-google-objects-group',
627
+ 'put-block-in-bowl-seen-colors',
628
+ 'put-block-in-bowl-unseen-colors',
629
+ 'stack-block-pyramid-seq-seen-colors',
630
+ 'stack-block-pyramid-seq-unseen-colors',
631
+ 'separating-piles-seen-colors',
632
+ 'separating-piles-unseen-colors',
633
+ 'towers-of-hanoi-seq-seen-colors',
634
+ 'towers-of-hanoi-seq-unseen-colors',
635
+ ],
636
+ },
637
+
638
+
639
+ ##### multi-attr tasks
640
+ 'multi-attr-align-rope': {
641
+ 'train': [
642
+ 'assembling-kits-seq-full',
643
+ 'packing-boxes-pairs-full',
644
+ 'packing-shapes',
645
+ 'packing-seen-google-objects-seq',
646
+ 'packing-seen-google-objects-group',
647
+ 'put-block-in-bowl-full',
648
+ 'stack-block-pyramid-seq-full',
649
+ 'separating-piles-full',
650
+ 'towers-of-hanoi-seq-full',
651
+ ],
652
+ 'val': [
653
+ 'align-rope',
654
+ ],
655
+ 'test': [
656
+ 'align-rope',
657
+ ],
658
+ 'attr_train_task': None,
659
+ },
660
+
661
+ 'multi-attr-packing-shapes': {
662
+ 'train': [
663
+ 'align-rope',
664
+ 'assembling-kits-seq-full',
665
+ 'packing-boxes-pairs-full',
666
+ 'packing-seen-google-objects-seq',
667
+ 'packing-seen-google-objects-group',
668
+ 'put-block-in-bowl-full',
669
+ 'stack-block-pyramid-seq-full',
670
+ 'separating-piles-full',
671
+ 'towers-of-hanoi-seq-full',
672
+ ],
673
+ 'val': [
674
+ 'packing-shapes',
675
+ ],
676
+ 'test': [
677
+ 'packing-shapes',
678
+ ],
679
+ 'attr_train_task': None,
680
+ },
681
+
682
+ 'multi-attr-assembling-kits-seq-unseen-colors': {
683
+ 'train': [
684
+ 'align-rope',
685
+ 'assembling-kits-seq-seen-colors', # seen only
686
+ 'packing-boxes-pairs-full',
687
+ 'packing-shapes',
688
+ 'packing-seen-google-objects-seq',
689
+ 'packing-seen-google-objects-group',
690
+ 'put-block-in-bowl-full',
691
+ 'stack-block-pyramid-seq-full',
692
+ 'separating-piles-full',
693
+ 'towers-of-hanoi-seq-full',
694
+ ],
695
+ 'val': [
696
+ 'assembling-kits-seq-unseen-colors',
697
+ ],
698
+ 'test': [
699
+ 'assembling-kits-seq-unseen-colors',
700
+ ],
701
+ 'attr_train_task': 'assembling-kits-seq-seen-colors',
702
+ },
703
+
704
+ 'multi-attr-packing-boxes-pairs-unseen-colors': {
705
+ 'train': [
706
+ 'align-rope',
707
+ 'assembling-kits-seq-full',
708
+ 'packing-boxes-pairs-seen-colors', # seen only
709
+ 'packing-shapes',
710
+ 'packing-seen-google-objects-seq',
711
+ 'packing-seen-google-objects-group',
712
+ 'put-block-in-bowl-full',
713
+ 'stack-block-pyramid-seq-full',
714
+ 'separating-piles-full',
715
+ 'towers-of-hanoi-seq-full',
716
+ ],
717
+ 'val': [
718
+ 'packing-boxes-pairs-unseen-colors',
719
+ ],
720
+ 'test': [
721
+ 'packing-boxes-pairs-unseen-colors',
722
+ ],
723
+ 'attr_train_task': 'packing-boxes-pairs-seen-colors',
724
+ },
725
+
726
+ 'multi-attr-packing-unseen-google-objects-seq': {
727
+ 'train': [
728
+ 'align-rope',
729
+ 'assembling-kits-seq-full',
730
+ 'packing-boxes-pairs-full',
731
+ 'packing-shapes',
732
+ 'packing-seen-google-objects-group',
733
+ 'put-block-in-bowl-full',
734
+ 'stack-block-pyramid-seq-full',
735
+ 'separating-piles-full',
736
+ 'towers-of-hanoi-seq-full',
737
+ ],
738
+ 'val': [
739
+ 'packing-unseen-google-objects-seq',
740
+ ],
741
+ 'test': [
742
+ 'packing-unseen-google-objects-seq',
743
+ ],
744
+ 'attr_train_task': 'packing-seen-google-objects-group',
745
+ },
746
+
747
+ 'multi-attr-packing-unseen-google-objects-group': {
748
+ 'train': [
749
+ 'align-rope',
750
+ 'assembling-kits-seq-full',
751
+ 'packing-boxes-pairs-full',
752
+ 'packing-shapes',
753
+ 'packing-seen-google-objects-seq',
754
+ 'put-block-in-bowl-full',
755
+ 'stack-block-pyramid-seq-full',
756
+ 'separating-piles-full',
757
+ 'towers-of-hanoi-seq-full',
758
+ ],
759
+ 'val': [
760
+ 'packing-unseen-google-objects-group',
761
+ ],
762
+ 'test': [
763
+ 'packing-unseen-google-objects-group',
764
+ ],
765
+ 'attr_train_task': 'packing-seen-google-objects-seq',
766
+ },
767
+
768
+ 'multi-attr-put-block-in-bowl-unseen-colors': {
769
+ 'train': [
770
+ 'align-rope',
771
+ 'assembling-kits-seq-full',
772
+ 'packing-boxes-pairs-full',
773
+ 'packing-shapes',
774
+ 'packing-seen-google-objects-seq',
775
+ 'packing-seen-google-objects-group',
776
+ 'put-block-in-bowl-seen-colors', # seen only
777
+ 'stack-block-pyramid-seq-full',
778
+ 'separating-piles-full',
779
+ 'towers-of-hanoi-seq-full',
780
+ ],
781
+ 'val': [
782
+ 'put-block-in-bowl-unseen-colors',
783
+ ],
784
+ 'test': [
785
+ 'put-block-in-bowl-unseen-colors',
786
+ ],
787
+ 'attr_train_task': 'put-block-in-bowl-seen-colors',
788
+ },
789
+
790
+ 'multi-attr-stack-block-pyramid-seq-unseen-colors': {
791
+ 'train': [
792
+ 'align-rope',
793
+ 'assembling-kits-seq-full',
794
+ 'packing-boxes-pairs-full',
795
+ 'packing-shapes',
796
+ 'packing-seen-google-objects-seq',
797
+ 'packing-seen-google-objects-group',
798
+ 'put-block-in-bowl-full',
799
+ 'stack-block-pyramid-seq-seen-colors', # seen only
800
+ 'separating-piles-full',
801
+ 'towers-of-hanoi-seq-full',
802
+ ],
803
+ 'val': [
804
+ 'stack-block-pyramid-seq-unseen-colors',
805
+ ],
806
+ 'test': [
807
+ 'stack-block-pyramid-seq-unseen-colors',
808
+ ],
809
+ 'attr_train_task': 'stack-block-pyramid-seq-seen-colors',
810
+ },
811
+
812
+ 'multi-attr-separating-piles-unseen-colors': {
813
+ 'train': [
814
+ 'align-rope',
815
+ 'assembling-kits-seq-full',
816
+ 'packing-boxes-pairs-full',
817
+ 'packing-shapes',
818
+ 'packing-seen-google-objects-seq',
819
+ 'packing-seen-google-objects-group',
820
+ 'put-block-in-bowl-full',
821
+ 'stack-block-pyramid-seq-full',
822
+ 'separating-piles-seen-colors', # seen only
823
+ 'towers-of-hanoi-seq-full',
824
+ ],
825
+ 'val': [
826
+ 'separating-piles-unseen-colors',
827
+ ],
828
+ 'test': [
829
+ 'separating-piles-unseen-colors',
830
+ ],
831
+ 'attr_train_task': 'separating-piles-seen-colors',
832
+ },
833
+
834
+ 'multi-attr-towers-of-hanoi-seq-unseen-colors': {
835
+ 'train': [
836
+ 'align-rope',
837
+ 'assembling-kits-seq-full',
838
+ 'packing-boxes-pairs-full',
839
+ 'packing-shapes',
840
+ 'packing-seen-google-objects-seq',
841
+ 'packing-seen-google-objects-group',
842
+ 'put-block-in-bowl-full',
843
+ 'stack-block-pyramid-seq-full',
844
+ 'separating-piles-full',
845
+ 'towers-of-hanoi-seq-seen-colors', # seen only
846
+ ],
847
+ 'val': [
848
+ 'towers-of-hanoi-seq-unseen-colors',
849
+ ],
850
+ 'test': [
851
+ 'towers-of-hanoi-seq-unseen-colors',
852
+ ],
853
+ 'attr_train_task': 'towers-of-hanoi-seq-seen-colors',
854
+ },
855
+
856
+ }
857
+
858
+
859
+
860
+ class RavenMultiTaskDatasetBalance(RavensMultiTaskDataset):
861
+ def __init__(self, path, cfg, group='multi-all',
862
+ mode='train', n_demos=100, augment=False, balance_weight=0.1):
863
+ """A multi-task dataset for balancing data."""
864
+ self.root_path = path
865
+ self.mode = mode
866
+ if group not in self.MULTI_TASKS:
867
+ # generate the groups on the fly
868
+ self.tasks = group# .split(" ")
869
+ else:
870
+ self.tasks = self.MULTI_TASKS[group][mode]
871
+
872
+ print("self.tasks:", self.tasks)
873
+ self.attr_train_task = self.MULTI_TASKS[group]['attr_train_task'] if group in self.MULTI_TASKS and 'attr_train_task' in self.MULTI_TASKS[group] else None
874
+
875
+ self.cfg = cfg
876
+ self.sample_set = {}
877
+ self.max_seed = -1
878
+ self.n_episodes = 0
879
+ self.images = self.cfg['dataset']['images']
880
+ self.cache = self.cfg['dataset']['cache']
881
+ self.n_demos = n_demos
882
+ self.augment = augment
883
+
884
+ self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
885
+ self.pix_size = 0.003125
886
+ self.in_shape = (320, 160, 6)
887
+ self.cam_config = cameras.RealSenseD415.CONFIG
888
+ self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
889
+
890
+ self.n_episodes = {}
891
+ episodes = {}
892
+
893
+ for task in self.tasks:
894
+ task_path = os.path.join(self.root_path, f'{task}-{mode}')
895
+ action_path = os.path.join(task_path, 'action')
896
+ n_episodes = 0
897
+ if os.path.exists(action_path):
898
+ for fname in sorted(os.listdir(action_path)):
899
+ if '.pkl' in fname:
900
+ n_episodes += 1
901
+ self.n_episodes[task] = n_episodes
902
+
903
+ if n_episodes == 0:
904
+ raise Exception(f"{task}-{mode} has 0 episodes. Remove it from the list in dataset.py")
905
+
906
+ # Select random episode depending on the size of the dataset.
907
+ if task in self.ORIGINAL_NAMES and self.mode == 'train':
908
+ assert self.n_demos < 200 # otherwise, we need to change the code below
909
+ episodes[task] = np.random.choice(range(n_episodes), min(int(self.n_demos*balance_weight), n_episodes), False)
910
+ else:
911
+ episodes[task] = np.random.choice(range(n_episodes), min(self.n_demos, n_episodes), False)
912
+
913
+ if self.n_demos > 0:
914
+ self.images = self.cfg['dataset']['images']
915
+ self.cache = False
916
+ self.set(episodes)
917
+
918
+ self._path = None
919
+ self._task = None
920
+
921
+
922
+
923
+ ORIGINAL_NAMES = [
924
+ # demo conditioned
925
+ 'align-box-corner',
926
+ 'assembling-kits',
927
+ 'assembling-kits-easy',
928
+ 'block-insertion',
929
+ 'block-insertion-easy',
930
+ 'block-insertion-nofixture',
931
+ 'block-insertion-sixdof',
932
+ 'block-insertion-translation',
933
+ 'manipulating-rope',
934
+ 'packing-boxes',
935
+ 'palletizing-boxes',
936
+ 'place-red-in-green',
937
+ 'stack-block-pyramid',
938
+ 'sweeping-piles',
939
+ 'towers-of-hanoi',
940
+ 'gen-task',
941
+ # goal conditioned
942
+ 'align-rope',
943
+ 'assembling-kits-seq',
944
+ 'assembling-kits-seq-seen-colors',
945
+ 'assembling-kits-seq-unseen-colors',
946
+ 'assembling-kits-seq-full',
947
+ 'packing-shapes',
948
+ 'packing-boxes-pairs',
949
+ 'packing-boxes-pairs-seen-colors',
950
+ 'packing-boxes-pairs-unseen-colors',
951
+ 'packing-boxes-pairs-full',
952
+ 'packing-seen-google-objects-seq',
953
+ 'packing-unseen-google-objects-seq',
954
+ 'packing-seen-google-objects-group',
955
+ 'packing-unseen-google-objects-group',
956
+ 'put-block-in-bowl',
957
+ 'put-block-in-bowl-seen-colors',
958
+ 'put-block-in-bowl-unseen-colors',
959
+ 'put-block-in-bowl-full',
960
+ 'stack-block-pyramid-seq',
961
+ 'stack-block-pyramid-seq-seen-colors',
962
+ 'stack-block-pyramid-seq-unseen-colors',
963
+ 'stack-block-pyramid-seq-full',
964
+ 'separating-piles',
965
+ 'separating-piles-seen-colors',
966
+ 'separating-piles-unseen-colors',
967
+ 'separating-piles-full',
968
+ 'towers-of-hanoi-seq',
969
+ 'towers-of-hanoi-seq-seen-colors',
970
+ 'towers-of-hanoi-seq-unseen-colors',
971
+ 'towers-of-hanoi-seq-full',
972
+ ]
cliport/demos.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Data collection script."""
2
+
3
+ import os
4
+ import hydra
5
+ import numpy as np
6
+ import random
7
+
8
+ from cliport import tasks
9
+ from cliport.dataset import RavensDataset
10
+ from cliport.environments.environment import Environment
11
+ import IPython
12
+ import random
13
+
14
+ @hydra.main(config_path='./cfg', config_name='data')
15
+ def main(cfg):
16
+ # Initialize environment and task.
17
+ env = Environment(
18
+ cfg['assets_root'],
19
+ disp=cfg['disp'],
20
+ shared_memory=cfg['shared_memory'],
21
+ hz=480,
22
+ record_cfg=cfg['record']
23
+ )
24
+ cfg['task'] = cfg['task'].replace("_", "-")
25
+ task = tasks.names[cfg['task']]()
26
+ task.mode = cfg['mode']
27
+ record = cfg['record']['save_video']
28
+ save_data = cfg['save_data']
29
+
30
+ # Initialize scripted oracle agent and dataset.
31
+ agent = task.oracle(env)
32
+ data_path = os.path.join(cfg['data_dir'], "{}-{}".format(cfg['task'], task.mode))
33
+ dataset = RavensDataset(data_path, cfg, n_demos=0, augment=False)
34
+ print(f"Saving to: {data_path}")
35
+ print(f"Mode: {task.mode}")
36
+
37
+ # Train seeds are even and val/test seeds are odd. Test seeds are offset by 10000
38
+ seed = dataset.max_seed
39
+ max_eps = 3 * cfg['n']
40
+
41
+ if seed < 0:
42
+ if task.mode == 'train':
43
+ seed = -2
44
+ elif task.mode == 'val': # NOTE: beware of increasing val set to >100
45
+ seed = -1
46
+ elif task.mode == 'test':
47
+ seed = -1 + 10000
48
+ else:
49
+ raise Exception("Invalid mode. Valid options: train, val, test")
50
+
51
+ if 'regenerate_data' in cfg:
52
+ dataset.n_episodes = 0
53
+
54
+ curr_run_eps = 0
55
+ # Collect training data from oracle demonstrations.
56
+ while dataset.n_episodes < cfg['n'] and curr_run_eps < max_eps:
57
+ # for epi_idx in range(cfg['n']):
58
+ episode, total_reward = [], 0
59
+ seed += 2
60
+
61
+ # Set seeds.
62
+ np.random.seed(seed)
63
+ random.seed(seed)
64
+ print('Oracle demo: {}/{} | Seed: {}'.format(dataset.n_episodes + 1, cfg['n'], seed))
65
+ try:
66
+ curr_run_eps += 1 # make sure exits the loop
67
+ env.set_task(task)
68
+ obs = env.reset()
69
+ info = env.info
70
+ reward = 0
71
+
72
+ # Unlikely, but a safety check to prevent leaks.
73
+ if task.mode == 'val' and seed > (-1 + 10000):
74
+ raise Exception("!!! Seeds for val set will overlap with the test set !!!")
75
+
76
+ # Start video recording (NOTE: super slow)
77
+ if record:
78
+ env.start_rec(f'{dataset.n_episodes+1:06d}')
79
+
80
+
81
+ # Rollout expert policy
82
+ for _ in range(task.max_steps):
83
+ act = agent.act(obs, info)
84
+ episode.append((obs, act, reward, info))
85
+ lang_goal = info['lang_goal']
86
+ obs, reward, done, info = env.step(act)
87
+ total_reward += reward
88
+ print(f'Total Reward: {total_reward:.3f} | Done: {done} | Goal: {lang_goal}')
89
+ if done:
90
+ break
91
+ if record:
92
+ env.end_rec()
93
+
94
+ except Exception as e:
95
+ from pygments import highlight
96
+ from pygments.lexers import PythonLexer
97
+ from pygments.formatters import TerminalFormatter
98
+ import traceback
99
+
100
+ to_print = highlight(f"{str(traceback.format_exc())}", PythonLexer(), TerminalFormatter())
101
+ print(to_print)
102
+ if record:
103
+ env.end_rec()
104
+ continue
105
+
106
+ episode.append((obs, None, reward, info))
107
+
108
+ # Only save completed demonstrations.
109
+ if save_data and total_reward > 0.99:
110
+ dataset.add(seed, episode)
111
+ if hasattr(env, 'blender_recorder'):
112
+ print("blender pickle saved to ", '{}/blender_demo_{}.pkl'.format(data_path, dataset.n_episodes))
113
+ env.blender_recorder.save('{}/blender_demo_{}.pkl'.format(data_path, dataset.n_episodes))
114
+
115
+
116
+ if __name__ == '__main__':
117
+ main()
cliport/environments/__init__.py ADDED
File without changes
cliport/environments/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (166 Bytes). View file
 
cliport/environments/__pycache__/environment.cpython-38.pyc ADDED
Binary file (18.7 kB). View file
 
cliport/environments/assets/bags/bl_sphere_bag_basic_000.mtl ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl CustomColor.001
5
+ Ns 323.999994
6
+ Ka 1.000000 1.000000 1.000000
7
+ Kd 0.000000 0.000000 1.000000
8
+ Ks 0.500000 0.500000 0.500000
9
+ Ke 0.000000 0.000000 0.000000
10
+ Ni 1.000000
11
+ d 1.000000
12
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_basic_000.obj ADDED
@@ -0,0 +1,1587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_basic_000.mtl
4
+ o Sphere
5
+ v -4.000000 2.565686 -0.565685
6
+ v -4.000000 2.444456 -0.665176
7
+ v -4.000000 2.306147 -0.739104
8
+ v -4.000000 2.156072 -0.784628
9
+ v -4.000000 2.000000 -0.800000
10
+ v -4.000000 1.555544 -0.665176
11
+ v -4.000000 1.215372 -0.156072
12
+ v -3.889640 2.565686 -0.554816
13
+ v -3.870231 2.444456 -0.652395
14
+ v -3.855808 2.306147 -0.724902
15
+ v -3.846927 2.156072 -0.769552
16
+ v -3.843928 2.000000 -0.784628
17
+ v -3.846927 1.843928 -0.769552
18
+ v -3.855808 1.693853 -0.724902
19
+ v -3.870231 1.555544 -0.652395
20
+ v -3.889640 1.434314 -0.554816
21
+ v -3.913291 1.334824 -0.435916
22
+ v -3.940274 1.260896 -0.300264
23
+ v -3.969552 1.215372 -0.153073
24
+ v -3.783521 2.565686 -0.522625
25
+ v -3.745448 2.444456 -0.614542
26
+ v -3.717157 2.306147 -0.682843
27
+ v -3.699736 2.156072 -0.724902
28
+ v -3.693853 2.000000 -0.739104
29
+ v -3.699736 1.843928 -0.724902
30
+ v -3.717157 1.693853 -0.682843
31
+ v -3.745448 1.555544 -0.614542
32
+ v -3.783521 1.434314 -0.522625
33
+ v -3.829914 1.334824 -0.410624
34
+ v -3.882843 1.260896 -0.282843
35
+ v -3.940274 1.215372 -0.144192
36
+ v -3.685722 2.565686 -0.470350
37
+ v -3.630448 2.444456 -0.553073
38
+ v -3.589376 2.306147 -0.614542
39
+ v -3.564084 2.156072 -0.652394
40
+ v -3.555544 2.000000 -0.665176
41
+ v -3.564084 1.843928 -0.652394
42
+ v -3.589376 1.693853 -0.614542
43
+ v -3.630448 1.555544 -0.553073
44
+ v -3.685722 1.434314 -0.470350
45
+ v -3.753073 1.334824 -0.369552
46
+ v -3.829914 1.260896 -0.254552
47
+ v -3.913291 1.215372 -0.129769
48
+ v -3.600000 2.565686 -0.400000
49
+ v -3.529649 2.444456 -0.470350
50
+ v -3.477375 2.306147 -0.522625
51
+ v -3.445184 2.156072 -0.554816
52
+ v -3.434314 2.000000 -0.565685
53
+ v -3.445184 1.843928 -0.554816
54
+ v -3.477375 1.693853 -0.522625
55
+ v -3.529649 1.555544 -0.470350
56
+ v -3.600000 1.434314 -0.400000
57
+ v -3.685722 1.334824 -0.314278
58
+ v -3.783521 1.260896 -0.216478
59
+ v -3.889640 1.215372 -0.110360
60
+ v -3.529649 2.565686 -0.314278
61
+ v -3.446926 2.444456 -0.369552
62
+ v -3.385458 2.306147 -0.410624
63
+ v -3.347605 2.156072 -0.435916
64
+ v -3.334824 2.000000 -0.444456
65
+ v -3.347605 1.843928 -0.435916
66
+ v -3.385458 1.693853 -0.410624
67
+ v -3.446926 1.555544 -0.369552
68
+ v -3.529649 1.434314 -0.314278
69
+ v -3.630448 1.334824 -0.246926
70
+ v -3.745448 1.260896 -0.170086
71
+ v -3.870231 1.215372 -0.086709
72
+ v -3.477375 2.565686 -0.216478
73
+ v -3.385458 2.444456 -0.254551
74
+ v -3.317157 2.306147 -0.282842
75
+ v -3.275098 2.156072 -0.300264
76
+ v -3.260896 2.000000 -0.306146
77
+ v -3.275098 1.843928 -0.300264
78
+ v -3.317157 1.693853 -0.282843
79
+ v -3.385458 1.555544 -0.254551
80
+ v -3.477375 1.434314 -0.216478
81
+ v -3.589376 1.334824 -0.170086
82
+ v -3.717157 1.260896 -0.117157
83
+ v -3.855808 1.215372 -0.059726
84
+ v -3.445184 2.565686 -0.110359
85
+ v -3.347605 2.444456 -0.129769
86
+ v -3.275098 2.306147 -0.144192
87
+ v -3.230448 2.156072 -0.153073
88
+ v -3.215372 2.000000 -0.156072
89
+ v -3.230448 1.843928 -0.153073
90
+ v -3.275098 1.693853 -0.144192
91
+ v -3.347605 1.555544 -0.129769
92
+ v -3.445184 1.434314 -0.110359
93
+ v -3.564084 1.334824 -0.086709
94
+ v -3.699736 1.260896 -0.059726
95
+ v -3.846927 1.215372 -0.030448
96
+ v -3.434314 2.565686 0.000000
97
+ v -3.334824 2.444456 0.000000
98
+ v -3.260896 2.306147 0.000000
99
+ v -3.215372 2.156072 0.000000
100
+ v -3.200000 2.000000 0.000000
101
+ v -3.215372 1.843928 0.000000
102
+ v -3.260896 1.693853 0.000000
103
+ v -3.334824 1.555544 0.000000
104
+ v -3.434314 1.434314 0.000000
105
+ v -3.555544 1.334824 0.000000
106
+ v -3.693853 1.260896 0.000000
107
+ v -3.843928 1.215372 0.000000
108
+ v -3.445184 2.565686 0.110360
109
+ v -3.347605 2.444456 0.129770
110
+ v -3.275098 2.306147 0.144192
111
+ v -3.230448 2.156072 0.153074
112
+ v -3.215372 2.000000 0.156073
113
+ v -3.230448 1.843928 0.153074
114
+ v -3.275098 1.693853 0.144192
115
+ v -3.347605 1.555544 0.129770
116
+ v -3.445184 1.434314 0.110360
117
+ v -3.564084 1.334824 0.086709
118
+ v -3.699736 1.260896 0.059727
119
+ v -3.846927 1.215372 0.030448
120
+ v -3.477375 2.565686 0.216479
121
+ v -3.385458 2.444456 0.254552
122
+ v -3.317157 2.306147 0.282843
123
+ v -3.275098 2.156072 0.300264
124
+ v -3.260896 2.000000 0.306147
125
+ v -3.275098 1.843928 0.300265
126
+ v -3.317157 1.693853 0.282843
127
+ v -3.385458 1.555544 0.254552
128
+ v -3.477375 1.434314 0.216479
129
+ v -3.589376 1.334824 0.170086
130
+ v -3.717157 1.260896 0.117158
131
+ v -3.855808 1.215372 0.059727
132
+ v -3.529650 2.565686 0.314278
133
+ v -3.446927 2.444456 0.369552
134
+ v -3.385458 2.306147 0.410624
135
+ v -3.347605 2.156072 0.435916
136
+ v -3.334824 2.000000 0.444457
137
+ v -3.347605 1.843928 0.435916
138
+ v -3.385458 1.693853 0.410624
139
+ v -3.446927 1.555544 0.369552
140
+ v -3.529650 1.434314 0.314278
141
+ v -3.630448 1.334824 0.246927
142
+ v -3.745448 1.260896 0.170086
143
+ v -3.870231 1.215372 0.086709
144
+ v -3.600000 2.565686 0.400000
145
+ v -3.529650 2.444456 0.470351
146
+ v -3.477375 2.306147 0.522626
147
+ v -3.445184 2.156072 0.554816
148
+ v -3.434315 2.000000 0.565686
149
+ v -3.445184 1.843928 0.554816
150
+ v -3.477375 1.693853 0.522626
151
+ v -3.529650 1.555544 0.470351
152
+ v -3.600000 1.434314 0.400000
153
+ v -3.685722 1.334824 0.314278
154
+ v -3.783521 1.260896 0.216479
155
+ v -3.889640 1.215372 0.110360
156
+ v -3.685722 2.565686 0.470351
157
+ v -3.630448 2.444456 0.553074
158
+ v -3.589376 2.306147 0.614542
159
+ v -3.564084 2.156072 0.652395
160
+ v -3.555544 2.000000 0.665176
161
+ v -3.564084 1.843928 0.652395
162
+ v -3.589376 1.693853 0.614542
163
+ v -3.630448 1.555544 0.553074
164
+ v -3.685722 1.434314 0.470351
165
+ v -3.753073 1.334824 0.369552
166
+ v -3.829914 1.260896 0.254552
167
+ v -3.913291 1.215372 0.129770
168
+ v -3.783522 2.565686 0.522626
169
+ v -3.745448 2.444456 0.614543
170
+ v -3.717157 2.306147 0.682843
171
+ v -3.699736 2.156072 0.724902
172
+ v -3.693853 2.000000 0.739104
173
+ v -3.699736 1.843928 0.724902
174
+ v -3.717157 1.693853 0.682843
175
+ v -3.745448 1.555544 0.614543
176
+ v -3.783522 1.434314 0.522626
177
+ v -3.829914 1.334824 0.410624
178
+ v -3.882843 1.260896 0.282843
179
+ v -3.940274 1.215372 0.144192
180
+ v -3.889640 2.565686 0.554816
181
+ v -3.870231 2.444456 0.652395
182
+ v -3.855808 2.306147 0.724902
183
+ v -3.846926 2.156072 0.769552
184
+ v -3.843928 2.000000 0.784628
185
+ v -3.846927 1.843928 0.769552
186
+ v -3.855808 1.693853 0.724902
187
+ v -3.870231 1.555544 0.652395
188
+ v -3.889640 1.434314 0.554816
189
+ v -3.913291 1.334824 0.435916
190
+ v -3.940274 1.260896 0.300265
191
+ v -3.969552 1.215372 0.153074
192
+ v -4.000000 2.565686 0.565686
193
+ v -4.000000 2.444456 0.665176
194
+ v -4.000000 2.306147 0.739104
195
+ v -4.000000 2.156072 0.784628
196
+ v -4.000000 2.000000 0.800000
197
+ v -4.000000 1.843928 0.784628
198
+ v -4.000000 1.693853 0.739104
199
+ v -4.000000 1.555544 0.665176
200
+ v -4.000000 1.434314 0.565686
201
+ v -4.000000 1.334824 0.444456
202
+ v -4.000000 1.260896 0.306147
203
+ v -4.000000 1.215372 0.156072
204
+ v -4.000000 1.200000 0.000000
205
+ v -4.110360 2.565686 0.554816
206
+ v -4.129769 2.444456 0.652395
207
+ v -4.144192 2.306147 0.724902
208
+ v -4.153073 2.156072 0.769552
209
+ v -4.156072 2.000000 0.784628
210
+ v -4.153073 1.843928 0.769552
211
+ v -4.144192 1.693853 0.724902
212
+ v -4.129769 1.555544 0.652395
213
+ v -4.110360 1.434314 0.554816
214
+ v -4.086709 1.334824 0.435916
215
+ v -4.059726 1.260896 0.300264
216
+ v -4.030448 1.215372 0.153074
217
+ v -4.216478 2.565686 0.522625
218
+ v -4.254552 2.444456 0.614542
219
+ v -4.282843 2.306147 0.682843
220
+ v -4.300264 2.156072 0.724902
221
+ v -4.306147 2.000000 0.739104
222
+ v -4.300264 1.843928 0.724902
223
+ v -4.282843 1.693853 0.682843
224
+ v -4.254552 1.555544 0.614542
225
+ v -4.216478 1.434314 0.522625
226
+ v -4.170086 1.334824 0.410624
227
+ v -4.117157 1.260896 0.282843
228
+ v -4.059726 1.215372 0.144192
229
+ v -4.314278 2.565686 0.470350
230
+ v -4.369552 2.444456 0.553073
231
+ v -4.410624 2.306147 0.614542
232
+ v -4.435916 2.156072 0.652395
233
+ v -4.444456 2.000000 0.665176
234
+ v -4.435916 1.843928 0.652395
235
+ v -4.410624 1.693853 0.614542
236
+ v -4.369552 1.555544 0.553073
237
+ v -4.314278 1.434314 0.470350
238
+ v -4.246927 1.334824 0.369552
239
+ v -4.170086 1.260896 0.254552
240
+ v -4.086709 1.215372 0.129770
241
+ v -4.400000 2.565686 0.400000
242
+ v -4.470350 2.444456 0.470350
243
+ v -4.522625 2.306147 0.522625
244
+ v -4.554816 2.156072 0.554816
245
+ v -4.565685 2.000000 0.565685
246
+ v -4.554816 1.843928 0.554816
247
+ v -4.522625 1.693853 0.522625
248
+ v -4.470350 1.555544 0.470350
249
+ v -4.400000 1.434314 0.400000
250
+ v -4.314278 1.334824 0.314278
251
+ v -4.216478 1.260896 0.216479
252
+ v -4.110360 1.215372 0.110360
253
+ v -4.470350 2.565686 0.314278
254
+ v -4.553073 2.444456 0.369552
255
+ v -4.614542 2.306147 0.410624
256
+ v -4.652394 2.156072 0.435916
257
+ v -4.665175 2.000000 0.444456
258
+ v -4.652394 1.843928 0.435916
259
+ v -4.614542 1.693853 0.410624
260
+ v -4.553073 1.555544 0.369552
261
+ v -4.470350 1.434314 0.314278
262
+ v -4.369552 1.334824 0.246927
263
+ v -4.254552 1.260896 0.170086
264
+ v -4.129769 1.215372 0.086709
265
+ v -4.522625 2.565686 0.216479
266
+ v -4.614542 2.444456 0.254552
267
+ v -4.682842 2.306147 0.282843
268
+ v -4.724902 2.156072 0.300265
269
+ v -4.739103 2.000000 0.306147
270
+ v -4.724902 1.843928 0.300264
271
+ v -4.682842 1.693853 0.282843
272
+ v -4.614542 1.555544 0.254552
273
+ v -4.522625 1.434314 0.216479
274
+ v -4.410624 1.334824 0.170086
275
+ v -4.282843 1.260896 0.117158
276
+ v -4.144192 1.215372 0.059726
277
+ v -4.554816 2.565686 0.110360
278
+ v -4.652394 2.444456 0.129769
279
+ v -4.724902 2.306147 0.144192
280
+ v -4.769552 2.156072 0.153074
281
+ v -4.784628 2.000000 0.156072
282
+ v -4.769552 1.843928 0.153074
283
+ v -4.724902 1.693853 0.144192
284
+ v -4.652394 1.555544 0.129769
285
+ v -4.554816 1.434314 0.110360
286
+ v -4.435916 1.334824 0.086709
287
+ v -4.300264 1.260896 0.059726
288
+ v -4.153073 1.215372 0.030448
289
+ v -4.565685 2.565686 0.000000
290
+ v -4.665175 2.444456 0.000000
291
+ v -4.739103 2.306147 0.000000
292
+ v -4.784628 2.156072 0.000000
293
+ v -4.800000 2.000000 0.000000
294
+ v -4.784628 1.843928 0.000000
295
+ v -4.739103 1.693853 0.000000
296
+ v -4.665175 1.555544 0.000000
297
+ v -4.565685 1.434314 0.000000
298
+ v -4.444456 1.334824 0.000000
299
+ v -4.306147 1.260896 0.000000
300
+ v -4.156072 1.215372 0.000000
301
+ v -4.554816 2.565686 -0.110360
302
+ v -4.652394 2.444456 -0.129769
303
+ v -4.724901 2.306147 -0.144192
304
+ v -4.769551 2.156072 -0.153073
305
+ v -4.784628 2.000000 -0.156072
306
+ v -4.769551 1.843928 -0.153073
307
+ v -4.724902 1.693853 -0.144192
308
+ v -4.652394 1.555544 -0.129769
309
+ v -4.554816 1.434314 -0.110360
310
+ v -4.435916 1.334824 -0.086709
311
+ v -4.300264 1.260896 -0.059726
312
+ v -4.153073 1.215372 -0.030448
313
+ v -4.522625 2.565686 -0.216478
314
+ v -4.614542 2.444456 -0.254552
315
+ v -4.682842 2.306147 -0.282842
316
+ v -4.724902 2.156072 -0.300264
317
+ v -4.739103 2.000000 -0.306147
318
+ v -4.724902 1.843928 -0.300264
319
+ v -4.682842 1.693853 -0.282842
320
+ v -4.614542 1.555544 -0.254552
321
+ v -4.522625 1.434314 -0.216478
322
+ v -4.410624 1.334824 -0.170086
323
+ v -4.282843 1.260896 -0.117157
324
+ v -4.144192 1.215372 -0.059726
325
+ v -4.470350 2.565686 -0.314278
326
+ v -4.553073 2.444456 -0.369552
327
+ v -4.614542 2.306147 -0.410624
328
+ v -4.652394 2.156072 -0.435916
329
+ v -4.665175 2.000000 -0.444456
330
+ v -4.652394 1.843928 -0.435916
331
+ v -4.614542 1.693853 -0.410624
332
+ v -4.553073 1.555544 -0.369552
333
+ v -4.470350 1.434314 -0.314278
334
+ v -4.369552 1.334824 -0.246926
335
+ v -4.254551 1.260896 -0.170086
336
+ v -4.129769 1.215372 -0.086709
337
+ v -4.400000 2.565686 -0.400000
338
+ v -4.470350 2.444456 -0.470350
339
+ v -4.522624 2.306147 -0.522625
340
+ v -4.554816 2.156072 -0.554815
341
+ v -4.565685 2.000000 -0.565685
342
+ v -4.554816 1.843928 -0.554815
343
+ v -4.522624 1.693853 -0.522625
344
+ v -4.470350 1.555544 -0.470350
345
+ v -4.400000 1.434314 -0.400000
346
+ v -4.314278 1.334824 -0.314278
347
+ v -4.216478 1.260896 -0.216478
348
+ v -4.110360 1.215372 -0.110359
349
+ v -4.314278 2.565686 -0.470350
350
+ v -4.369551 2.444456 -0.553073
351
+ v -4.410624 2.306147 -0.614542
352
+ v -4.435916 2.156072 -0.652394
353
+ v -4.444456 2.000000 -0.665175
354
+ v -4.435916 1.843928 -0.652394
355
+ v -4.410624 1.693853 -0.614542
356
+ v -4.369551 1.555544 -0.553073
357
+ v -4.314278 1.434314 -0.470350
358
+ v -4.246926 1.334824 -0.369551
359
+ v -4.170086 1.260896 -0.254551
360
+ v -4.086709 1.215372 -0.129769
361
+ v -4.216478 2.565686 -0.522625
362
+ v -4.254551 2.444456 -0.614542
363
+ v -4.282842 2.306147 -0.682842
364
+ v -4.300264 2.156072 -0.724901
365
+ v -4.306146 2.000000 -0.739103
366
+ v -4.300264 1.843928 -0.724901
367
+ v -4.282842 1.693853 -0.682842
368
+ v -4.254551 1.555544 -0.614542
369
+ v -4.216478 1.434314 -0.522625
370
+ v -4.170086 1.334824 -0.410623
371
+ v -4.117157 1.260896 -0.282842
372
+ v -4.059726 1.215372 -0.144192
373
+ v -4.110360 2.565686 -0.554815
374
+ v -4.129769 2.444456 -0.652394
375
+ v -4.144192 2.306147 -0.724901
376
+ v -4.153073 2.156072 -0.769551
377
+ v -4.156072 2.000000 -0.784627
378
+ v -4.153073 1.843928 -0.769551
379
+ v -4.144192 1.693853 -0.724901
380
+ v -4.129769 1.555544 -0.652394
381
+ v -4.110360 1.434314 -0.554815
382
+ v -4.086709 1.334824 -0.435915
383
+ v -4.059726 1.260896 -0.300264
384
+ v -4.030448 1.215372 -0.153073
385
+ v -4.000000 1.843928 -0.784628
386
+ v -4.000000 1.693853 -0.739103
387
+ v -4.000000 1.434314 -0.565685
388
+ v -4.000000 1.334824 -0.444456
389
+ v -4.000000 1.260896 -0.306146
390
+ vt 0.750000 0.250000
391
+ vt 0.750000 0.312500
392
+ vt 0.718750 0.312500
393
+ vt 0.718750 0.250000
394
+ vt 0.750000 0.687500
395
+ vt 0.750000 0.750000
396
+ vt 0.718750 0.750000
397
+ vt 0.718750 0.687500
398
+ vt 0.750000 0.187500
399
+ vt 0.718750 0.187500
400
+ vt 0.750000 0.625000
401
+ vt 0.718750 0.625000
402
+ vt 0.750000 0.125000
403
+ vt 0.718750 0.125000
404
+ vt 0.750000 0.562500
405
+ vt 0.718750 0.562500
406
+ vt 0.750000 0.062500
407
+ vt 0.718750 0.062500
408
+ vt 0.750000 0.500000
409
+ vt 0.718750 0.500000
410
+ vt 0.734375 0.000000
411
+ vt 0.750000 0.437500
412
+ vt 0.718750 0.437500
413
+ vt 0.750000 0.375000
414
+ vt 0.718750 0.375000
415
+ vt 0.687500 0.437500
416
+ vt 0.687500 0.375000
417
+ vt 0.687500 0.312500
418
+ vt 0.687500 0.250000
419
+ vt 0.687500 0.750000
420
+ vt 0.687500 0.687500
421
+ vt 0.687500 0.187500
422
+ vt 0.687500 0.625000
423
+ vt 0.687500 0.125000
424
+ vt 0.687500 0.562500
425
+ vt 0.687500 0.062500
426
+ vt 0.687500 0.500000
427
+ vt 0.703125 0.000000
428
+ vt 0.656250 0.187500
429
+ vt 0.656250 0.125000
430
+ vt 0.656250 0.625000
431
+ vt 0.656250 0.562500
432
+ vt 0.656250 0.062500
433
+ vt 0.656250 0.500000
434
+ vt 0.671875 0.000000
435
+ vt 0.656250 0.437500
436
+ vt 0.656250 0.375000
437
+ vt 0.656250 0.312500
438
+ vt 0.656250 0.250000
439
+ vt 0.656250 0.750000
440
+ vt 0.656250 0.687500
441
+ vt 0.625000 0.375000
442
+ vt 0.625000 0.312500
443
+ vt 0.625000 0.250000
444
+ vt 0.625000 0.750000
445
+ vt 0.625000 0.687500
446
+ vt 0.625000 0.187500
447
+ vt 0.625000 0.625000
448
+ vt 0.625000 0.125000
449
+ vt 0.625000 0.562500
450
+ vt 0.625000 0.062500
451
+ vt 0.625000 0.500000
452
+ vt 0.640625 0.000000
453
+ vt 0.625000 0.437500
454
+ vt 0.593750 0.125000
455
+ vt 0.593750 0.062500
456
+ vt 0.593750 0.562500
457
+ vt 0.593750 0.500000
458
+ vt 0.609375 0.000000
459
+ vt 0.593750 0.437500
460
+ vt 0.593750 0.375000
461
+ vt 0.593750 0.312500
462
+ vt 0.593750 0.250000
463
+ vt 0.593750 0.750000
464
+ vt 0.593750 0.687500
465
+ vt 0.593750 0.187500
466
+ vt 0.593750 0.625000
467
+ vt 0.562500 0.312500
468
+ vt 0.562500 0.250000
469
+ vt 0.562500 0.750000
470
+ vt 0.562500 0.687500
471
+ vt 0.562500 0.187500
472
+ vt 0.562500 0.625000
473
+ vt 0.562500 0.125000
474
+ vt 0.562500 0.562500
475
+ vt 0.562500 0.062500
476
+ vt 0.562500 0.500000
477
+ vt 0.578125 0.000000
478
+ vt 0.562500 0.437500
479
+ vt 0.562500 0.375000
480
+ vt 0.531250 0.562500
481
+ vt 0.531250 0.500000
482
+ vt 0.546875 0.000000
483
+ vt 0.531250 0.062500
484
+ vt 0.531250 0.437500
485
+ vt 0.531250 0.375000
486
+ vt 0.531250 0.312500
487
+ vt 0.531250 0.250000
488
+ vt 0.531250 0.750000
489
+ vt 0.531250 0.687500
490
+ vt 0.531250 0.187500
491
+ vt 0.531250 0.625000
492
+ vt 0.531250 0.125000
493
+ vt 0.500000 0.312500
494
+ vt 0.500000 0.250000
495
+ vt 0.500000 0.750000
496
+ vt 0.500000 0.687500
497
+ vt 0.500000 0.187500
498
+ vt 0.500000 0.625000
499
+ vt 0.500000 0.125000
500
+ vt 0.500000 0.562500
501
+ vt 0.500000 0.062500
502
+ vt 0.500000 0.500000
503
+ vt 0.515625 0.000000
504
+ vt 0.500000 0.437500
505
+ vt 0.500000 0.375000
506
+ vt 0.484375 0.000000
507
+ vt 0.468750 0.062500
508
+ vt 0.468750 0.500000
509
+ vt 0.468750 0.437500
510
+ vt 0.468750 0.375000
511
+ vt 0.468750 0.312500
512
+ vt 0.468750 0.250000
513
+ vt 0.468750 0.750000
514
+ vt 0.468750 0.687500
515
+ vt 0.468750 0.187500
516
+ vt 0.468750 0.625000
517
+ vt 0.468750 0.125000
518
+ vt 0.468750 0.562500
519
+ vt 0.437500 0.750000
520
+ vt 0.437500 0.687500
521
+ vt 0.437500 0.250000
522
+ vt 0.437500 0.187500
523
+ vt 0.437500 0.625000
524
+ vt 0.437500 0.125000
525
+ vt 0.437500 0.562500
526
+ vt 0.437500 0.062500
527
+ vt 0.437500 0.500000
528
+ vt 0.453125 0.000000
529
+ vt 0.437500 0.437500
530
+ vt 0.437500 0.375000
531
+ vt 0.437500 0.312500
532
+ vt 0.406250 0.500000
533
+ vt 0.406250 0.437500
534
+ vt 0.406250 0.375000
535
+ vt 0.406250 0.312500
536
+ vt 0.406250 0.250000
537
+ vt 0.406250 0.750000
538
+ vt 0.406250 0.687500
539
+ vt 0.406250 0.187500
540
+ vt 0.406250 0.625000
541
+ vt 0.406250 0.125000
542
+ vt 0.406250 0.562500
543
+ vt 0.406250 0.062500
544
+ vt 0.421875 0.000000
545
+ vt 0.375000 0.250000
546
+ vt 0.375000 0.187500
547
+ vt 0.375000 0.687500
548
+ vt 0.375000 0.625000
549
+ vt 0.375000 0.125000
550
+ vt 0.375000 0.562500
551
+ vt 0.375000 0.062500
552
+ vt 0.375000 0.500000
553
+ vt 0.390625 0.000000
554
+ vt 0.375000 0.437500
555
+ vt 0.375000 0.375000
556
+ vt 0.375000 0.312500
557
+ vt 0.375000 0.750000
558
+ vt 0.343750 0.437500
559
+ vt 0.343750 0.375000
560
+ vt 0.343750 0.312500
561
+ vt 0.343750 0.250000
562
+ vt 0.343750 0.750000
563
+ vt 0.343750 0.687500
564
+ vt 0.343750 0.187500
565
+ vt 0.343750 0.625000
566
+ vt 0.343750 0.125000
567
+ vt 0.343750 0.562500
568
+ vt 0.343750 0.062500
569
+ vt 0.343750 0.500000
570
+ vt 0.359375 0.000000
571
+ vt 0.312500 0.187500
572
+ vt 0.312500 0.125000
573
+ vt 0.312500 0.625000
574
+ vt 0.312500 0.562500
575
+ vt 0.312500 0.062500
576
+ vt 0.312500 0.500000
577
+ vt 0.328125 0.000000
578
+ vt 0.312500 0.437500
579
+ vt 0.312500 0.375000
580
+ vt 0.312500 0.312500
581
+ vt 0.312500 0.250000
582
+ vt 0.312500 0.750000
583
+ vt 0.312500 0.687500
584
+ vt 0.281250 0.375000
585
+ vt 0.281250 0.312500
586
+ vt 0.281250 0.250000
587
+ vt 0.281250 0.750000
588
+ vt 0.281250 0.687500
589
+ vt 0.281250 0.187500
590
+ vt 0.281250 0.625000
591
+ vt 0.281250 0.125000
592
+ vt 0.281250 0.562500
593
+ vt 0.281250 0.062500
594
+ vt 0.281250 0.500000
595
+ vt 0.296875 0.000000
596
+ vt 0.281250 0.437500
597
+ vt 0.250000 0.625000
598
+ vt 0.250000 0.562500
599
+ vt 0.250000 0.125000
600
+ vt 0.250000 0.062500
601
+ vt 0.250000 0.500000
602
+ vt 0.265625 0.000000
603
+ vt 0.250000 0.437500
604
+ vt 0.250000 0.375000
605
+ vt 0.250000 0.312500
606
+ vt 0.250000 0.250000
607
+ vt 0.250000 0.750000
608
+ vt 0.250000 0.687500
609
+ vt 0.250000 0.187500
610
+ vt 0.218750 0.375000
611
+ vt 0.218750 0.312500
612
+ vt 0.218750 0.250000
613
+ vt 0.218750 0.750000
614
+ vt 0.218750 0.687500
615
+ vt 0.218750 0.187500
616
+ vt 0.218750 0.625000
617
+ vt 0.218750 0.125000
618
+ vt 0.218750 0.562500
619
+ vt 0.218750 0.062500
620
+ vt 0.218750 0.500000
621
+ vt 0.234375 0.000000
622
+ vt 0.218750 0.437500
623
+ vt 0.187500 0.125000
624
+ vt 0.187500 0.062500
625
+ vt 0.187500 0.562500
626
+ vt 0.187500 0.500000
627
+ vt 0.203125 0.000000
628
+ vt 0.187500 0.437500
629
+ vt 0.187500 0.375000
630
+ vt 0.187500 0.312500
631
+ vt 0.187500 0.250000
632
+ vt 0.187500 0.750000
633
+ vt 0.187500 0.687500
634
+ vt 0.187500 0.187500
635
+ vt 0.187500 0.625000
636
+ vt 0.156250 0.312500
637
+ vt 0.156250 0.250000
638
+ vt 0.156250 0.750000
639
+ vt 0.156250 0.687500
640
+ vt 0.156250 0.187500
641
+ vt 0.156250 0.625000
642
+ vt 0.156250 0.125000
643
+ vt 0.156250 0.562500
644
+ vt 0.156250 0.062500
645
+ vt 0.156250 0.500000
646
+ vt 0.171875 0.000000
647
+ vt 0.156250 0.437500
648
+ vt 0.156250 0.375000
649
+ vt 0.125000 0.562500
650
+ vt 0.125000 0.500000
651
+ vt 0.140625 0.000000
652
+ vt 0.125000 0.062500
653
+ vt 0.125000 0.437500
654
+ vt 0.125000 0.375000
655
+ vt 0.125000 0.312500
656
+ vt 0.125000 0.250000
657
+ vt 0.125000 0.750000
658
+ vt 0.125000 0.687500
659
+ vt 0.125000 0.187500
660
+ vt 0.125000 0.625000
661
+ vt 0.125000 0.125000
662
+ vt 0.093750 0.312500
663
+ vt 0.093750 0.250000
664
+ vt 0.093750 0.750000
665
+ vt 0.093750 0.687500
666
+ vt 0.093750 0.187500
667
+ vt 0.093750 0.625000
668
+ vt 0.093750 0.125000
669
+ vt 0.093750 0.562500
670
+ vt 0.093750 0.062500
671
+ vt 0.093750 0.500000
672
+ vt 0.109375 0.000000
673
+ vt 0.093750 0.437500
674
+ vt 0.093750 0.375000
675
+ vt 0.078125 0.000000
676
+ vt 0.062500 0.062500
677
+ vt 0.062500 0.500000
678
+ vt 0.062500 0.437500
679
+ vt 0.062500 0.375000
680
+ vt 0.062500 0.312500
681
+ vt 0.062500 0.250000
682
+ vt 0.062500 0.750000
683
+ vt 0.062500 0.687500
684
+ vt 0.062500 0.187500
685
+ vt 0.062500 0.625000
686
+ vt 0.062500 0.125000
687
+ vt 0.062500 0.562500
688
+ vt 0.031250 0.250000
689
+ vt 0.031250 0.187500
690
+ vt 0.031250 0.687500
691
+ vt 0.031250 0.625000
692
+ vt 0.031250 0.125000
693
+ vt 0.031250 0.562500
694
+ vt 0.031250 0.062500
695
+ vt 0.031250 0.500000
696
+ vt 0.046875 0.000000
697
+ vt 0.031250 0.437500
698
+ vt 0.031250 0.375000
699
+ vt 0.031250 0.312500
700
+ vt 0.031250 0.750000
701
+ vt 0.000000 0.437500
702
+ vt 0.000000 0.375000
703
+ vt 0.000000 0.312500
704
+ vt 0.000000 0.250000
705
+ vt 0.000000 0.750000
706
+ vt 0.000000 0.687500
707
+ vt 0.000000 0.187500
708
+ vt 0.000000 0.625000
709
+ vt 0.000000 0.125000
710
+ vt 0.000000 0.562500
711
+ vt 0.000000 0.062500
712
+ vt 0.000000 0.500000
713
+ vt 0.015625 0.000000
714
+ vt 1.000000 0.625000
715
+ vt 1.000000 0.687500
716
+ vt 0.968750 0.687500
717
+ vt 0.968750 0.625000
718
+ vt 1.000000 0.125000
719
+ vt 1.000000 0.187500
720
+ vt 0.968750 0.187500
721
+ vt 0.968750 0.125000
722
+ vt 1.000000 0.562500
723
+ vt 0.968750 0.562500
724
+ vt 1.000000 0.062500
725
+ vt 0.968750 0.062500
726
+ vt 1.000000 0.500000
727
+ vt 0.968750 0.500000
728
+ vt 0.984375 0.000000
729
+ vt 1.000000 0.437500
730
+ vt 0.968750 0.437500
731
+ vt 1.000000 0.375000
732
+ vt 0.968750 0.375000
733
+ vt 1.000000 0.312500
734
+ vt 0.968750 0.312500
735
+ vt 1.000000 0.250000
736
+ vt 0.968750 0.250000
737
+ vt 1.000000 0.750000
738
+ vt 0.968750 0.750000
739
+ vt 0.937500 0.437500
740
+ vt 0.937500 0.375000
741
+ vt 0.937500 0.312500
742
+ vt 0.937500 0.250000
743
+ vt 0.937500 0.750000
744
+ vt 0.937500 0.687500
745
+ vt 0.937500 0.187500
746
+ vt 0.937500 0.625000
747
+ vt 0.937500 0.125000
748
+ vt 0.937500 0.562500
749
+ vt 0.937500 0.062500
750
+ vt 0.937500 0.500000
751
+ vt 0.953125 0.000000
752
+ vt 0.906250 0.187500
753
+ vt 0.906250 0.125000
754
+ vt 0.906250 0.625000
755
+ vt 0.906250 0.562500
756
+ vt 0.906250 0.062500
757
+ vt 0.906250 0.500000
758
+ vt 0.921875 0.000000
759
+ vt 0.906250 0.437500
760
+ vt 0.906250 0.375000
761
+ vt 0.906250 0.312500
762
+ vt 0.906250 0.250000
763
+ vt 0.906250 0.750000
764
+ vt 0.906250 0.687500
765
+ vt 0.875000 0.375000
766
+ vt 0.875000 0.312500
767
+ vt 0.875000 0.250000
768
+ vt 0.875000 0.750000
769
+ vt 0.875000 0.687500
770
+ vt 0.875000 0.187500
771
+ vt 0.875000 0.625000
772
+ vt 0.875000 0.125000
773
+ vt 0.875000 0.562500
774
+ vt 0.875000 0.062500
775
+ vt 0.875000 0.500000
776
+ vt 0.890625 0.000000
777
+ vt 0.875000 0.437500
778
+ vt 0.843750 0.625000
779
+ vt 0.843750 0.562500
780
+ vt 0.843750 0.125000
781
+ vt 0.843750 0.062500
782
+ vt 0.843750 0.500000
783
+ vt 0.859375 0.000000
784
+ vt 0.843750 0.437500
785
+ vt 0.843750 0.375000
786
+ vt 0.843750 0.312500
787
+ vt 0.843750 0.250000
788
+ vt 0.843750 0.750000
789
+ vt 0.843750 0.687500
790
+ vt 0.843750 0.187500
791
+ vt 0.812500 0.375000
792
+ vt 0.812500 0.312500
793
+ vt 0.812500 0.250000
794
+ vt 0.812500 0.750000
795
+ vt 0.812500 0.687500
796
+ vt 0.812500 0.187500
797
+ vt 0.812500 0.625000
798
+ vt 0.812500 0.125000
799
+ vt 0.812500 0.562500
800
+ vt 0.812500 0.062500
801
+ vt 0.812500 0.500000
802
+ vt 0.828125 0.000000
803
+ vt 0.812500 0.437500
804
+ vt 0.781250 0.125000
805
+ vt 0.781250 0.062500
806
+ vt 0.781250 0.562500
807
+ vt 0.781250 0.500000
808
+ vt 0.796875 0.000000
809
+ vt 0.781250 0.437500
810
+ vt 0.781250 0.375000
811
+ vt 0.781250 0.312500
812
+ vt 0.781250 0.250000
813
+ vt 0.781250 0.750000
814
+ vt 0.781250 0.687500
815
+ vt 0.781250 0.187500
816
+ vt 0.781250 0.625000
817
+ vt 0.765625 0.000000
818
+ vn 0.0759 -0.6326 -0.7708
819
+ vn 0.0759 0.6326 -0.7708
820
+ vn 0.0624 -0.7715 -0.6332
821
+ vn 0.0865 0.4696 -0.8786
822
+ vn 0.0464 -0.8810 -0.4709
823
+ vn 0.0938 0.2890 -0.9527
824
+ vn 0.0286 -0.9565 -0.2902
825
+ vn 0.0975 0.0975 -0.9904
826
+ vn 0.0097 -0.9951 -0.0980
827
+ vn 0.0975 -0.0976 -0.9904
828
+ vn 0.0938 -0.2890 -0.9527
829
+ vn 0.0865 -0.4696 -0.8786
830
+ vn 0.2779 -0.2890 -0.9161
831
+ vn 0.2563 -0.4696 -0.8448
832
+ vn 0.2248 -0.6326 -0.7412
833
+ vn 0.2248 0.6326 -0.7412
834
+ vn 0.1847 -0.7715 -0.6088
835
+ vn 0.2563 0.4696 -0.8448
836
+ vn 0.1374 -0.8810 -0.4528
837
+ vn 0.2779 0.2890 -0.9161
838
+ vn 0.0846 -0.9565 -0.2790
839
+ vn 0.2889 0.0976 -0.9524
840
+ vn 0.0286 -0.9951 -0.0942
841
+ vn 0.2889 -0.0975 -0.9524
842
+ vn 0.2231 -0.8810 -0.4173
843
+ vn 0.4513 0.2890 -0.8443
844
+ vn 0.1374 -0.9565 -0.2571
845
+ vn 0.4691 0.0976 -0.8777
846
+ vn 0.0464 -0.9951 -0.0869
847
+ vn 0.4691 -0.0975 -0.8777
848
+ vn 0.4513 -0.2890 -0.8443
849
+ vn 0.4162 -0.4696 -0.7786
850
+ vn 0.3651 -0.6326 -0.6831
851
+ vn 0.3651 0.6326 -0.6831
852
+ vn 0.2999 -0.7715 -0.5611
853
+ vn 0.4162 0.4696 -0.7786
854
+ vn 0.5601 -0.4696 -0.6825
855
+ vn 0.4913 -0.6326 -0.5987
856
+ vn 0.4913 0.6326 -0.5987
857
+ vn 0.4036 -0.7715 -0.4918
858
+ vn 0.5601 0.4696 -0.6825
859
+ vn 0.3002 -0.8810 -0.3658
860
+ vn 0.6073 0.2890 -0.7400
861
+ vn 0.1850 -0.9566 -0.2254
862
+ vn 0.6314 0.0975 -0.7693
863
+ vn 0.0625 -0.9951 -0.0761
864
+ vn 0.6314 -0.0975 -0.7693
865
+ vn 0.6073 -0.2890 -0.7400
866
+ vn 0.2254 -0.9565 -0.1850
867
+ vn 0.7693 0.0976 -0.6314
868
+ vn 0.0761 -0.9951 -0.0625
869
+ vn 0.7693 -0.0975 -0.6314
870
+ vn 0.7400 -0.2890 -0.6073
871
+ vn 0.6825 -0.4696 -0.5601
872
+ vn 0.5987 -0.6326 -0.4913
873
+ vn 0.5987 0.6326 -0.4913
874
+ vn 0.4918 -0.7715 -0.4036
875
+ vn 0.6825 0.4696 -0.5601
876
+ vn 0.3658 -0.8810 -0.3002
877
+ vn 0.7400 0.2890 -0.6073
878
+ vn 0.6831 -0.6326 -0.3651
879
+ vn 0.6831 0.6326 -0.3651
880
+ vn 0.5611 -0.7715 -0.2999
881
+ vn 0.7786 0.4696 -0.4162
882
+ vn 0.4173 -0.8810 -0.2231
883
+ vn 0.8443 0.2890 -0.4513
884
+ vn 0.2571 -0.9566 -0.1374
885
+ vn 0.8777 0.0975 -0.4691
886
+ vn 0.0869 -0.9951 -0.0464
887
+ vn 0.8777 -0.0975 -0.4691
888
+ vn 0.8443 -0.2890 -0.4513
889
+ vn 0.7786 -0.4696 -0.4162
890
+ vn 0.9524 0.0975 -0.2889
891
+ vn 0.0942 -0.9951 -0.0286
892
+ vn 0.9524 -0.0975 -0.2889
893
+ vn 0.9161 -0.2890 -0.2779
894
+ vn 0.8448 -0.4696 -0.2563
895
+ vn 0.7412 -0.6326 -0.2248
896
+ vn 0.7412 0.6326 -0.2248
897
+ vn 0.6088 -0.7715 -0.1847
898
+ vn 0.8448 0.4696 -0.2563
899
+ vn 0.4528 -0.8810 -0.1374
900
+ vn 0.9161 0.2890 -0.2779
901
+ vn 0.2790 -0.9566 -0.0846
902
+ vn 0.7708 -0.6326 -0.0759
903
+ vn 0.7708 0.6326 -0.0759
904
+ vn 0.6332 -0.7715 -0.0624
905
+ vn 0.8786 0.4696 -0.0865
906
+ vn 0.4709 -0.8810 -0.0464
907
+ vn 0.9527 0.2890 -0.0938
908
+ vn 0.2902 -0.9565 -0.0286
909
+ vn 0.9904 0.0975 -0.0975
910
+ vn 0.0980 -0.9951 -0.0097
911
+ vn 0.9904 -0.0976 -0.0975
912
+ vn 0.9527 -0.2890 -0.0938
913
+ vn 0.8786 -0.4696 -0.0865
914
+ vn 0.0980 -0.9951 0.0097
915
+ vn 0.9904 -0.0976 0.0975
916
+ vn 0.9527 -0.2890 0.0938
917
+ vn 0.8786 -0.4696 0.0865
918
+ vn 0.7708 -0.6326 0.0759
919
+ vn 0.7708 0.6326 0.0759
920
+ vn 0.6332 -0.7715 0.0624
921
+ vn 0.8786 0.4696 0.0865
922
+ vn 0.4709 -0.8810 0.0464
923
+ vn 0.9527 0.2890 0.0938
924
+ vn 0.2902 -0.9565 0.0286
925
+ vn 0.9904 0.0976 0.0975
926
+ vn 0.7412 0.6326 0.2248
927
+ vn 0.6088 -0.7715 0.1847
928
+ vn 0.8448 0.4696 0.2563
929
+ vn 0.4528 -0.8810 0.1374
930
+ vn 0.9161 0.2890 0.2779
931
+ vn 0.2790 -0.9565 0.0846
932
+ vn 0.9524 0.0975 0.2889
933
+ vn 0.0942 -0.9951 0.0286
934
+ vn 0.9524 -0.0975 0.2889
935
+ vn 0.9161 -0.2890 0.2779
936
+ vn 0.8448 -0.4696 0.2563
937
+ vn 0.7412 -0.6326 0.2248
938
+ vn 0.8777 -0.0975 0.4691
939
+ vn 0.8443 -0.2890 0.4513
940
+ vn 0.7786 -0.4696 0.4162
941
+ vn 0.6831 -0.6326 0.3651
942
+ vn 0.6831 0.6326 0.3651
943
+ vn 0.5611 -0.7715 0.2999
944
+ vn 0.7786 0.4696 0.4162
945
+ vn 0.4173 -0.8810 0.2230
946
+ vn 0.8443 0.2890 0.4513
947
+ vn 0.2571 -0.9565 0.1374
948
+ vn 0.8777 0.0975 0.4691
949
+ vn 0.0869 -0.9951 0.0464
950
+ vn 0.4918 -0.7715 0.4036
951
+ vn 0.6825 0.4696 0.5601
952
+ vn 0.3658 -0.8810 0.3002
953
+ vn 0.7400 0.2890 0.6073
954
+ vn 0.2254 -0.9565 0.1850
955
+ vn 0.7693 0.0975 0.6314
956
+ vn 0.0761 -0.9951 0.0625
957
+ vn 0.7693 -0.0975 0.6314
958
+ vn 0.7400 -0.2890 0.6073
959
+ vn 0.6825 -0.4696 0.5601
960
+ vn 0.5987 -0.6326 0.4913
961
+ vn 0.5987 0.6326 0.4913
962
+ vn 0.6073 -0.2890 0.7400
963
+ vn 0.5601 -0.4696 0.6825
964
+ vn 0.4913 -0.6326 0.5987
965
+ vn 0.4913 0.6326 0.5987
966
+ vn 0.4036 -0.7715 0.4918
967
+ vn 0.5601 0.4696 0.6825
968
+ vn 0.3002 -0.8810 0.3658
969
+ vn 0.6073 0.2890 0.7400
970
+ vn 0.1850 -0.9565 0.2254
971
+ vn 0.6314 0.0975 0.7693
972
+ vn 0.0625 -0.9951 0.0761
973
+ vn 0.6314 -0.0975 0.7693
974
+ vn 0.2231 -0.8810 0.4173
975
+ vn 0.4513 0.2890 0.8443
976
+ vn 0.1374 -0.9565 0.2571
977
+ vn 0.4691 0.0975 0.8777
978
+ vn 0.0464 -0.9951 0.0869
979
+ vn 0.4691 -0.0975 0.8777
980
+ vn 0.4513 -0.2890 0.8443
981
+ vn 0.4162 -0.4696 0.7786
982
+ vn 0.3651 -0.6326 0.6831
983
+ vn 0.3651 0.6326 0.6831
984
+ vn 0.2999 -0.7715 0.5611
985
+ vn 0.4162 0.4696 0.7786
986
+ vn 0.2563 -0.4696 0.8448
987
+ vn 0.2248 -0.6326 0.7412
988
+ vn 0.2248 0.6326 0.7412
989
+ vn 0.1847 -0.7715 0.6088
990
+ vn 0.2563 0.4696 0.8448
991
+ vn 0.1374 -0.8810 0.4528
992
+ vn 0.2779 0.2890 0.9161
993
+ vn 0.0846 -0.9565 0.2790
994
+ vn 0.2889 0.0975 0.9524
995
+ vn 0.0286 -0.9951 0.0942
996
+ vn 0.2889 -0.0975 0.9524
997
+ vn 0.2779 -0.2890 0.9161
998
+ vn 0.0938 0.2890 0.9527
999
+ vn 0.0286 -0.9565 0.2902
1000
+ vn 0.0975 0.0975 0.9904
1001
+ vn 0.0097 -0.9951 0.0980
1002
+ vn 0.0975 -0.0975 0.9904
1003
+ vn 0.0938 -0.2890 0.9527
1004
+ vn 0.0865 -0.4696 0.8786
1005
+ vn 0.0759 -0.6326 0.7708
1006
+ vn 0.0759 0.6326 0.7708
1007
+ vn 0.0624 -0.7715 0.6332
1008
+ vn 0.0865 0.4696 0.8786
1009
+ vn 0.0464 -0.8810 0.4709
1010
+ vn -0.0865 -0.4696 0.8786
1011
+ vn -0.0759 -0.6326 0.7708
1012
+ vn -0.0759 0.6326 0.7708
1013
+ vn -0.0624 -0.7715 0.6332
1014
+ vn -0.0865 0.4696 0.8786
1015
+ vn -0.0464 -0.8810 0.4709
1016
+ vn -0.0938 0.2890 0.9527
1017
+ vn -0.0286 -0.9565 0.2902
1018
+ vn -0.0976 0.0975 0.9904
1019
+ vn -0.0097 -0.9951 0.0980
1020
+ vn -0.0976 -0.0975 0.9904
1021
+ vn -0.0938 -0.2890 0.9527
1022
+ vn -0.0846 -0.9566 0.2790
1023
+ vn -0.2889 0.0976 0.9524
1024
+ vn -0.0286 -0.9951 0.0942
1025
+ vn -0.2889 -0.0975 0.9524
1026
+ vn -0.2779 -0.2890 0.9161
1027
+ vn -0.2563 -0.4696 0.8448
1028
+ vn -0.2248 -0.6326 0.7412
1029
+ vn -0.2248 0.6326 0.7412
1030
+ vn -0.1847 -0.7715 0.6088
1031
+ vn -0.2563 0.4696 0.8448
1032
+ vn -0.1374 -0.8810 0.4528
1033
+ vn -0.2779 0.2890 0.9161
1034
+ vn -0.3651 -0.6326 0.6831
1035
+ vn -0.3651 0.6326 0.6831
1036
+ vn -0.2999 -0.7715 0.5611
1037
+ vn -0.4162 0.4696 0.7786
1038
+ vn -0.2230 -0.8810 0.4173
1039
+ vn -0.4513 0.2890 0.8443
1040
+ vn -0.1374 -0.9565 0.2571
1041
+ vn -0.4691 0.0975 0.8777
1042
+ vn -0.0464 -0.9951 0.0869
1043
+ vn -0.4691 -0.0975 0.8777
1044
+ vn -0.4513 -0.2890 0.8443
1045
+ vn -0.4162 -0.4696 0.7786
1046
+ vn -0.6314 0.0975 0.7693
1047
+ vn -0.0625 -0.9951 0.0761
1048
+ vn -0.6314 -0.0975 0.7693
1049
+ vn -0.6073 -0.2890 0.7400
1050
+ vn -0.5601 -0.4696 0.6825
1051
+ vn -0.4913 -0.6326 0.5987
1052
+ vn -0.4913 0.6326 0.5987
1053
+ vn -0.4036 -0.7715 0.4918
1054
+ vn -0.5601 0.4696 0.6825
1055
+ vn -0.3002 -0.8810 0.3658
1056
+ vn -0.6073 0.2890 0.7400
1057
+ vn -0.1850 -0.9565 0.2254
1058
+ vn -0.5987 -0.6326 0.4913
1059
+ vn -0.5987 0.6326 0.4913
1060
+ vn -0.4918 -0.7715 0.4036
1061
+ vn -0.6825 0.4696 0.5601
1062
+ vn -0.3658 -0.8810 0.3002
1063
+ vn -0.7400 0.2890 0.6073
1064
+ vn -0.2254 -0.9565 0.1850
1065
+ vn -0.7693 0.0975 0.6314
1066
+ vn -0.0761 -0.9951 0.0625
1067
+ vn -0.7693 -0.0975 0.6314
1068
+ vn -0.7400 -0.2890 0.6073
1069
+ vn -0.6825 -0.4696 0.5601
1070
+ vn -0.0869 -0.9951 0.0464
1071
+ vn -0.8777 -0.0975 0.4691
1072
+ vn -0.8443 -0.2890 0.4513
1073
+ vn -0.7786 -0.4696 0.4162
1074
+ vn -0.6831 -0.6326 0.3651
1075
+ vn -0.6831 0.6326 0.3651
1076
+ vn -0.5611 -0.7715 0.2999
1077
+ vn -0.7786 0.4696 0.4162
1078
+ vn -0.4173 -0.8810 0.2230
1079
+ vn -0.8443 0.2890 0.4513
1080
+ vn -0.2571 -0.9565 0.1374
1081
+ vn -0.8777 0.0975 0.4691
1082
+ vn -0.6088 -0.7715 0.1847
1083
+ vn -0.8448 0.4696 0.2563
1084
+ vn -0.4528 -0.8810 0.1374
1085
+ vn -0.9161 0.2890 0.2779
1086
+ vn -0.2790 -0.9565 0.0846
1087
+ vn -0.9524 0.0975 0.2889
1088
+ vn -0.0942 -0.9951 0.0286
1089
+ vn -0.9524 -0.0975 0.2889
1090
+ vn -0.9161 -0.2890 0.2779
1091
+ vn -0.8448 -0.4696 0.2563
1092
+ vn -0.7412 -0.6326 0.2248
1093
+ vn -0.7412 0.6326 0.2248
1094
+ vn -0.9527 -0.2890 0.0938
1095
+ vn -0.8786 -0.4696 0.0865
1096
+ vn -0.7708 -0.6326 0.0759
1097
+ vn -0.7708 0.6326 0.0759
1098
+ vn -0.6332 -0.7715 0.0624
1099
+ vn -0.8786 0.4696 0.0865
1100
+ vn -0.4709 -0.8810 0.0464
1101
+ vn -0.9527 0.2890 0.0938
1102
+ vn -0.2902 -0.9566 0.0286
1103
+ vn -0.9904 0.0975 0.0975
1104
+ vn -0.0980 -0.9951 0.0097
1105
+ vn -0.9904 -0.0975 0.0975
1106
+ vn -0.8786 0.4696 -0.0865
1107
+ vn -0.4709 -0.8810 -0.0464
1108
+ vn -0.9527 0.2890 -0.0938
1109
+ vn -0.2902 -0.9566 -0.0286
1110
+ vn -0.9904 0.0975 -0.0976
1111
+ vn -0.0980 -0.9951 -0.0097
1112
+ vn -0.9904 -0.0976 -0.0976
1113
+ vn -0.9527 -0.2890 -0.0938
1114
+ vn -0.8786 -0.4696 -0.0865
1115
+ vn -0.7708 -0.6326 -0.0759
1116
+ vn -0.7708 0.6326 -0.0759
1117
+ vn -0.6332 -0.7715 -0.0624
1118
+ vn -0.9161 -0.2890 -0.2779
1119
+ vn -0.8449 -0.4696 -0.2563
1120
+ vn -0.7412 -0.6326 -0.2248
1121
+ vn -0.7412 0.6326 -0.2248
1122
+ vn -0.6088 -0.7715 -0.1847
1123
+ vn -0.8448 0.4696 -0.2563
1124
+ vn -0.4528 -0.8810 -0.1374
1125
+ vn -0.9161 0.2890 -0.2779
1126
+ vn -0.2790 -0.9565 -0.0846
1127
+ vn -0.9524 0.0975 -0.2889
1128
+ vn -0.0942 -0.9951 -0.0286
1129
+ vn -0.9524 -0.0975 -0.2889
1130
+ vn -0.4173 -0.8810 -0.2231
1131
+ vn -0.8443 0.2890 -0.4513
1132
+ vn -0.2571 -0.9565 -0.1374
1133
+ vn -0.8777 0.0975 -0.4691
1134
+ vn -0.0869 -0.9951 -0.0464
1135
+ vn -0.8777 -0.0975 -0.4692
1136
+ vn -0.8443 -0.2890 -0.4513
1137
+ vn -0.7786 -0.4696 -0.4162
1138
+ vn -0.6831 -0.6326 -0.3651
1139
+ vn -0.6831 0.6326 -0.3651
1140
+ vn -0.5611 -0.7715 -0.2999
1141
+ vn -0.7786 0.4696 -0.4162
1142
+ vn -0.6825 -0.4696 -0.5601
1143
+ vn -0.5987 -0.6326 -0.4913
1144
+ vn -0.5987 0.6326 -0.4913
1145
+ vn -0.4918 -0.7715 -0.4036
1146
+ vn -0.6825 0.4696 -0.5601
1147
+ vn -0.3658 -0.8810 -0.3002
1148
+ vn -0.7400 0.2890 -0.6073
1149
+ vn -0.2254 -0.9566 -0.1850
1150
+ vn -0.7693 0.0975 -0.6314
1151
+ vn -0.0761 -0.9951 -0.0625
1152
+ vn -0.7693 -0.0975 -0.6314
1153
+ vn -0.7400 -0.2890 -0.6073
1154
+ vn -0.6073 0.2890 -0.7400
1155
+ vn -0.1850 -0.9565 -0.2254
1156
+ vn -0.6314 0.0975 -0.7693
1157
+ vn -0.0625 -0.9951 -0.0761
1158
+ vn -0.6314 -0.0975 -0.7693
1159
+ vn -0.6073 -0.2890 -0.7400
1160
+ vn -0.5601 -0.4696 -0.6825
1161
+ vn -0.4913 -0.6326 -0.5987
1162
+ vn -0.4913 0.6326 -0.5987
1163
+ vn -0.4036 -0.7715 -0.4918
1164
+ vn -0.5601 0.4696 -0.6825
1165
+ vn -0.3002 -0.8810 -0.3658
1166
+ vn -0.4162 -0.4696 -0.7786
1167
+ vn -0.3651 -0.6326 -0.6831
1168
+ vn -0.3651 0.6326 -0.6831
1169
+ vn -0.2999 -0.7715 -0.5611
1170
+ vn -0.4162 0.4696 -0.7786
1171
+ vn -0.2230 -0.8810 -0.4173
1172
+ vn -0.4513 0.2890 -0.8443
1173
+ vn -0.1374 -0.9565 -0.2571
1174
+ vn -0.4691 0.0975 -0.8777
1175
+ vn -0.0464 -0.9951 -0.0869
1176
+ vn -0.4691 -0.0975 -0.8777
1177
+ vn -0.4513 -0.2890 -0.8443
1178
+ vn -0.0846 -0.9566 -0.2790
1179
+ vn -0.2889 0.0975 -0.9524
1180
+ vn -0.0286 -0.9951 -0.0942
1181
+ vn -0.2889 -0.0975 -0.9524
1182
+ vn -0.2779 -0.2890 -0.9161
1183
+ vn -0.2563 -0.4696 -0.8448
1184
+ vn -0.2248 -0.6326 -0.7412
1185
+ vn -0.2248 0.6326 -0.7412
1186
+ vn -0.1847 -0.7715 -0.6088
1187
+ vn -0.2563 0.4696 -0.8448
1188
+ vn -0.1374 -0.8810 -0.4528
1189
+ vn -0.2779 0.2890 -0.9161
1190
+ vn -0.0759 -0.6326 -0.7708
1191
+ vn -0.0759 0.6326 -0.7708
1192
+ vn -0.0624 -0.7715 -0.6332
1193
+ vn -0.0865 0.4696 -0.8786
1194
+ vn -0.0464 -0.8810 -0.4709
1195
+ vn -0.0938 0.2890 -0.9527
1196
+ vn -0.0286 -0.9565 -0.2902
1197
+ vn -0.0976 0.0975 -0.9904
1198
+ vn -0.0097 -0.9951 -0.0980
1199
+ vn -0.0976 -0.0976 -0.9904
1200
+ vn -0.0938 -0.2890 -0.9527
1201
+ vn -0.0865 -0.4696 -0.8786
1202
+ usemtl CustomColor.001
1203
+ s off
1204
+ f 383/1/1 6/2/1 15/3/1 16/4/1
1205
+ f 2/5/2 1/6/2 8/7/2 9/8/2
1206
+ f 384/9/3 383/1/3 16/4/3 17/10/3
1207
+ f 3/11/4 2/5/4 9/8/4 10/12/4
1208
+ f 385/13/5 384/9/5 17/10/5 18/14/5
1209
+ f 4/15/6 3/11/6 10/12/6 11/16/6
1210
+ f 7/17/7 385/13/7 18/14/7 19/18/7
1211
+ f 5/19/8 4/15/8 11/16/8 12/20/8
1212
+ f 200/21/9 7/17/9 19/18/9
1213
+ f 381/22/10 5/19/10 12/20/10 13/23/10
1214
+ f 382/24/11 381/22/11 13/23/11 14/25/11
1215
+ f 6/2/12 382/24/12 14/25/12 15/3/12
1216
+ f 14/25/13 13/23/13 25/26/13 26/27/13
1217
+ f 15/3/14 14/25/14 26/27/14 27/28/14
1218
+ f 16/4/15 15/3/15 27/28/15 28/29/15
1219
+ f 9/8/16 8/7/16 20/30/16 21/31/16
1220
+ f 17/10/17 16/4/17 28/29/17 29/32/17
1221
+ f 10/12/18 9/8/18 21/31/18 22/33/18
1222
+ f 18/14/19 17/10/19 29/32/19 30/34/19
1223
+ f 11/16/20 10/12/20 22/33/20 23/35/20
1224
+ f 19/18/21 18/14/21 30/34/21 31/36/21
1225
+ f 12/20/22 11/16/22 23/35/22 24/37/22
1226
+ f 200/38/23 19/18/23 31/36/23
1227
+ f 13/23/24 12/20/24 24/37/24 25/26/24
1228
+ f 30/34/25 29/32/25 41/39/25 42/40/25
1229
+ f 23/35/26 22/33/26 34/41/26 35/42/26
1230
+ f 31/36/27 30/34/27 42/40/27 43/43/27
1231
+ f 24/37/28 23/35/28 35/42/28 36/44/28
1232
+ f 200/45/29 31/36/29 43/43/29
1233
+ f 25/26/30 24/37/30 36/44/30 37/46/30
1234
+ f 26/27/31 25/26/31 37/46/31 38/47/31
1235
+ f 27/28/32 26/27/32 38/47/32 39/48/32
1236
+ f 28/29/33 27/28/33 39/48/33 40/49/33
1237
+ f 21/31/34 20/30/34 32/50/34 33/51/34
1238
+ f 29/32/35 28/29/35 40/49/35 41/39/35
1239
+ f 22/33/36 21/31/36 33/51/36 34/41/36
1240
+ f 39/48/37 38/47/37 50/52/37 51/53/37
1241
+ f 40/49/38 39/48/38 51/53/38 52/54/38
1242
+ f 33/51/39 32/50/39 44/55/39 45/56/39
1243
+ f 41/39/40 40/49/40 52/54/40 53/57/40
1244
+ f 34/41/41 33/51/41 45/56/41 46/58/41
1245
+ f 42/40/42 41/39/42 53/57/42 54/59/42
1246
+ f 35/42/43 34/41/43 46/58/43 47/60/43
1247
+ f 43/43/44 42/40/44 54/59/44 55/61/44
1248
+ f 36/44/45 35/42/45 47/60/45 48/62/45
1249
+ f 200/63/46 43/43/46 55/61/46
1250
+ f 37/46/47 36/44/47 48/62/47 49/64/47
1251
+ f 38/47/48 37/46/48 49/64/48 50/52/48
1252
+ f 55/61/49 54/59/49 66/65/49 67/66/49
1253
+ f 48/62/50 47/60/50 59/67/50 60/68/50
1254
+ f 200/69/51 55/61/51 67/66/51
1255
+ f 49/64/52 48/62/52 60/68/52 61/70/52
1256
+ f 50/52/53 49/64/53 61/70/53 62/71/53
1257
+ f 51/53/54 50/52/54 62/71/54 63/72/54
1258
+ f 52/54/55 51/53/55 63/72/55 64/73/55
1259
+ f 45/56/56 44/55/56 56/74/56 57/75/56
1260
+ f 53/57/57 52/54/57 64/73/57 65/76/57
1261
+ f 46/58/58 45/56/58 57/75/58 58/77/58
1262
+ f 54/59/59 53/57/59 65/76/59 66/65/59
1263
+ f 47/60/60 46/58/60 58/77/60 59/67/60
1264
+ f 64/73/61 63/72/61 75/78/61 76/79/61
1265
+ f 57/75/62 56/74/62 68/80/62 69/81/62
1266
+ f 65/76/63 64/73/63 76/79/63 77/82/63
1267
+ f 58/77/64 57/75/64 69/81/64 70/83/64
1268
+ f 66/65/65 65/76/65 77/82/65 78/84/65
1269
+ f 59/67/66 58/77/66 70/83/66 71/85/66
1270
+ f 67/66/67 66/65/67 78/84/67 79/86/67
1271
+ f 60/68/68 59/67/68 71/85/68 72/87/68
1272
+ f 200/88/69 67/66/69 79/86/69
1273
+ f 61/70/70 60/68/70 72/87/70 73/89/70
1274
+ f 62/71/71 61/70/71 73/89/71 74/90/71
1275
+ f 63/72/72 62/71/72 74/90/72 75/78/72
1276
+ f 72/87/73 71/85/73 83/91/73 84/92/73
1277
+ f 200/93/74 79/86/74 91/94/74
1278
+ f 73/89/75 72/87/75 84/92/75 85/95/75
1279
+ f 74/90/76 73/89/76 85/95/76 86/96/76
1280
+ f 75/78/77 74/90/77 86/96/77 87/97/77
1281
+ f 76/79/78 75/78/78 87/97/78 88/98/78
1282
+ f 69/81/79 68/80/79 80/99/79 81/100/79
1283
+ f 77/82/80 76/79/80 88/98/80 89/101/80
1284
+ f 70/83/81 69/81/81 81/100/81 82/102/81
1285
+ f 78/84/82 77/82/82 89/101/82 90/103/82
1286
+ f 71/85/83 70/83/83 82/102/83 83/91/83
1287
+ f 79/86/84 78/84/84 90/103/84 91/94/84
1288
+ f 88/98/85 87/97/85 99/104/85 100/105/85
1289
+ f 81/100/86 80/99/86 92/106/86 93/107/86
1290
+ f 89/101/87 88/98/87 100/105/87 101/108/87
1291
+ f 82/102/88 81/100/88 93/107/88 94/109/88
1292
+ f 90/103/89 89/101/89 101/108/89 102/110/89
1293
+ f 83/91/90 82/102/90 94/109/90 95/111/90
1294
+ f 91/94/91 90/103/91 102/110/91 103/112/91
1295
+ f 84/92/92 83/91/92 95/111/92 96/113/92
1296
+ f 200/114/93 91/94/93 103/112/93
1297
+ f 85/95/94 84/92/94 96/113/94 97/115/94
1298
+ f 86/96/95 85/95/95 97/115/95 98/116/95
1299
+ f 87/97/96 86/96/96 98/116/96 99/104/96
1300
+ f 200/117/97 103/112/97 115/118/97
1301
+ f 97/115/98 96/113/98 108/119/98 109/120/98
1302
+ f 98/116/99 97/115/99 109/120/99 110/121/99
1303
+ f 99/104/100 98/116/100 110/121/100 111/122/100
1304
+ f 100/105/101 99/104/101 111/122/101 112/123/101
1305
+ f 93/107/102 92/106/102 104/124/102 105/125/102
1306
+ f 101/108/103 100/105/103 112/123/103 113/126/103
1307
+ f 94/109/104 93/107/104 105/125/104 106/127/104
1308
+ f 102/110/105 101/108/105 113/126/105 114/128/105
1309
+ f 95/111/106 94/109/106 106/127/106 107/129/106
1310
+ f 103/112/107 102/110/107 114/128/107 115/118/107
1311
+ f 96/113/108 95/111/108 107/129/108 108/119/108
1312
+ f 105/125/109 104/124/109 116/130/109 117/131/109
1313
+ f 113/126/110 112/123/110 124/132/110 125/133/110
1314
+ f 106/127/111 105/125/111 117/131/111 118/134/111
1315
+ f 114/128/112 113/126/112 125/133/112 126/135/112
1316
+ f 107/129/113 106/127/113 118/134/113 119/136/113
1317
+ f 115/118/114 114/128/114 126/135/114 127/137/114
1318
+ f 108/119/115 107/129/115 119/136/115 120/138/115
1319
+ f 200/139/116 115/118/116 127/137/116
1320
+ f 109/120/117 108/119/117 120/138/117 121/140/117
1321
+ f 110/121/118 109/120/118 121/140/118 122/141/118
1322
+ f 111/122/119 110/121/119 122/141/119 123/142/119
1323
+ f 112/123/120 111/122/120 123/142/120 124/132/120
1324
+ f 121/140/121 120/138/121 132/143/121 133/144/121
1325
+ f 122/141/122 121/140/122 133/144/122 134/145/122
1326
+ f 123/142/123 122/141/123 134/145/123 135/146/123
1327
+ f 124/132/124 123/142/124 135/146/124 136/147/124
1328
+ f 117/131/125 116/130/125 128/148/125 129/149/125
1329
+ f 125/133/126 124/132/126 136/147/126 137/150/126
1330
+ f 118/134/127 117/131/127 129/149/127 130/151/127
1331
+ f 126/135/128 125/133/128 137/150/128 138/152/128
1332
+ f 119/136/129 118/134/129 130/151/129 131/153/129
1333
+ f 127/137/130 126/135/130 138/152/130 139/154/130
1334
+ f 120/138/131 119/136/131 131/153/131 132/143/131
1335
+ f 200/155/132 127/137/132 139/154/132
1336
+ f 137/150/133 136/147/133 148/156/133 149/157/133
1337
+ f 130/151/134 129/149/134 141/158/134 142/159/134
1338
+ f 138/152/135 137/150/135 149/157/135 150/160/135
1339
+ f 131/153/136 130/151/136 142/159/136 143/161/136
1340
+ f 139/154/137 138/152/137 150/160/137 151/162/137
1341
+ f 132/143/138 131/153/138 143/161/138 144/163/138
1342
+ f 200/164/139 139/154/139 151/162/139
1343
+ f 133/144/140 132/143/140 144/163/140 145/165/140
1344
+ f 134/145/141 133/144/141 145/165/141 146/166/141
1345
+ f 135/146/142 134/145/142 146/166/142 147/167/142
1346
+ f 136/147/143 135/146/143 147/167/143 148/156/143
1347
+ f 129/149/144 128/148/144 140/168/144 141/158/144
1348
+ f 146/166/145 145/165/145 157/169/145 158/170/145
1349
+ f 147/167/146 146/166/146 158/170/146 159/171/146
1350
+ f 148/156/147 147/167/147 159/171/147 160/172/147
1351
+ f 141/158/148 140/168/148 152/173/148 153/174/148
1352
+ f 149/157/149 148/156/149 160/172/149 161/175/149
1353
+ f 142/159/150 141/158/150 153/174/150 154/176/150
1354
+ f 150/160/151 149/157/151 161/175/151 162/177/151
1355
+ f 143/161/152 142/159/152 154/176/152 155/178/152
1356
+ f 151/162/153 150/160/153 162/177/153 163/179/153
1357
+ f 144/163/154 143/161/154 155/178/154 156/180/154
1358
+ f 200/181/155 151/162/155 163/179/155
1359
+ f 145/165/156 144/163/156 156/180/156 157/169/156
1360
+ f 162/177/157 161/175/157 173/182/157 174/183/157
1361
+ f 155/178/158 154/176/158 166/184/158 167/185/158
1362
+ f 163/179/159 162/177/159 174/183/159 175/186/159
1363
+ f 156/180/160 155/178/160 167/185/160 168/187/160
1364
+ f 200/188/161 163/179/161 175/186/161
1365
+ f 157/169/162 156/180/162 168/187/162 169/189/162
1366
+ f 158/170/163 157/169/163 169/189/163 170/190/163
1367
+ f 159/171/164 158/170/164 170/190/164 171/191/164
1368
+ f 160/172/165 159/171/165 171/191/165 172/192/165
1369
+ f 153/174/166 152/173/166 164/193/166 165/194/166
1370
+ f 161/175/167 160/172/167 172/192/167 173/182/167
1371
+ f 154/176/168 153/174/168 165/194/168 166/184/168
1372
+ f 171/191/169 170/190/169 182/195/169 183/196/169
1373
+ f 172/192/170 171/191/170 183/196/170 184/197/170
1374
+ f 165/194/171 164/193/171 176/198/171 177/199/171
1375
+ f 173/182/172 172/192/172 184/197/172 185/200/172
1376
+ f 166/184/173 165/194/173 177/199/173 178/201/173
1377
+ f 174/183/174 173/182/174 185/200/174 186/202/174
1378
+ f 167/185/175 166/184/175 178/201/175 179/203/175
1379
+ f 175/186/176 174/183/176 186/202/176 187/204/176
1380
+ f 168/187/177 167/185/177 179/203/177 180/205/177
1381
+ f 200/206/178 175/186/178 187/204/178
1382
+ f 169/189/179 168/187/179 180/205/179 181/207/179
1383
+ f 170/190/180 169/189/180 181/207/180 182/195/180
1384
+ f 179/203/181 178/201/181 190/208/181 191/209/181
1385
+ f 187/204/182 186/202/182 198/210/182 199/211/182
1386
+ f 180/205/183 179/203/183 191/209/183 192/212/183
1387
+ f 200/213/184 187/204/184 199/211/184
1388
+ f 181/207/185 180/205/185 192/212/185 193/214/185
1389
+ f 182/195/186 181/207/186 193/214/186 194/215/186
1390
+ f 183/196/187 182/195/187 194/215/187 195/216/187
1391
+ f 184/197/188 183/196/188 195/216/188 196/217/188
1392
+ f 177/199/189 176/198/189 188/218/189 189/219/189
1393
+ f 185/200/190 184/197/190 196/217/190 197/220/190
1394
+ f 178/201/191 177/199/191 189/219/191 190/208/191
1395
+ f 186/202/192 185/200/192 197/220/192 198/210/192
1396
+ f 195/216/193 194/215/193 207/221/193 208/222/193
1397
+ f 196/217/194 195/216/194 208/222/194 209/223/194
1398
+ f 189/219/195 188/218/195 201/224/195 202/225/195
1399
+ f 197/220/196 196/217/196 209/223/196 210/226/196
1400
+ f 190/208/197 189/219/197 202/225/197 203/227/197
1401
+ f 198/210/198 197/220/198 210/226/198 211/228/198
1402
+ f 191/209/199 190/208/199 203/227/199 204/229/199
1403
+ f 199/211/200 198/210/200 211/228/200 212/230/200
1404
+ f 192/212/201 191/209/201 204/229/201 205/231/201
1405
+ f 200/232/202 199/211/202 212/230/202
1406
+ f 193/214/203 192/212/203 205/231/203 206/233/203
1407
+ f 194/215/204 193/214/204 206/233/204 207/221/204
1408
+ f 212/230/205 211/228/205 223/234/205 224/235/205
1409
+ f 205/231/206 204/229/206 216/236/206 217/237/206
1410
+ f 200/238/207 212/230/207 224/235/207
1411
+ f 206/233/208 205/231/208 217/237/208 218/239/208
1412
+ f 207/221/209 206/233/209 218/239/209 219/240/209
1413
+ f 208/222/210 207/221/210 219/240/210 220/241/210
1414
+ f 209/223/211 208/222/211 220/241/211 221/242/211
1415
+ f 202/225/212 201/224/212 213/243/212 214/244/212
1416
+ f 210/226/213 209/223/213 221/242/213 222/245/213
1417
+ f 203/227/214 202/225/214 214/244/214 215/246/214
1418
+ f 211/228/215 210/226/215 222/245/215 223/234/215
1419
+ f 204/229/216 203/227/216 215/246/216 216/236/216
1420
+ f 221/242/217 220/241/217 232/247/217 233/248/217
1421
+ f 214/244/218 213/243/218 225/249/218 226/250/218
1422
+ f 222/245/219 221/242/219 233/248/219 234/251/219
1423
+ f 215/246/220 214/244/220 226/250/220 227/252/220
1424
+ f 223/234/221 222/245/221 234/251/221 235/253/221
1425
+ f 216/236/222 215/246/222 227/252/222 228/254/222
1426
+ f 224/235/223 223/234/223 235/253/223 236/255/223
1427
+ f 217/237/224 216/236/224 228/254/224 229/256/224
1428
+ f 200/257/225 224/235/225 236/255/225
1429
+ f 218/239/226 217/237/226 229/256/226 230/258/226
1430
+ f 219/240/227 218/239/227 230/258/227 231/259/227
1431
+ f 220/241/228 219/240/228 231/259/228 232/247/228
1432
+ f 229/256/229 228/254/229 240/260/229 241/261/229
1433
+ f 200/262/230 236/255/230 248/263/230
1434
+ f 230/258/231 229/256/231 241/261/231 242/264/231
1435
+ f 231/259/232 230/258/232 242/264/232 243/265/232
1436
+ f 232/247/233 231/259/233 243/265/233 244/266/233
1437
+ f 233/248/234 232/247/234 244/266/234 245/267/234
1438
+ f 226/250/235 225/249/235 237/268/235 238/269/235
1439
+ f 234/251/236 233/248/236 245/267/236 246/270/236
1440
+ f 227/252/237 226/250/237 238/269/237 239/271/237
1441
+ f 235/253/238 234/251/238 246/270/238 247/272/238
1442
+ f 228/254/239 227/252/239 239/271/239 240/260/239
1443
+ f 236/255/240 235/253/240 247/272/240 248/263/240
1444
+ f 245/267/241 244/266/241 256/273/241 257/274/241
1445
+ f 238/269/242 237/268/242 249/275/242 250/276/242
1446
+ f 246/270/243 245/267/243 257/274/243 258/277/243
1447
+ f 239/271/244 238/269/244 250/276/244 251/278/244
1448
+ f 247/272/245 246/270/245 258/277/245 259/279/245
1449
+ f 240/260/246 239/271/246 251/278/246 252/280/246
1450
+ f 248/263/247 247/272/247 259/279/247 260/281/247
1451
+ f 241/261/248 240/260/248 252/280/248 253/282/248
1452
+ f 200/283/249 248/263/249 260/281/249
1453
+ f 242/264/250 241/261/250 253/282/250 254/284/250
1454
+ f 243/265/251 242/264/251 254/284/251 255/285/251
1455
+ f 244/266/252 243/265/252 255/285/252 256/273/252
1456
+ f 200/286/253 260/281/253 272/287/253
1457
+ f 254/284/254 253/282/254 265/288/254 266/289/254
1458
+ f 255/285/255 254/284/255 266/289/255 267/290/255
1459
+ f 256/273/256 255/285/256 267/290/256 268/291/256
1460
+ f 257/274/257 256/273/257 268/291/257 269/292/257
1461
+ f 250/276/258 249/275/258 261/293/258 262/294/258
1462
+ f 258/277/259 257/274/259 269/292/259 270/295/259
1463
+ f 251/278/260 250/276/260 262/294/260 263/296/260
1464
+ f 259/279/261 258/277/261 270/295/261 271/297/261
1465
+ f 252/280/262 251/278/262 263/296/262 264/298/262
1466
+ f 260/281/263 259/279/263 271/297/263 272/287/263
1467
+ f 253/282/264 252/280/264 264/298/264 265/288/264
1468
+ f 270/295/265 269/292/265 281/299/265 282/300/265
1469
+ f 263/296/266 262/294/266 274/301/266 275/302/266
1470
+ f 271/297/267 270/295/267 282/300/267 283/303/267
1471
+ f 264/298/268 263/296/268 275/302/268 276/304/268
1472
+ f 272/287/269 271/297/269 283/303/269 284/305/269
1473
+ f 265/288/270 264/298/270 276/304/270 277/306/270
1474
+ f 200/307/271 272/287/271 284/305/271
1475
+ f 266/289/272 265/288/272 277/306/272 278/308/272
1476
+ f 267/290/273 266/289/273 278/308/273 279/309/273
1477
+ f 268/291/274 267/290/274 279/309/274 280/310/274
1478
+ f 269/292/275 268/291/275 280/310/275 281/299/275
1479
+ f 262/294/276 261/293/276 273/311/276 274/301/276
1480
+ f 279/309/277 278/308/277 290/312/277 291/313/277
1481
+ f 280/310/278 279/309/278 291/313/278 292/314/278
1482
+ f 281/299/279 280/310/279 292/314/279 293/315/279
1483
+ f 274/301/280 273/311/280 285/316/280 286/317/280
1484
+ f 282/300/281 281/299/281 293/315/281 294/318/281
1485
+ f 275/302/282 274/301/282 286/317/282 287/319/282
1486
+ f 283/303/283 282/300/283 294/318/283 295/320/283
1487
+ f 276/304/284 275/302/284 287/319/284 288/321/284
1488
+ f 284/305/285 283/303/285 295/320/285 296/322/285
1489
+ f 277/306/286 276/304/286 288/321/286 289/323/286
1490
+ f 200/324/287 284/305/287 296/322/287
1491
+ f 278/308/288 277/306/288 289/323/288 290/312/288
1492
+ f 287/325/289 286/326/289 298/327/289 299/328/289
1493
+ f 295/329/290 294/330/290 306/331/290 307/332/290
1494
+ f 288/333/291 287/325/291 299/328/291 300/334/291
1495
+ f 296/335/292 295/329/292 307/332/292 308/336/292
1496
+ f 289/337/293 288/333/293 300/334/293 301/338/293
1497
+ f 200/339/294 296/335/294 308/336/294
1498
+ f 290/340/295 289/337/295 301/338/295 302/341/295
1499
+ f 291/342/296 290/340/296 302/341/296 303/343/296
1500
+ f 292/344/297 291/342/297 303/343/297 304/345/297
1501
+ f 293/346/298 292/344/298 304/345/298 305/347/298
1502
+ f 286/326/299 285/348/299 297/349/299 298/327/299
1503
+ f 294/330/300 293/346/300 305/347/300 306/331/300
1504
+ f 303/343/301 302/341/301 314/350/301 315/351/301
1505
+ f 304/345/302 303/343/302 315/351/302 316/352/302
1506
+ f 305/347/303 304/345/303 316/352/303 317/353/303
1507
+ f 298/327/304 297/349/304 309/354/304 310/355/304
1508
+ f 306/331/305 305/347/305 317/353/305 318/356/305
1509
+ f 299/328/306 298/327/306 310/355/306 311/357/306
1510
+ f 307/332/307 306/331/307 318/356/307 319/358/307
1511
+ f 300/334/308 299/328/308 311/357/308 312/359/308
1512
+ f 308/336/309 307/332/309 319/358/309 320/360/309
1513
+ f 301/338/310 300/334/310 312/359/310 313/361/310
1514
+ f 200/362/311 308/336/311 320/360/311
1515
+ f 302/341/312 301/338/312 313/361/312 314/350/312
1516
+ f 319/358/313 318/356/313 330/363/313 331/364/313
1517
+ f 312/359/314 311/357/314 323/365/314 324/366/314
1518
+ f 320/360/315 319/358/315 331/364/315 332/367/315
1519
+ f 313/361/316 312/359/316 324/366/316 325/368/316
1520
+ f 200/369/317 320/360/317 332/367/317
1521
+ f 314/350/318 313/361/318 325/368/318 326/370/318
1522
+ f 315/351/319 314/350/319 326/370/319 327/371/319
1523
+ f 316/352/320 315/351/320 327/371/320 328/372/320
1524
+ f 317/353/321 316/352/321 328/372/321 329/373/321
1525
+ f 310/355/322 309/354/322 321/374/322 322/375/322
1526
+ f 318/356/323 317/353/323 329/373/323 330/363/323
1527
+ f 311/357/324 310/355/324 322/375/324 323/365/324
1528
+ f 328/372/325 327/371/325 339/376/325 340/377/325
1529
+ f 329/373/326 328/372/326 340/377/326 341/378/326
1530
+ f 322/375/327 321/374/327 333/379/327 334/380/327
1531
+ f 330/363/328 329/373/328 341/378/328 342/381/328
1532
+ f 323/365/329 322/375/329 334/380/329 335/382/329
1533
+ f 331/364/330 330/363/330 342/381/330 343/383/330
1534
+ f 324/366/331 323/365/331 335/382/331 336/384/331
1535
+ f 332/367/332 331/364/332 343/383/332 344/385/332
1536
+ f 325/368/333 324/366/333 336/384/333 337/386/333
1537
+ f 200/387/334 332/367/334 344/385/334
1538
+ f 326/370/335 325/368/335 337/386/335 338/388/335
1539
+ f 327/371/336 326/370/336 338/388/336 339/376/336
1540
+ f 336/384/337 335/382/337 347/389/337 348/390/337
1541
+ f 344/385/338 343/383/338 355/391/338 356/392/338
1542
+ f 337/386/339 336/384/339 348/390/339 349/393/339
1543
+ f 200/394/340 344/385/340 356/392/340
1544
+ f 338/388/341 337/386/341 349/393/341 350/395/341
1545
+ f 339/376/342 338/388/342 350/395/342 351/396/342
1546
+ f 340/377/343 339/376/343 351/396/343 352/397/343
1547
+ f 341/378/344 340/377/344 352/397/344 353/398/344
1548
+ f 334/380/345 333/379/345 345/399/345 346/400/345
1549
+ f 342/381/346 341/378/346 353/398/346 354/401/346
1550
+ f 335/382/347 334/380/347 346/400/347 347/389/347
1551
+ f 343/383/348 342/381/348 354/401/348 355/391/348
1552
+ f 352/397/349 351/396/349 363/402/349 364/403/349
1553
+ f 353/398/350 352/397/350 364/403/350 365/404/350
1554
+ f 346/400/351 345/399/351 357/405/351 358/406/351
1555
+ f 354/401/352 353/398/352 365/404/352 366/407/352
1556
+ f 347/389/353 346/400/353 358/406/353 359/408/353
1557
+ f 355/391/354 354/401/354 366/407/354 367/409/354
1558
+ f 348/390/355 347/389/355 359/408/355 360/410/355
1559
+ f 356/392/356 355/391/356 367/409/356 368/411/356
1560
+ f 349/393/357 348/390/357 360/410/357 361/412/357
1561
+ f 200/413/358 356/392/358 368/411/358
1562
+ f 350/395/359 349/393/359 361/412/359 362/414/359
1563
+ f 351/396/360 350/395/360 362/414/360 363/402/360
1564
+ f 368/411/361 367/409/361 379/415/361 380/416/361
1565
+ f 361/412/362 360/410/362 372/417/362 373/418/362
1566
+ f 200/419/363 368/411/363 380/416/363
1567
+ f 362/414/364 361/412/364 373/418/364 374/420/364
1568
+ f 363/402/365 362/414/365 374/420/365 375/421/365
1569
+ f 364/403/366 363/402/366 375/421/366 376/422/366
1570
+ f 365/404/367 364/403/367 376/422/367 377/423/367
1571
+ f 358/406/368 357/405/368 369/424/368 370/425/368
1572
+ f 366/407/369 365/404/369 377/423/369 378/426/369
1573
+ f 359/408/370 358/406/370 370/425/370 371/427/370
1574
+ f 367/409/371 366/407/371 378/426/371 379/415/371
1575
+ f 360/410/372 359/408/372 371/427/372 372/417/372
1576
+ f 377/423/373 376/422/373 6/2/373 383/1/373
1577
+ f 370/425/374 369/424/374 1/6/374 2/5/374
1578
+ f 378/426/375 377/423/375 383/1/375 384/9/375
1579
+ f 371/427/376 370/425/376 2/5/376 3/11/376
1580
+ f 379/415/377 378/426/377 384/9/377 385/13/377
1581
+ f 372/417/378 371/427/378 3/11/378 4/15/378
1582
+ f 380/416/379 379/415/379 385/13/379 7/17/379
1583
+ f 373/418/380 372/417/380 4/15/380 5/19/380
1584
+ f 200/428/381 380/416/381 7/17/381
1585
+ f 374/420/382 373/418/382 5/19/382 381/22/382
1586
+ f 375/421/383 374/420/383 381/22/383 382/24/383
1587
+ f 376/422/384 375/421/384 382/24/384 6/2/384
cliport/environments/assets/bags/bl_sphere_bag_basic_001.mtl ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl CustomColor.002
5
+ Ns 323.999994
6
+ Ka 1.000000 1.000000 1.000000
7
+ Kd 0.000000 0.000000 1.000000
8
+ Ks 0.500000 0.500000 0.500000
9
+ Ke 0.000000 0.000000 0.000000
10
+ Ni 1.000000
11
+ d 1.000000
12
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_basic_001.obj ADDED
@@ -0,0 +1,1458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_basic_001.mtl
4
+ o Sphere.001
5
+ v -2.000000 2.444456 -0.665176
6
+ v -2.000000 2.306147 -0.739104
7
+ v -2.000000 2.156072 -0.784628
8
+ v -2.000000 2.000000 -0.800000
9
+ v -2.000000 1.555544 -0.665176
10
+ v -2.000000 1.215372 -0.156072
11
+ v -1.870231 2.444456 -0.652395
12
+ v -1.855808 2.306147 -0.724902
13
+ v -1.846927 2.156072 -0.769552
14
+ v -1.843928 2.000000 -0.784628
15
+ v -1.846927 1.843928 -0.769552
16
+ v -1.855808 1.693853 -0.724902
17
+ v -1.870231 1.555544 -0.652395
18
+ v -1.889640 1.434314 -0.554816
19
+ v -1.913291 1.334824 -0.435916
20
+ v -1.940274 1.260896 -0.300264
21
+ v -1.969552 1.215372 -0.153073
22
+ v -1.745448 2.444456 -0.614542
23
+ v -1.717157 2.306147 -0.682843
24
+ v -1.699736 2.156072 -0.724902
25
+ v -1.693853 2.000000 -0.739104
26
+ v -1.699736 1.843928 -0.724902
27
+ v -1.717157 1.693853 -0.682843
28
+ v -1.745448 1.555544 -0.614542
29
+ v -1.783521 1.434314 -0.522625
30
+ v -1.829914 1.334824 -0.410624
31
+ v -1.882843 1.260896 -0.282843
32
+ v -1.940274 1.215372 -0.144192
33
+ v -1.630448 2.444456 -0.553073
34
+ v -1.589376 2.306147 -0.614542
35
+ v -1.564084 2.156072 -0.652394
36
+ v -1.555544 2.000000 -0.665176
37
+ v -1.564084 1.843928 -0.652394
38
+ v -1.589376 1.693853 -0.614542
39
+ v -1.630448 1.555544 -0.553073
40
+ v -1.685722 1.434314 -0.470350
41
+ v -1.753073 1.334824 -0.369552
42
+ v -1.829914 1.260896 -0.254552
43
+ v -1.913291 1.215372 -0.129769
44
+ v -1.529649 2.444456 -0.470350
45
+ v -1.477375 2.306147 -0.522625
46
+ v -1.445184 2.156072 -0.554816
47
+ v -1.434314 2.000000 -0.565685
48
+ v -1.445184 1.843928 -0.554816
49
+ v -1.477375 1.693853 -0.522625
50
+ v -1.529649 1.555544 -0.470350
51
+ v -1.600000 1.434314 -0.400000
52
+ v -1.685722 1.334824 -0.314278
53
+ v -1.783522 1.260896 -0.216478
54
+ v -1.889640 1.215372 -0.110360
55
+ v -1.446926 2.444456 -0.369552
56
+ v -1.385458 2.306147 -0.410624
57
+ v -1.347605 2.156072 -0.435916
58
+ v -1.334824 2.000000 -0.444456
59
+ v -1.347605 1.843928 -0.435916
60
+ v -1.385458 1.693853 -0.410624
61
+ v -1.446926 1.555544 -0.369552
62
+ v -1.529650 1.434314 -0.314278
63
+ v -1.630448 1.334824 -0.246926
64
+ v -1.745448 1.260896 -0.170086
65
+ v -1.870231 1.215372 -0.086709
66
+ v -1.385458 2.444456 -0.254551
67
+ v -1.317157 2.306147 -0.282842
68
+ v -1.275098 2.156072 -0.300264
69
+ v -1.260896 2.000000 -0.306146
70
+ v -1.275098 1.843928 -0.300264
71
+ v -1.317157 1.693853 -0.282843
72
+ v -1.385458 1.555544 -0.254551
73
+ v -1.477375 1.434314 -0.216478
74
+ v -1.589376 1.334824 -0.170086
75
+ v -1.717157 1.260896 -0.117157
76
+ v -1.855808 1.215372 -0.059726
77
+ v -1.347605 2.444456 -0.129769
78
+ v -1.275098 2.306147 -0.144192
79
+ v -1.230448 2.156072 -0.153073
80
+ v -1.215372 2.000000 -0.156072
81
+ v -1.230448 1.843928 -0.153073
82
+ v -1.275098 1.693853 -0.144192
83
+ v -1.347605 1.555544 -0.129769
84
+ v -1.445184 1.434314 -0.110359
85
+ v -1.564084 1.334824 -0.086709
86
+ v -1.699736 1.260896 -0.059726
87
+ v -1.846927 1.215372 -0.030448
88
+ v -1.334824 2.444456 0.000000
89
+ v -1.260896 2.306147 0.000000
90
+ v -1.215372 2.156072 0.000000
91
+ v -1.200000 2.000000 0.000000
92
+ v -1.215372 1.843928 0.000000
93
+ v -1.260896 1.693853 0.000000
94
+ v -1.334824 1.555544 0.000000
95
+ v -1.434314 1.434314 0.000000
96
+ v -1.555544 1.334824 0.000000
97
+ v -1.693853 1.260896 0.000000
98
+ v -1.843928 1.215372 0.000000
99
+ v -1.347605 2.444456 0.129770
100
+ v -1.275098 2.306147 0.144192
101
+ v -1.230448 2.156072 0.153074
102
+ v -1.215372 2.000000 0.156073
103
+ v -1.230448 1.843928 0.153074
104
+ v -1.275098 1.693853 0.144192
105
+ v -1.347605 1.555544 0.129770
106
+ v -1.445184 1.434314 0.110360
107
+ v -1.564084 1.334824 0.086709
108
+ v -1.699736 1.260896 0.059727
109
+ v -1.846927 1.215372 0.030448
110
+ v -1.385458 2.444456 0.254552
111
+ v -1.317157 2.306147 0.282843
112
+ v -1.275098 2.156072 0.300264
113
+ v -1.260896 2.000000 0.306147
114
+ v -1.275098 1.843928 0.300265
115
+ v -1.317157 1.693853 0.282843
116
+ v -1.385458 1.555544 0.254552
117
+ v -1.477375 1.434314 0.216479
118
+ v -1.589376 1.334824 0.170086
119
+ v -1.717157 1.260896 0.117158
120
+ v -1.855808 1.215372 0.059727
121
+ v -1.446927 2.444456 0.369552
122
+ v -1.385458 2.306147 0.410624
123
+ v -1.347605 2.156072 0.435916
124
+ v -1.334824 2.000000 0.444457
125
+ v -1.347605 1.843928 0.435916
126
+ v -1.385458 1.693853 0.410624
127
+ v -1.446927 1.555544 0.369552
128
+ v -1.529650 1.434314 0.314278
129
+ v -1.630448 1.334824 0.246927
130
+ v -1.745448 1.260896 0.170086
131
+ v -1.870231 1.215372 0.086709
132
+ v -1.529650 2.444456 0.470351
133
+ v -1.477375 2.306147 0.522626
134
+ v -1.445184 2.156072 0.554816
135
+ v -1.434315 2.000000 0.565686
136
+ v -1.445184 1.843928 0.554816
137
+ v -1.477375 1.693853 0.522626
138
+ v -1.529650 1.555544 0.470351
139
+ v -1.600000 1.434314 0.400000
140
+ v -1.685722 1.334824 0.314278
141
+ v -1.783521 1.260896 0.216479
142
+ v -1.889640 1.215372 0.110360
143
+ v -1.630448 2.444456 0.553074
144
+ v -1.589376 2.306147 0.614542
145
+ v -1.564084 2.156072 0.652395
146
+ v -1.555544 2.000000 0.665176
147
+ v -1.564084 1.843928 0.652395
148
+ v -1.589376 1.693853 0.614542
149
+ v -1.630448 1.555544 0.553074
150
+ v -1.685722 1.434314 0.470351
151
+ v -1.753073 1.334824 0.369552
152
+ v -1.829914 1.260896 0.254552
153
+ v -1.913291 1.215372 0.129770
154
+ v -1.745448 2.444456 0.614543
155
+ v -1.717157 2.306147 0.682843
156
+ v -1.699736 2.156072 0.724902
157
+ v -1.693853 2.000000 0.739104
158
+ v -1.699736 1.843928 0.724902
159
+ v -1.717157 1.693853 0.682843
160
+ v -1.745448 1.555544 0.614543
161
+ v -1.783522 1.434314 0.522626
162
+ v -1.829914 1.334824 0.410624
163
+ v -1.882843 1.260896 0.282843
164
+ v -1.940274 1.215372 0.144192
165
+ v -1.870231 2.444456 0.652395
166
+ v -1.855808 2.306147 0.724902
167
+ v -1.846926 2.156072 0.769552
168
+ v -1.843928 2.000000 0.784628
169
+ v -1.846927 1.843928 0.769552
170
+ v -1.855808 1.693853 0.724902
171
+ v -1.870231 1.555544 0.652395
172
+ v -1.889640 1.434314 0.554816
173
+ v -1.913291 1.334824 0.435916
174
+ v -1.940274 1.260896 0.300265
175
+ v -1.969552 1.215372 0.153074
176
+ v -2.000000 2.444456 0.665176
177
+ v -2.000000 2.306147 0.739104
178
+ v -2.000000 2.156072 0.784628
179
+ v -2.000000 2.000000 0.800000
180
+ v -2.000000 1.843928 0.784628
181
+ v -2.000000 1.693853 0.739104
182
+ v -2.000000 1.555544 0.665176
183
+ v -2.000000 1.434314 0.565686
184
+ v -2.000000 1.334824 0.444456
185
+ v -2.000000 1.260896 0.306147
186
+ v -2.000000 1.215372 0.156072
187
+ v -2.000000 1.200000 0.000000
188
+ v -2.129770 2.444456 0.652395
189
+ v -2.144192 2.306147 0.724902
190
+ v -2.153073 2.156072 0.769552
191
+ v -2.156072 2.000000 0.784628
192
+ v -2.153073 1.843928 0.769552
193
+ v -2.144192 1.693853 0.724902
194
+ v -2.129770 1.555544 0.652395
195
+ v -2.110360 1.434314 0.554816
196
+ v -2.086709 1.334824 0.435916
197
+ v -2.059726 1.260896 0.300264
198
+ v -2.030448 1.215372 0.153074
199
+ v -2.254552 2.444456 0.614542
200
+ v -2.282843 2.306147 0.682843
201
+ v -2.300264 2.156072 0.724902
202
+ v -2.306147 2.000000 0.739104
203
+ v -2.300264 1.843928 0.724902
204
+ v -2.282843 1.693853 0.682843
205
+ v -2.254552 1.555544 0.614542
206
+ v -2.216479 1.434314 0.522625
207
+ v -2.170086 1.334824 0.410624
208
+ v -2.117157 1.260896 0.282843
209
+ v -2.059726 1.215372 0.144192
210
+ v -2.369552 2.444456 0.553073
211
+ v -2.410624 2.306147 0.614542
212
+ v -2.435916 2.156072 0.652395
213
+ v -2.444456 2.000000 0.665176
214
+ v -2.435916 1.843928 0.652395
215
+ v -2.410624 1.693853 0.614542
216
+ v -2.369552 1.555544 0.553073
217
+ v -2.314278 1.434314 0.470350
218
+ v -2.246927 1.334824 0.369552
219
+ v -2.170086 1.260896 0.254552
220
+ v -2.086709 1.215372 0.129770
221
+ v -2.470350 2.444456 0.470350
222
+ v -2.522625 2.306147 0.522625
223
+ v -2.554816 2.156072 0.554816
224
+ v -2.565685 2.000000 0.565685
225
+ v -2.554816 1.843928 0.554816
226
+ v -2.522625 1.693853 0.522625
227
+ v -2.470350 1.555544 0.470350
228
+ v -2.400000 1.434314 0.400000
229
+ v -2.314278 1.334824 0.314278
230
+ v -2.216478 1.260896 0.216479
231
+ v -2.110360 1.215372 0.110360
232
+ v -2.553073 2.444456 0.369552
233
+ v -2.614542 2.306147 0.410624
234
+ v -2.652394 2.156072 0.435916
235
+ v -2.665175 2.000000 0.444456
236
+ v -2.652394 1.843928 0.435916
237
+ v -2.614542 1.693853 0.410624
238
+ v -2.553073 1.555544 0.369552
239
+ v -2.470350 1.434314 0.314278
240
+ v -2.369552 1.334824 0.246927
241
+ v -2.254552 1.260896 0.170086
242
+ v -2.129769 1.215372 0.086709
243
+ v -2.614542 2.444456 0.254552
244
+ v -2.682842 2.306147 0.282843
245
+ v -2.724902 2.156072 0.300265
246
+ v -2.739103 2.000000 0.306147
247
+ v -2.724902 1.843928 0.300264
248
+ v -2.682842 1.693853 0.282843
249
+ v -2.614542 1.555544 0.254552
250
+ v -2.522625 1.434314 0.216479
251
+ v -2.410624 1.334824 0.170086
252
+ v -2.282843 1.260896 0.117158
253
+ v -2.144192 1.215372 0.059726
254
+ v -2.652394 2.444456 0.129769
255
+ v -2.724902 2.306147 0.144192
256
+ v -2.769552 2.156072 0.153074
257
+ v -2.784628 2.000000 0.156072
258
+ v -2.769552 1.843928 0.153074
259
+ v -2.724902 1.693853 0.144192
260
+ v -2.652394 1.555544 0.129769
261
+ v -2.554816 1.434314 0.110360
262
+ v -2.435916 1.334824 0.086709
263
+ v -2.300264 1.260896 0.059726
264
+ v -2.153073 1.215372 0.030448
265
+ v -2.665175 2.444456 0.000000
266
+ v -2.739103 2.306147 0.000000
267
+ v -2.784628 2.156072 0.000000
268
+ v -2.799999 2.000000 0.000000
269
+ v -2.784628 1.843928 0.000000
270
+ v -2.739103 1.693853 0.000000
271
+ v -2.665175 1.555544 0.000000
272
+ v -2.565685 1.434314 0.000000
273
+ v -2.444456 1.334824 0.000000
274
+ v -2.306147 1.260896 0.000000
275
+ v -2.156072 1.215372 0.000000
276
+ v -2.652394 2.444456 -0.129769
277
+ v -2.724901 2.306147 -0.144192
278
+ v -2.769552 2.156072 -0.153073
279
+ v -2.784628 2.000000 -0.156072
280
+ v -2.769552 1.843928 -0.153073
281
+ v -2.724901 1.693853 -0.144192
282
+ v -2.652394 1.555544 -0.129769
283
+ v -2.554816 1.434314 -0.110360
284
+ v -2.435916 1.334824 -0.086709
285
+ v -2.300264 1.260896 -0.059726
286
+ v -2.153073 1.215372 -0.030448
287
+ v -2.614542 2.444456 -0.254552
288
+ v -2.682842 2.306147 -0.282842
289
+ v -2.724902 2.156072 -0.300264
290
+ v -2.739103 2.000000 -0.306147
291
+ v -2.724902 1.843928 -0.300264
292
+ v -2.682842 1.693853 -0.282842
293
+ v -2.614542 1.555544 -0.254552
294
+ v -2.522625 1.434314 -0.216478
295
+ v -2.410624 1.334824 -0.170086
296
+ v -2.282843 1.260896 -0.117157
297
+ v -2.144192 1.215372 -0.059726
298
+ v -2.553073 2.444456 -0.369552
299
+ v -2.614542 2.306147 -0.410624
300
+ v -2.652394 2.156072 -0.435916
301
+ v -2.665175 2.000000 -0.444456
302
+ v -2.652394 1.843928 -0.435916
303
+ v -2.614542 1.693853 -0.410624
304
+ v -2.553073 1.555544 -0.369552
305
+ v -2.470350 1.434314 -0.314278
306
+ v -2.369551 1.334824 -0.246926
307
+ v -2.254552 1.260896 -0.170086
308
+ v -2.129769 1.215372 -0.086709
309
+ v -2.470350 2.444456 -0.470350
310
+ v -2.522624 2.306147 -0.522625
311
+ v -2.554816 2.156072 -0.554815
312
+ v -2.565685 2.000000 -0.565685
313
+ v -2.554816 1.843928 -0.554815
314
+ v -2.522625 1.693853 -0.522625
315
+ v -2.470350 1.555544 -0.470350
316
+ v -2.400000 1.434314 -0.400000
317
+ v -2.314278 1.334824 -0.314278
318
+ v -2.216478 1.260896 -0.216478
319
+ v -2.110360 1.215372 -0.110359
320
+ v -2.369551 2.444456 -0.553073
321
+ v -2.410624 2.306147 -0.614542
322
+ v -2.435916 2.156072 -0.652394
323
+ v -2.444456 2.000000 -0.665175
324
+ v -2.435916 1.843928 -0.652394
325
+ v -2.410624 1.693853 -0.614542
326
+ v -2.369551 1.555544 -0.553073
327
+ v -2.314278 1.434314 -0.470350
328
+ v -2.246926 1.334824 -0.369551
329
+ v -2.170086 1.260896 -0.254551
330
+ v -2.086709 1.215372 -0.129769
331
+ v -2.254551 2.444456 -0.614542
332
+ v -2.282842 2.306147 -0.682842
333
+ v -2.300264 2.156072 -0.724901
334
+ v -2.306146 2.000000 -0.739103
335
+ v -2.300264 1.843928 -0.724901
336
+ v -2.282842 1.693853 -0.682842
337
+ v -2.254551 1.555544 -0.614542
338
+ v -2.216478 1.434314 -0.522625
339
+ v -2.170086 1.334824 -0.410623
340
+ v -2.117157 1.260896 -0.282842
341
+ v -2.059726 1.215372 -0.144192
342
+ v -2.129769 2.444456 -0.652394
343
+ v -2.144192 2.306147 -0.724901
344
+ v -2.153073 2.156072 -0.769551
345
+ v -2.156072 2.000000 -0.784627
346
+ v -2.153073 1.843928 -0.769551
347
+ v -2.144192 1.693853 -0.724901
348
+ v -2.129769 1.555544 -0.652394
349
+ v -2.110359 1.434314 -0.554815
350
+ v -2.086709 1.334824 -0.435915
351
+ v -2.059726 1.260896 -0.300264
352
+ v -2.030448 1.215372 -0.153073
353
+ v -2.000000 1.843928 -0.784628
354
+ v -2.000000 1.693853 -0.739103
355
+ v -2.000000 1.434314 -0.565685
356
+ v -2.000000 1.334824 -0.444456
357
+ v -2.000000 1.260896 -0.306146
358
+ vt 0.750000 0.250000
359
+ vt 0.750000 0.312500
360
+ vt 0.718750 0.312500
361
+ vt 0.718750 0.250000
362
+ vt 0.750000 0.187500
363
+ vt 0.718750 0.187500
364
+ vt 0.750000 0.625000
365
+ vt 0.750000 0.687500
366
+ vt 0.718750 0.687500
367
+ vt 0.718750 0.625000
368
+ vt 0.750000 0.125000
369
+ vt 0.718750 0.125000
370
+ vt 0.750000 0.562500
371
+ vt 0.718750 0.562500
372
+ vt 0.750000 0.062500
373
+ vt 0.718750 0.062500
374
+ vt 0.750000 0.500000
375
+ vt 0.718750 0.500000
376
+ vt 0.734375 0.000000
377
+ vt 0.750000 0.437500
378
+ vt 0.718750 0.437500
379
+ vt 0.750000 0.375000
380
+ vt 0.718750 0.375000
381
+ vt 0.687500 0.437500
382
+ vt 0.687500 0.375000
383
+ vt 0.687500 0.312500
384
+ vt 0.687500 0.250000
385
+ vt 0.687500 0.187500
386
+ vt 0.687500 0.687500
387
+ vt 0.687500 0.625000
388
+ vt 0.687500 0.125000
389
+ vt 0.687500 0.562500
390
+ vt 0.687500 0.062500
391
+ vt 0.687500 0.500000
392
+ vt 0.703125 0.000000
393
+ vt 0.656250 0.187500
394
+ vt 0.656250 0.125000
395
+ vt 0.656250 0.625000
396
+ vt 0.656250 0.562500
397
+ vt 0.656250 0.062500
398
+ vt 0.656250 0.500000
399
+ vt 0.671875 0.000000
400
+ vt 0.656250 0.437500
401
+ vt 0.656250 0.375000
402
+ vt 0.656250 0.312500
403
+ vt 0.656250 0.250000
404
+ vt 0.656250 0.687500
405
+ vt 0.625000 0.375000
406
+ vt 0.625000 0.312500
407
+ vt 0.625000 0.250000
408
+ vt 0.625000 0.187500
409
+ vt 0.625000 0.687500
410
+ vt 0.625000 0.625000
411
+ vt 0.625000 0.125000
412
+ vt 0.625000 0.562500
413
+ vt 0.625000 0.062500
414
+ vt 0.625000 0.500000
415
+ vt 0.640625 0.000000
416
+ vt 0.625000 0.437500
417
+ vt 0.593750 0.125000
418
+ vt 0.593750 0.062500
419
+ vt 0.593750 0.562500
420
+ vt 0.593750 0.500000
421
+ vt 0.609375 0.000000
422
+ vt 0.593750 0.437500
423
+ vt 0.593750 0.375000
424
+ vt 0.593750 0.312500
425
+ vt 0.593750 0.250000
426
+ vt 0.593750 0.187500
427
+ vt 0.593750 0.687500
428
+ vt 0.593750 0.625000
429
+ vt 0.562500 0.312500
430
+ vt 0.562500 0.250000
431
+ vt 0.562500 0.187500
432
+ vt 0.562500 0.687500
433
+ vt 0.562500 0.625000
434
+ vt 0.562500 0.125000
435
+ vt 0.562500 0.562500
436
+ vt 0.562500 0.062500
437
+ vt 0.562500 0.500000
438
+ vt 0.578125 0.000000
439
+ vt 0.562500 0.437500
440
+ vt 0.562500 0.375000
441
+ vt 0.531250 0.562500
442
+ vt 0.531250 0.500000
443
+ vt 0.546875 0.000000
444
+ vt 0.531250 0.062500
445
+ vt 0.531250 0.437500
446
+ vt 0.531250 0.375000
447
+ vt 0.531250 0.312500
448
+ vt 0.531250 0.250000
449
+ vt 0.531250 0.187500
450
+ vt 0.531250 0.687500
451
+ vt 0.531250 0.625000
452
+ vt 0.531250 0.125000
453
+ vt 0.500000 0.312500
454
+ vt 0.500000 0.250000
455
+ vt 0.500000 0.187500
456
+ vt 0.500000 0.687500
457
+ vt 0.500000 0.625000
458
+ vt 0.500000 0.125000
459
+ vt 0.500000 0.562500
460
+ vt 0.500000 0.062500
461
+ vt 0.500000 0.500000
462
+ vt 0.515625 0.000000
463
+ vt 0.500000 0.437500
464
+ vt 0.500000 0.375000
465
+ vt 0.484375 0.000000
466
+ vt 0.468750 0.062500
467
+ vt 0.468750 0.500000
468
+ vt 0.468750 0.437500
469
+ vt 0.468750 0.375000
470
+ vt 0.468750 0.312500
471
+ vt 0.468750 0.250000
472
+ vt 0.468750 0.187500
473
+ vt 0.468750 0.687500
474
+ vt 0.468750 0.625000
475
+ vt 0.468750 0.125000
476
+ vt 0.468750 0.562500
477
+ vt 0.437500 0.250000
478
+ vt 0.437500 0.187500
479
+ vt 0.437500 0.687500
480
+ vt 0.437500 0.625000
481
+ vt 0.437500 0.125000
482
+ vt 0.437500 0.562500
483
+ vt 0.437500 0.062500
484
+ vt 0.437500 0.500000
485
+ vt 0.453125 0.000000
486
+ vt 0.437500 0.437500
487
+ vt 0.437500 0.375000
488
+ vt 0.437500 0.312500
489
+ vt 0.406250 0.500000
490
+ vt 0.406250 0.437500
491
+ vt 0.406250 0.375000
492
+ vt 0.406250 0.312500
493
+ vt 0.406250 0.250000
494
+ vt 0.406250 0.187500
495
+ vt 0.406250 0.687500
496
+ vt 0.406250 0.625000
497
+ vt 0.406250 0.125000
498
+ vt 0.406250 0.562500
499
+ vt 0.406250 0.062500
500
+ vt 0.421875 0.000000
501
+ vt 0.375000 0.250000
502
+ vt 0.375000 0.187500
503
+ vt 0.375000 0.687500
504
+ vt 0.375000 0.625000
505
+ vt 0.375000 0.125000
506
+ vt 0.375000 0.562500
507
+ vt 0.375000 0.062500
508
+ vt 0.375000 0.500000
509
+ vt 0.390625 0.000000
510
+ vt 0.375000 0.437500
511
+ vt 0.375000 0.375000
512
+ vt 0.375000 0.312500
513
+ vt 0.343750 0.437500
514
+ vt 0.343750 0.375000
515
+ vt 0.343750 0.312500
516
+ vt 0.343750 0.250000
517
+ vt 0.343750 0.187500
518
+ vt 0.343750 0.687500
519
+ vt 0.343750 0.625000
520
+ vt 0.343750 0.125000
521
+ vt 0.343750 0.562500
522
+ vt 0.343750 0.062500
523
+ vt 0.343750 0.500000
524
+ vt 0.359375 0.000000
525
+ vt 0.312500 0.187500
526
+ vt 0.312500 0.125000
527
+ vt 0.312500 0.625000
528
+ vt 0.312500 0.562500
529
+ vt 0.312500 0.062500
530
+ vt 0.312500 0.500000
531
+ vt 0.328125 0.000000
532
+ vt 0.312500 0.437500
533
+ vt 0.312500 0.375000
534
+ vt 0.312500 0.312500
535
+ vt 0.312500 0.250000
536
+ vt 0.312500 0.687500
537
+ vt 0.281250 0.375000
538
+ vt 0.281250 0.312500
539
+ vt 0.281250 0.250000
540
+ vt 0.281250 0.187500
541
+ vt 0.281250 0.687500
542
+ vt 0.281250 0.625000
543
+ vt 0.281250 0.125000
544
+ vt 0.281250 0.562500
545
+ vt 0.281250 0.062500
546
+ vt 0.281250 0.500000
547
+ vt 0.296875 0.000000
548
+ vt 0.281250 0.437500
549
+ vt 0.250000 0.625000
550
+ vt 0.250000 0.562500
551
+ vt 0.250000 0.125000
552
+ vt 0.250000 0.062500
553
+ vt 0.250000 0.500000
554
+ vt 0.265625 0.000000
555
+ vt 0.250000 0.437500
556
+ vt 0.250000 0.375000
557
+ vt 0.250000 0.312500
558
+ vt 0.250000 0.250000
559
+ vt 0.250000 0.187500
560
+ vt 0.250000 0.687500
561
+ vt 0.218750 0.375000
562
+ vt 0.218750 0.312500
563
+ vt 0.218750 0.250000
564
+ vt 0.218750 0.187500
565
+ vt 0.218750 0.687500
566
+ vt 0.218750 0.625000
567
+ vt 0.218750 0.125000
568
+ vt 0.218750 0.562500
569
+ vt 0.218750 0.062500
570
+ vt 0.218750 0.500000
571
+ vt 0.234375 0.000000
572
+ vt 0.218750 0.437500
573
+ vt 0.187500 0.125000
574
+ vt 0.187500 0.062500
575
+ vt 0.187500 0.562500
576
+ vt 0.187500 0.500000
577
+ vt 0.203125 0.000000
578
+ vt 0.187500 0.437500
579
+ vt 0.187500 0.375000
580
+ vt 0.187500 0.312500
581
+ vt 0.187500 0.250000
582
+ vt 0.187500 0.187500
583
+ vt 0.187500 0.687500
584
+ vt 0.187500 0.625000
585
+ vt 0.156250 0.312500
586
+ vt 0.156250 0.250000
587
+ vt 0.156250 0.187500
588
+ vt 0.156250 0.687500
589
+ vt 0.156250 0.625000
590
+ vt 0.156250 0.125000
591
+ vt 0.156250 0.562500
592
+ vt 0.156250 0.062500
593
+ vt 0.156250 0.500000
594
+ vt 0.171875 0.000000
595
+ vt 0.156250 0.437500
596
+ vt 0.156250 0.375000
597
+ vt 0.125000 0.562500
598
+ vt 0.125000 0.500000
599
+ vt 0.140625 0.000000
600
+ vt 0.125000 0.062500
601
+ vt 0.125000 0.437500
602
+ vt 0.125000 0.375000
603
+ vt 0.125000 0.312500
604
+ vt 0.125000 0.250000
605
+ vt 0.125000 0.187500
606
+ vt 0.125000 0.687500
607
+ vt 0.125000 0.625000
608
+ vt 0.125000 0.125000
609
+ vt 0.093750 0.312500
610
+ vt 0.093750 0.250000
611
+ vt 0.093750 0.187500
612
+ vt 0.093750 0.687500
613
+ vt 0.093750 0.625000
614
+ vt 0.093750 0.125000
615
+ vt 0.093750 0.562500
616
+ vt 0.093750 0.062500
617
+ vt 0.093750 0.500000
618
+ vt 0.109375 0.000000
619
+ vt 0.093750 0.437500
620
+ vt 0.093750 0.375000
621
+ vt 0.078125 0.000000
622
+ vt 0.062500 0.062500
623
+ vt 0.062500 0.500000
624
+ vt 0.062500 0.437500
625
+ vt 0.062500 0.375000
626
+ vt 0.062500 0.312500
627
+ vt 0.062500 0.250000
628
+ vt 0.062500 0.187500
629
+ vt 0.062500 0.687500
630
+ vt 0.062500 0.625000
631
+ vt 0.062500 0.125000
632
+ vt 0.062500 0.562500
633
+ vt 0.031250 0.250000
634
+ vt 0.031250 0.187500
635
+ vt 0.031250 0.687500
636
+ vt 0.031250 0.625000
637
+ vt 0.031250 0.125000
638
+ vt 0.031250 0.562500
639
+ vt 0.031250 0.062500
640
+ vt 0.031250 0.500000
641
+ vt 0.046875 0.000000
642
+ vt 0.031250 0.437500
643
+ vt 0.031250 0.375000
644
+ vt 0.031250 0.312500
645
+ vt 0.000000 0.437500
646
+ vt 0.000000 0.375000
647
+ vt 0.000000 0.312500
648
+ vt 0.000000 0.250000
649
+ vt 0.000000 0.187500
650
+ vt 0.000000 0.687500
651
+ vt 0.000000 0.625000
652
+ vt 0.000000 0.125000
653
+ vt 0.000000 0.562500
654
+ vt 0.000000 0.062500
655
+ vt 0.000000 0.500000
656
+ vt 0.015625 0.000000
657
+ vt 1.000000 0.625000
658
+ vt 1.000000 0.687500
659
+ vt 0.968750 0.687500
660
+ vt 0.968750 0.625000
661
+ vt 1.000000 0.125000
662
+ vt 1.000000 0.187500
663
+ vt 0.968750 0.187500
664
+ vt 0.968750 0.125000
665
+ vt 1.000000 0.562500
666
+ vt 0.968750 0.562500
667
+ vt 1.000000 0.062500
668
+ vt 0.968750 0.062500
669
+ vt 1.000000 0.500000
670
+ vt 0.968750 0.500000
671
+ vt 0.984375 0.000000
672
+ vt 1.000000 0.437500
673
+ vt 0.968750 0.437500
674
+ vt 1.000000 0.375000
675
+ vt 0.968750 0.375000
676
+ vt 1.000000 0.312500
677
+ vt 0.968750 0.312500
678
+ vt 1.000000 0.250000
679
+ vt 0.968750 0.250000
680
+ vt 0.937500 0.437500
681
+ vt 0.937500 0.375000
682
+ vt 0.937500 0.312500
683
+ vt 0.937500 0.250000
684
+ vt 0.937500 0.187500
685
+ vt 0.937500 0.687500
686
+ vt 0.937500 0.625000
687
+ vt 0.937500 0.125000
688
+ vt 0.937500 0.562500
689
+ vt 0.937500 0.062500
690
+ vt 0.937500 0.500000
691
+ vt 0.953125 0.000000
692
+ vt 0.906250 0.187500
693
+ vt 0.906250 0.125000
694
+ vt 0.906250 0.625000
695
+ vt 0.906250 0.562500
696
+ vt 0.906250 0.062500
697
+ vt 0.906250 0.500000
698
+ vt 0.921875 0.000000
699
+ vt 0.906250 0.437500
700
+ vt 0.906250 0.375000
701
+ vt 0.906250 0.312500
702
+ vt 0.906250 0.250000
703
+ vt 0.906250 0.687500
704
+ vt 0.875000 0.375000
705
+ vt 0.875000 0.312500
706
+ vt 0.875000 0.250000
707
+ vt 0.875000 0.187500
708
+ vt 0.875000 0.687500
709
+ vt 0.875000 0.625000
710
+ vt 0.875000 0.125000
711
+ vt 0.875000 0.562500
712
+ vt 0.875000 0.062500
713
+ vt 0.875000 0.500000
714
+ vt 0.890625 0.000000
715
+ vt 0.875000 0.437500
716
+ vt 0.843750 0.625000
717
+ vt 0.843750 0.562500
718
+ vt 0.843750 0.125000
719
+ vt 0.843750 0.062500
720
+ vt 0.843750 0.500000
721
+ vt 0.859375 0.000000
722
+ vt 0.843750 0.437500
723
+ vt 0.843750 0.375000
724
+ vt 0.843750 0.312500
725
+ vt 0.843750 0.250000
726
+ vt 0.843750 0.187500
727
+ vt 0.843750 0.687500
728
+ vt 0.812500 0.375000
729
+ vt 0.812500 0.312500
730
+ vt 0.812500 0.250000
731
+ vt 0.812500 0.187500
732
+ vt 0.812500 0.687500
733
+ vt 0.812500 0.625000
734
+ vt 0.812500 0.125000
735
+ vt 0.812500 0.562500
736
+ vt 0.812500 0.062500
737
+ vt 0.812500 0.500000
738
+ vt 0.828125 0.000000
739
+ vt 0.812500 0.437500
740
+ vt 0.781250 0.125000
741
+ vt 0.781250 0.062500
742
+ vt 0.781250 0.562500
743
+ vt 0.781250 0.500000
744
+ vt 0.796875 0.000000
745
+ vt 0.781250 0.437500
746
+ vt 0.781250 0.375000
747
+ vt 0.781250 0.312500
748
+ vt 0.781250 0.250000
749
+ vt 0.781250 0.187500
750
+ vt 0.781250 0.687500
751
+ vt 0.781250 0.625000
752
+ vt 0.765625 0.000000
753
+ vn 0.0759 -0.6326 -0.7708
754
+ vn 0.0624 -0.7715 -0.6332
755
+ vn 0.0865 0.4696 -0.8786
756
+ vn 0.0464 -0.8810 -0.4709
757
+ vn 0.0938 0.2890 -0.9527
758
+ vn 0.0286 -0.9565 -0.2902
759
+ vn 0.0975 0.0975 -0.9904
760
+ vn 0.0097 -0.9951 -0.0980
761
+ vn 0.0975 -0.0976 -0.9904
762
+ vn 0.0938 -0.2890 -0.9527
763
+ vn 0.0865 -0.4696 -0.8786
764
+ vn 0.2779 -0.2890 -0.9161
765
+ vn 0.2563 -0.4696 -0.8448
766
+ vn 0.2248 -0.6326 -0.7412
767
+ vn 0.1847 -0.7715 -0.6088
768
+ vn 0.2563 0.4696 -0.8448
769
+ vn 0.1374 -0.8810 -0.4528
770
+ vn 0.2779 0.2890 -0.9161
771
+ vn 0.0846 -0.9565 -0.2790
772
+ vn 0.2889 0.0975 -0.9524
773
+ vn 0.0286 -0.9951 -0.0942
774
+ vn 0.2889 -0.0975 -0.9524
775
+ vn 0.2230 -0.8810 -0.4173
776
+ vn 0.4513 0.2890 -0.8443
777
+ vn 0.1374 -0.9565 -0.2571
778
+ vn 0.4691 0.0975 -0.8777
779
+ vn 0.0464 -0.9951 -0.0869
780
+ vn 0.4691 -0.0975 -0.8777
781
+ vn 0.4513 -0.2890 -0.8443
782
+ vn 0.4162 -0.4696 -0.7786
783
+ vn 0.3651 -0.6326 -0.6831
784
+ vn 0.2999 -0.7715 -0.5611
785
+ vn 0.4162 0.4696 -0.7786
786
+ vn 0.5601 -0.4696 -0.6825
787
+ vn 0.4913 -0.6326 -0.5987
788
+ vn 0.4036 -0.7715 -0.4918
789
+ vn 0.5601 0.4696 -0.6825
790
+ vn 0.3002 -0.8810 -0.3658
791
+ vn 0.6073 0.2890 -0.7400
792
+ vn 0.1850 -0.9565 -0.2254
793
+ vn 0.6314 0.0975 -0.7693
794
+ vn 0.0625 -0.9951 -0.0761
795
+ vn 0.6314 -0.0975 -0.7693
796
+ vn 0.6073 -0.2890 -0.7400
797
+ vn 0.2254 -0.9565 -0.1850
798
+ vn 0.7693 0.0975 -0.6314
799
+ vn 0.0761 -0.9951 -0.0625
800
+ vn 0.7693 -0.0975 -0.6314
801
+ vn 0.7400 -0.2890 -0.6073
802
+ vn 0.6825 -0.4696 -0.5601
803
+ vn 0.5987 -0.6326 -0.4913
804
+ vn 0.4918 -0.7715 -0.4036
805
+ vn 0.6825 0.4696 -0.5601
806
+ vn 0.3658 -0.8810 -0.3002
807
+ vn 0.7400 0.2890 -0.6073
808
+ vn 0.6831 -0.6326 -0.3651
809
+ vn 0.5611 -0.7715 -0.2999
810
+ vn 0.7786 0.4696 -0.4162
811
+ vn 0.4173 -0.8810 -0.2231
812
+ vn 0.8443 0.2890 -0.4513
813
+ vn 0.2571 -0.9565 -0.1374
814
+ vn 0.8777 0.0975 -0.4691
815
+ vn 0.0869 -0.9951 -0.0464
816
+ vn 0.8777 -0.0975 -0.4691
817
+ vn 0.8443 -0.2890 -0.4513
818
+ vn 0.7786 -0.4696 -0.4162
819
+ vn 0.9524 0.0975 -0.2889
820
+ vn 0.0942 -0.9951 -0.0286
821
+ vn 0.9524 -0.0975 -0.2889
822
+ vn 0.9161 -0.2890 -0.2779
823
+ vn 0.8448 -0.4696 -0.2563
824
+ vn 0.7412 -0.6326 -0.2248
825
+ vn 0.6088 -0.7715 -0.1847
826
+ vn 0.8448 0.4696 -0.2563
827
+ vn 0.4528 -0.8810 -0.1374
828
+ vn 0.9161 0.2890 -0.2779
829
+ vn 0.2790 -0.9565 -0.0846
830
+ vn 0.7708 -0.6326 -0.0759
831
+ vn 0.6332 -0.7715 -0.0624
832
+ vn 0.8786 0.4696 -0.0865
833
+ vn 0.4709 -0.8810 -0.0464
834
+ vn 0.9527 0.2890 -0.0938
835
+ vn 0.2902 -0.9565 -0.0286
836
+ vn 0.9904 0.0975 -0.0975
837
+ vn 0.0980 -0.9951 -0.0096
838
+ vn 0.9904 -0.0975 -0.0975
839
+ vn 0.9527 -0.2890 -0.0938
840
+ vn 0.8786 -0.4696 -0.0865
841
+ vn 0.0980 -0.9951 0.0097
842
+ vn 0.9904 -0.0975 0.0975
843
+ vn 0.9527 -0.2890 0.0938
844
+ vn 0.8786 -0.4696 0.0865
845
+ vn 0.7708 -0.6326 0.0759
846
+ vn 0.6332 -0.7715 0.0624
847
+ vn 0.8786 0.4696 0.0865
848
+ vn 0.4709 -0.8810 0.0464
849
+ vn 0.9527 0.2890 0.0938
850
+ vn 0.2902 -0.9565 0.0286
851
+ vn 0.9904 0.0975 0.0975
852
+ vn 0.6088 -0.7715 0.1847
853
+ vn 0.8448 0.4696 0.2563
854
+ vn 0.4528 -0.8810 0.1374
855
+ vn 0.9161 0.2890 0.2779
856
+ vn 0.2790 -0.9565 0.0846
857
+ vn 0.9524 0.0975 0.2889
858
+ vn 0.0942 -0.9951 0.0286
859
+ vn 0.9524 -0.0975 0.2889
860
+ vn 0.9161 -0.2890 0.2779
861
+ vn 0.8448 -0.4696 0.2563
862
+ vn 0.7412 -0.6326 0.2248
863
+ vn 0.8777 -0.0975 0.4691
864
+ vn 0.8443 -0.2890 0.4513
865
+ vn 0.7786 -0.4696 0.4162
866
+ vn 0.6831 -0.6326 0.3651
867
+ vn 0.5611 -0.7715 0.2999
868
+ vn 0.7786 0.4696 0.4162
869
+ vn 0.4173 -0.8810 0.2230
870
+ vn 0.8443 0.2890 0.4513
871
+ vn 0.2571 -0.9566 0.1374
872
+ vn 0.8777 0.0975 0.4691
873
+ vn 0.0869 -0.9951 0.0464
874
+ vn 0.4918 -0.7715 0.4036
875
+ vn 0.6825 0.4696 0.5601
876
+ vn 0.3658 -0.8810 0.3002
877
+ vn 0.7400 0.2890 0.6073
878
+ vn 0.2254 -0.9565 0.1850
879
+ vn 0.7693 0.0975 0.6314
880
+ vn 0.0761 -0.9951 0.0625
881
+ vn 0.7693 -0.0975 0.6314
882
+ vn 0.7400 -0.2890 0.6073
883
+ vn 0.6825 -0.4696 0.5601
884
+ vn 0.5987 -0.6326 0.4913
885
+ vn 0.6073 -0.2890 0.7400
886
+ vn 0.5601 -0.4696 0.6825
887
+ vn 0.4913 -0.6326 0.5987
888
+ vn 0.4036 -0.7715 0.4918
889
+ vn 0.5601 0.4696 0.6825
890
+ vn 0.3002 -0.8810 0.3658
891
+ vn 0.6073 0.2890 0.7400
892
+ vn 0.1850 -0.9565 0.2254
893
+ vn 0.6314 0.0975 0.7693
894
+ vn 0.0625 -0.9951 0.0761
895
+ vn 0.6314 -0.0975 0.7693
896
+ vn 0.2231 -0.8810 0.4173
897
+ vn 0.4513 0.2890 0.8443
898
+ vn 0.1374 -0.9565 0.2571
899
+ vn 0.4691 0.0975 0.8777
900
+ vn 0.0464 -0.9951 0.0869
901
+ vn 0.4691 -0.0975 0.8777
902
+ vn 0.4513 -0.2890 0.8443
903
+ vn 0.4162 -0.4696 0.7786
904
+ vn 0.3651 -0.6326 0.6831
905
+ vn 0.2999 -0.7715 0.5611
906
+ vn 0.4162 0.4696 0.7786
907
+ vn 0.2563 -0.4696 0.8448
908
+ vn 0.2248 -0.6326 0.7412
909
+ vn 0.1847 -0.7715 0.6088
910
+ vn 0.2563 0.4696 0.8448
911
+ vn 0.1374 -0.8810 0.4528
912
+ vn 0.2779 0.2890 0.9161
913
+ vn 0.0846 -0.9565 0.2790
914
+ vn 0.2889 0.0975 0.9524
915
+ vn 0.0286 -0.9951 0.0942
916
+ vn 0.2889 -0.0975 0.9524
917
+ vn 0.2779 -0.2890 0.9161
918
+ vn 0.0938 0.2890 0.9527
919
+ vn 0.0286 -0.9565 0.2902
920
+ vn 0.0975 0.0975 0.9904
921
+ vn 0.0097 -0.9951 0.0980
922
+ vn 0.0975 -0.0975 0.9904
923
+ vn 0.0938 -0.2890 0.9527
924
+ vn 0.0865 -0.4696 0.8786
925
+ vn 0.0759 -0.6326 0.7708
926
+ vn 0.0624 -0.7715 0.6332
927
+ vn 0.0865 0.4696 0.8786
928
+ vn 0.0464 -0.8810 0.4709
929
+ vn -0.0865 -0.4696 0.8786
930
+ vn -0.0759 -0.6326 0.7708
931
+ vn -0.0624 -0.7715 0.6332
932
+ vn -0.0865 0.4696 0.8786
933
+ vn -0.0464 -0.8810 0.4709
934
+ vn -0.0938 0.2890 0.9527
935
+ vn -0.0286 -0.9566 0.2902
936
+ vn -0.0976 0.0975 0.9904
937
+ vn -0.0097 -0.9951 0.0980
938
+ vn -0.0976 -0.0975 0.9904
939
+ vn -0.0938 -0.2890 0.9527
940
+ vn -0.0846 -0.9565 0.2790
941
+ vn -0.2889 0.0975 0.9524
942
+ vn -0.0286 -0.9951 0.0942
943
+ vn -0.2889 -0.0975 0.9524
944
+ vn -0.2779 -0.2890 0.9161
945
+ vn -0.2563 -0.4696 0.8448
946
+ vn -0.2248 -0.6326 0.7412
947
+ vn -0.1847 -0.7715 0.6088
948
+ vn -0.2563 0.4696 0.8448
949
+ vn -0.1374 -0.8810 0.4528
950
+ vn -0.2779 0.2890 0.9161
951
+ vn -0.3651 -0.6326 0.6831
952
+ vn -0.2999 -0.7715 0.5611
953
+ vn -0.4162 0.4696 0.7786
954
+ vn -0.2231 -0.8810 0.4173
955
+ vn -0.4513 0.2890 0.8443
956
+ vn -0.1374 -0.9565 0.2571
957
+ vn -0.4691 0.0975 0.8777
958
+ vn -0.0464 -0.9951 0.0869
959
+ vn -0.4691 -0.0975 0.8777
960
+ vn -0.4513 -0.2890 0.8443
961
+ vn -0.4162 -0.4696 0.7786
962
+ vn -0.6314 0.0975 0.7693
963
+ vn -0.0625 -0.9951 0.0761
964
+ vn -0.6314 -0.0975 0.7693
965
+ vn -0.6073 -0.2890 0.7400
966
+ vn -0.5601 -0.4696 0.6825
967
+ vn -0.4913 -0.6326 0.5987
968
+ vn -0.4036 -0.7715 0.4918
969
+ vn -0.5601 0.4696 0.6825
970
+ vn -0.3002 -0.8810 0.3658
971
+ vn -0.6073 0.2890 0.7400
972
+ vn -0.1850 -0.9565 0.2254
973
+ vn -0.5987 -0.6326 0.4913
974
+ vn -0.4918 -0.7715 0.4036
975
+ vn -0.6825 0.4696 0.5601
976
+ vn -0.3658 -0.8810 0.3002
977
+ vn -0.7400 0.2890 0.6073
978
+ vn -0.2254 -0.9565 0.1850
979
+ vn -0.7693 0.0975 0.6314
980
+ vn -0.0761 -0.9951 0.0625
981
+ vn -0.7693 -0.0975 0.6314
982
+ vn -0.7400 -0.2890 0.6073
983
+ vn -0.6825 -0.4696 0.5601
984
+ vn -0.0869 -0.9951 0.0464
985
+ vn -0.8777 -0.0975 0.4691
986
+ vn -0.8443 -0.2890 0.4513
987
+ vn -0.7786 -0.4696 0.4162
988
+ vn -0.6831 -0.6326 0.3651
989
+ vn -0.5611 -0.7715 0.2999
990
+ vn -0.7786 0.4696 0.4162
991
+ vn -0.4173 -0.8810 0.2231
992
+ vn -0.8443 0.2890 0.4513
993
+ vn -0.2571 -0.9565 0.1374
994
+ vn -0.8777 0.0975 0.4691
995
+ vn -0.6088 -0.7715 0.1847
996
+ vn -0.8448 0.4696 0.2563
997
+ vn -0.4528 -0.8810 0.1374
998
+ vn -0.9161 0.2890 0.2779
999
+ vn -0.2790 -0.9565 0.0846
1000
+ vn -0.9524 0.0975 0.2889
1001
+ vn -0.0942 -0.9951 0.0286
1002
+ vn -0.9524 -0.0975 0.2889
1003
+ vn -0.9161 -0.2890 0.2779
1004
+ vn -0.8448 -0.4696 0.2563
1005
+ vn -0.7412 -0.6326 0.2248
1006
+ vn -0.9527 -0.2890 0.0938
1007
+ vn -0.8786 -0.4696 0.0865
1008
+ vn -0.7708 -0.6326 0.0759
1009
+ vn -0.6332 -0.7715 0.0624
1010
+ vn -0.8786 0.4696 0.0865
1011
+ vn -0.4709 -0.8810 0.0464
1012
+ vn -0.9527 0.2890 0.0938
1013
+ vn -0.2902 -0.9565 0.0286
1014
+ vn -0.9904 0.0976 0.0975
1015
+ vn -0.0980 -0.9951 0.0097
1016
+ vn -0.9904 -0.0975 0.0975
1017
+ vn -0.8786 0.4696 -0.0865
1018
+ vn -0.4709 -0.8810 -0.0464
1019
+ vn -0.9527 0.2890 -0.0938
1020
+ vn -0.2902 -0.9565 -0.0286
1021
+ vn -0.9904 0.0975 -0.0975
1022
+ vn -0.0980 -0.9951 -0.0097
1023
+ vn -0.9904 -0.0975 -0.0975
1024
+ vn -0.9527 -0.2890 -0.0938
1025
+ vn -0.8786 -0.4696 -0.0865
1026
+ vn -0.7708 -0.6326 -0.0759
1027
+ vn -0.6332 -0.7715 -0.0624
1028
+ vn -0.9161 -0.2890 -0.2779
1029
+ vn -0.8448 -0.4696 -0.2563
1030
+ vn -0.7412 -0.6326 -0.2248
1031
+ vn -0.6088 -0.7715 -0.1847
1032
+ vn -0.8448 0.4696 -0.2563
1033
+ vn -0.4528 -0.8810 -0.1374
1034
+ vn -0.9161 0.2890 -0.2779
1035
+ vn -0.2790 -0.9565 -0.0846
1036
+ vn -0.9524 0.0975 -0.2889
1037
+ vn -0.0942 -0.9951 -0.0286
1038
+ vn -0.9524 -0.0975 -0.2889
1039
+ vn -0.4173 -0.8810 -0.2231
1040
+ vn -0.8443 0.2890 -0.4513
1041
+ vn -0.2571 -0.9565 -0.1374
1042
+ vn -0.8777 0.0975 -0.4691
1043
+ vn -0.0869 -0.9951 -0.0464
1044
+ vn -0.8777 -0.0975 -0.4691
1045
+ vn -0.8443 -0.2890 -0.4513
1046
+ vn -0.7786 -0.4696 -0.4162
1047
+ vn -0.6831 -0.6326 -0.3651
1048
+ vn -0.5611 -0.7715 -0.2999
1049
+ vn -0.7786 0.4696 -0.4162
1050
+ vn -0.6825 -0.4696 -0.5601
1051
+ vn -0.5987 -0.6326 -0.4913
1052
+ vn -0.4918 -0.7715 -0.4036
1053
+ vn -0.6825 0.4696 -0.5601
1054
+ vn -0.3658 -0.8810 -0.3002
1055
+ vn -0.7400 0.2890 -0.6073
1056
+ vn -0.2254 -0.9566 -0.1850
1057
+ vn -0.7693 0.0975 -0.6314
1058
+ vn -0.0761 -0.9951 -0.0625
1059
+ vn -0.7693 -0.0975 -0.6314
1060
+ vn -0.7400 -0.2890 -0.6073
1061
+ vn -0.6073 0.2890 -0.7400
1062
+ vn -0.1850 -0.9565 -0.2254
1063
+ vn -0.6314 0.0975 -0.7693
1064
+ vn -0.0625 -0.9951 -0.0761
1065
+ vn -0.6314 -0.0975 -0.7693
1066
+ vn -0.6073 -0.2890 -0.7400
1067
+ vn -0.5601 -0.4696 -0.6825
1068
+ vn -0.4913 -0.6326 -0.5987
1069
+ vn -0.4036 -0.7715 -0.4918
1070
+ vn -0.5601 0.4696 -0.6825
1071
+ vn -0.3002 -0.8810 -0.3658
1072
+ vn -0.4162 -0.4696 -0.7786
1073
+ vn -0.3651 -0.6326 -0.6831
1074
+ vn -0.2999 -0.7715 -0.5611
1075
+ vn -0.4162 0.4696 -0.7786
1076
+ vn -0.2230 -0.8810 -0.4173
1077
+ vn -0.4513 0.2890 -0.8443
1078
+ vn -0.1374 -0.9565 -0.2571
1079
+ vn -0.4691 0.0975 -0.8777
1080
+ vn -0.0464 -0.9951 -0.0869
1081
+ vn -0.4691 -0.0975 -0.8777
1082
+ vn -0.4513 -0.2890 -0.8443
1083
+ vn -0.0846 -0.9565 -0.2790
1084
+ vn -0.2889 0.0975 -0.9524
1085
+ vn -0.0286 -0.9951 -0.0942
1086
+ vn -0.2889 -0.0975 -0.9524
1087
+ vn -0.2779 -0.2890 -0.9161
1088
+ vn -0.2563 -0.4696 -0.8448
1089
+ vn -0.2248 -0.6326 -0.7412
1090
+ vn -0.1847 -0.7715 -0.6088
1091
+ vn -0.2563 0.4696 -0.8448
1092
+ vn -0.1374 -0.8810 -0.4528
1093
+ vn -0.2779 0.2890 -0.9161
1094
+ vn -0.0759 -0.6326 -0.7708
1095
+ vn -0.0624 -0.7715 -0.6332
1096
+ vn -0.0865 0.4696 -0.8786
1097
+ vn -0.0464 -0.8810 -0.4709
1098
+ vn -0.0938 0.2890 -0.9527
1099
+ vn -0.0286 -0.9566 -0.2902
1100
+ vn -0.0976 0.0975 -0.9904
1101
+ vn -0.0097 -0.9951 -0.0980
1102
+ vn -0.0976 -0.0976 -0.9904
1103
+ vn -0.0938 -0.2890 -0.9527
1104
+ vn -0.0865 -0.4696 -0.8786
1105
+ usemtl CustomColor.002
1106
+ s off
1107
+ f 351/1/1 5/2/1 13/3/1 14/4/1
1108
+ f 352/5/2 351/1/2 14/4/2 15/6/2
1109
+ f 2/7/3 1/8/3 7/9/3 8/10/3
1110
+ f 353/11/4 352/5/4 15/6/4 16/12/4
1111
+ f 3/13/5 2/7/5 8/10/5 9/14/5
1112
+ f 6/15/6 353/11/6 16/12/6 17/16/6
1113
+ f 4/17/7 3/13/7 9/14/7 10/18/7
1114
+ f 183/19/8 6/15/8 17/16/8
1115
+ f 349/20/9 4/17/9 10/18/9 11/21/9
1116
+ f 350/22/10 349/20/10 11/21/10 12/23/10
1117
+ f 5/2/11 350/22/11 12/23/11 13/3/11
1118
+ f 12/23/12 11/21/12 22/24/12 23/25/12
1119
+ f 13/3/13 12/23/13 23/25/13 24/26/13
1120
+ f 14/4/14 13/3/14 24/26/14 25/27/14
1121
+ f 15/6/15 14/4/15 25/27/15 26/28/15
1122
+ f 8/10/16 7/9/16 18/29/16 19/30/16
1123
+ f 16/12/17 15/6/17 26/28/17 27/31/17
1124
+ f 9/14/18 8/10/18 19/30/18 20/32/18
1125
+ f 17/16/19 16/12/19 27/31/19 28/33/19
1126
+ f 10/18/20 9/14/20 20/32/20 21/34/20
1127
+ f 183/35/21 17/16/21 28/33/21
1128
+ f 11/21/22 10/18/22 21/34/22 22/24/22
1129
+ f 27/31/23 26/28/23 37/36/23 38/37/23
1130
+ f 20/32/24 19/30/24 30/38/24 31/39/24
1131
+ f 28/33/25 27/31/25 38/37/25 39/40/25
1132
+ f 21/34/26 20/32/26 31/39/26 32/41/26
1133
+ f 183/42/27 28/33/27 39/40/27
1134
+ f 22/24/28 21/34/28 32/41/28 33/43/28
1135
+ f 23/25/29 22/24/29 33/43/29 34/44/29
1136
+ f 24/26/30 23/25/30 34/44/30 35/45/30
1137
+ f 25/27/31 24/26/31 35/45/31 36/46/31
1138
+ f 26/28/32 25/27/32 36/46/32 37/36/32
1139
+ f 19/30/33 18/29/33 29/47/33 30/38/33
1140
+ f 35/45/34 34/44/34 45/48/34 46/49/34
1141
+ f 36/46/35 35/45/35 46/49/35 47/50/35
1142
+ f 37/36/36 36/46/36 47/50/36 48/51/36
1143
+ f 30/38/37 29/47/37 40/52/37 41/53/37
1144
+ f 38/37/38 37/36/38 48/51/38 49/54/38
1145
+ f 31/39/39 30/38/39 41/53/39 42/55/39
1146
+ f 39/40/40 38/37/40 49/54/40 50/56/40
1147
+ f 32/41/41 31/39/41 42/55/41 43/57/41
1148
+ f 183/58/42 39/40/42 50/56/42
1149
+ f 33/43/43 32/41/43 43/57/43 44/59/43
1150
+ f 34/44/44 33/43/44 44/59/44 45/48/44
1151
+ f 50/56/45 49/54/45 60/60/45 61/61/45
1152
+ f 43/57/46 42/55/46 53/62/46 54/63/46
1153
+ f 183/64/47 50/56/47 61/61/47
1154
+ f 44/59/48 43/57/48 54/63/48 55/65/48
1155
+ f 45/48/49 44/59/49 55/65/49 56/66/49
1156
+ f 46/49/50 45/48/50 56/66/50 57/67/50
1157
+ f 47/50/51 46/49/51 57/67/51 58/68/51
1158
+ f 48/51/52 47/50/52 58/68/52 59/69/52
1159
+ f 41/53/53 40/52/53 51/70/53 52/71/53
1160
+ f 49/54/54 48/51/54 59/69/54 60/60/54
1161
+ f 42/55/55 41/53/55 52/71/55 53/62/55
1162
+ f 58/68/56 57/67/56 68/72/56 69/73/56
1163
+ f 59/69/57 58/68/57 69/73/57 70/74/57
1164
+ f 52/71/58 51/70/58 62/75/58 63/76/58
1165
+ f 60/60/59 59/69/59 70/74/59 71/77/59
1166
+ f 53/62/60 52/71/60 63/76/60 64/78/60
1167
+ f 61/61/61 60/60/61 71/77/61 72/79/61
1168
+ f 54/63/62 53/62/62 64/78/62 65/80/62
1169
+ f 183/81/63 61/61/63 72/79/63
1170
+ f 55/65/64 54/63/64 65/80/64 66/82/64
1171
+ f 56/66/65 55/65/65 66/82/65 67/83/65
1172
+ f 57/67/66 56/66/66 67/83/66 68/72/66
1173
+ f 65/80/67 64/78/67 75/84/67 76/85/67
1174
+ f 183/86/68 72/79/68 83/87/68
1175
+ f 66/82/69 65/80/69 76/85/69 77/88/69
1176
+ f 67/83/70 66/82/70 77/88/70 78/89/70
1177
+ f 68/72/71 67/83/71 78/89/71 79/90/71
1178
+ f 69/73/72 68/72/72 79/90/72 80/91/72
1179
+ f 70/74/73 69/73/73 80/91/73 81/92/73
1180
+ f 63/76/74 62/75/74 73/93/74 74/94/74
1181
+ f 71/77/75 70/74/75 81/92/75 82/95/75
1182
+ f 64/78/76 63/76/76 74/94/76 75/84/76
1183
+ f 72/79/77 71/77/77 82/95/77 83/87/77
1184
+ f 80/91/78 79/90/78 90/96/78 91/97/78
1185
+ f 81/92/79 80/91/79 91/97/79 92/98/79
1186
+ f 74/94/80 73/93/80 84/99/80 85/100/80
1187
+ f 82/95/81 81/92/81 92/98/81 93/101/81
1188
+ f 75/84/82 74/94/82 85/100/82 86/102/82
1189
+ f 83/87/83 82/95/83 93/101/83 94/103/83
1190
+ f 76/85/84 75/84/84 86/102/84 87/104/84
1191
+ f 183/105/85 83/87/85 94/103/85
1192
+ f 77/88/86 76/85/86 87/104/86 88/106/86
1193
+ f 78/89/87 77/88/87 88/106/87 89/107/87
1194
+ f 79/90/88 78/89/88 89/107/88 90/96/88
1195
+ f 183/108/89 94/103/89 105/109/89
1196
+ f 88/106/90 87/104/90 98/110/90 99/111/90
1197
+ f 89/107/91 88/106/91 99/111/91 100/112/91
1198
+ f 90/96/92 89/107/92 100/112/92 101/113/92
1199
+ f 91/97/93 90/96/93 101/113/93 102/114/93
1200
+ f 92/98/94 91/97/94 102/114/94 103/115/94
1201
+ f 85/100/95 84/99/95 95/116/95 96/117/95
1202
+ f 93/101/96 92/98/96 103/115/96 104/118/96
1203
+ f 86/102/97 85/100/97 96/117/97 97/119/97
1204
+ f 94/103/98 93/101/98 104/118/98 105/109/98
1205
+ f 87/104/99 86/102/99 97/119/99 98/110/99
1206
+ f 103/115/100 102/114/100 113/120/100 114/121/100
1207
+ f 96/117/101 95/116/101 106/122/101 107/123/101
1208
+ f 104/118/102 103/115/102 114/121/102 115/124/102
1209
+ f 97/119/103 96/117/103 107/123/103 108/125/103
1210
+ f 105/109/104 104/118/104 115/124/104 116/126/104
1211
+ f 98/110/105 97/119/105 108/125/105 109/127/105
1212
+ f 183/128/106 105/109/106 116/126/106
1213
+ f 99/111/107 98/110/107 109/127/107 110/129/107
1214
+ f 100/112/108 99/111/108 110/129/108 111/130/108
1215
+ f 101/113/109 100/112/109 111/130/109 112/131/109
1216
+ f 102/114/110 101/113/110 112/131/110 113/120/110
1217
+ f 110/129/111 109/127/111 120/132/111 121/133/111
1218
+ f 111/130/112 110/129/112 121/133/112 122/134/112
1219
+ f 112/131/113 111/130/113 122/134/113 123/135/113
1220
+ f 113/120/114 112/131/114 123/135/114 124/136/114
1221
+ f 114/121/115 113/120/115 124/136/115 125/137/115
1222
+ f 107/123/116 106/122/116 117/138/116 118/139/116
1223
+ f 115/124/117 114/121/117 125/137/117 126/140/117
1224
+ f 108/125/118 107/123/118 118/139/118 119/141/118
1225
+ f 116/126/119 115/124/119 126/140/119 127/142/119
1226
+ f 109/127/120 108/125/120 119/141/120 120/132/120
1227
+ f 183/143/121 116/126/121 127/142/121
1228
+ f 125/137/122 124/136/122 135/144/122 136/145/122
1229
+ f 118/139/123 117/138/123 128/146/123 129/147/123
1230
+ f 126/140/124 125/137/124 136/145/124 137/148/124
1231
+ f 119/141/125 118/139/125 129/147/125 130/149/125
1232
+ f 127/142/126 126/140/126 137/148/126 138/150/126
1233
+ f 120/132/127 119/141/127 130/149/127 131/151/127
1234
+ f 183/152/128 127/142/128 138/150/128
1235
+ f 121/133/129 120/132/129 131/151/129 132/153/129
1236
+ f 122/134/130 121/133/130 132/153/130 133/154/130
1237
+ f 123/135/131 122/134/131 133/154/131 134/155/131
1238
+ f 124/136/132 123/135/132 134/155/132 135/144/132
1239
+ f 133/154/133 132/153/133 143/156/133 144/157/133
1240
+ f 134/155/134 133/154/134 144/157/134 145/158/134
1241
+ f 135/144/135 134/155/135 145/158/135 146/159/135
1242
+ f 136/145/136 135/144/136 146/159/136 147/160/136
1243
+ f 129/147/137 128/146/137 139/161/137 140/162/137
1244
+ f 137/148/138 136/145/138 147/160/138 148/163/138
1245
+ f 130/149/139 129/147/139 140/162/139 141/164/139
1246
+ f 138/150/140 137/148/140 148/163/140 149/165/140
1247
+ f 131/151/141 130/149/141 141/164/141 142/166/141
1248
+ f 183/167/142 138/150/142 149/165/142
1249
+ f 132/153/143 131/151/143 142/166/143 143/156/143
1250
+ f 148/163/144 147/160/144 158/168/144 159/169/144
1251
+ f 141/164/145 140/162/145 151/170/145 152/171/145
1252
+ f 149/165/146 148/163/146 159/169/146 160/172/146
1253
+ f 142/166/147 141/164/147 152/171/147 153/173/147
1254
+ f 183/174/148 149/165/148 160/172/148
1255
+ f 143/156/149 142/166/149 153/173/149 154/175/149
1256
+ f 144/157/150 143/156/150 154/175/150 155/176/150
1257
+ f 145/158/151 144/157/151 155/176/151 156/177/151
1258
+ f 146/159/152 145/158/152 156/177/152 157/178/152
1259
+ f 147/160/153 146/159/153 157/178/153 158/168/153
1260
+ f 140/162/154 139/161/154 150/179/154 151/170/154
1261
+ f 156/177/155 155/176/155 166/180/155 167/181/155
1262
+ f 157/178/156 156/177/156 167/181/156 168/182/156
1263
+ f 158/168/157 157/178/157 168/182/157 169/183/157
1264
+ f 151/170/158 150/179/158 161/184/158 162/185/158
1265
+ f 159/169/159 158/168/159 169/183/159 170/186/159
1266
+ f 152/171/160 151/170/160 162/185/160 163/187/160
1267
+ f 160/172/161 159/169/161 170/186/161 171/188/161
1268
+ f 153/173/162 152/171/162 163/187/162 164/189/162
1269
+ f 183/190/163 160/172/163 171/188/163
1270
+ f 154/175/164 153/173/164 164/189/164 165/191/164
1271
+ f 155/176/165 154/175/165 165/191/165 166/180/165
1272
+ f 163/187/166 162/185/166 173/192/166 174/193/166
1273
+ f 171/188/167 170/186/167 181/194/167 182/195/167
1274
+ f 164/189/168 163/187/168 174/193/168 175/196/168
1275
+ f 183/197/169 171/188/169 182/195/169
1276
+ f 165/191/170 164/189/170 175/196/170 176/198/170
1277
+ f 166/180/171 165/191/171 176/198/171 177/199/171
1278
+ f 167/181/172 166/180/172 177/199/172 178/200/172
1279
+ f 168/182/173 167/181/173 178/200/173 179/201/173
1280
+ f 169/183/174 168/182/174 179/201/174 180/202/174
1281
+ f 162/185/175 161/184/175 172/203/175 173/192/175
1282
+ f 170/186/176 169/183/176 180/202/176 181/194/176
1283
+ f 178/200/177 177/199/177 189/204/177 190/205/177
1284
+ f 179/201/178 178/200/178 190/205/178 191/206/178
1285
+ f 180/202/179 179/201/179 191/206/179 192/207/179
1286
+ f 173/192/180 172/203/180 184/208/180 185/209/180
1287
+ f 181/194/181 180/202/181 192/207/181 193/210/181
1288
+ f 174/193/182 173/192/182 185/209/182 186/211/182
1289
+ f 182/195/183 181/194/183 193/210/183 194/212/183
1290
+ f 175/196/184 174/193/184 186/211/184 187/213/184
1291
+ f 183/214/185 182/195/185 194/212/185
1292
+ f 176/198/186 175/196/186 187/213/186 188/215/186
1293
+ f 177/199/187 176/198/187 188/215/187 189/204/187
1294
+ f 194/212/188 193/210/188 204/216/188 205/217/188
1295
+ f 187/213/189 186/211/189 197/218/189 198/219/189
1296
+ f 183/220/190 194/212/190 205/217/190
1297
+ f 188/215/191 187/213/191 198/219/191 199/221/191
1298
+ f 189/204/192 188/215/192 199/221/192 200/222/192
1299
+ f 190/205/193 189/204/193 200/222/193 201/223/193
1300
+ f 191/206/194 190/205/194 201/223/194 202/224/194
1301
+ f 192/207/195 191/206/195 202/224/195 203/225/195
1302
+ f 185/209/196 184/208/196 195/226/196 196/227/196
1303
+ f 193/210/197 192/207/197 203/225/197 204/216/197
1304
+ f 186/211/198 185/209/198 196/227/198 197/218/198
1305
+ f 202/224/199 201/223/199 212/228/199 213/229/199
1306
+ f 203/225/200 202/224/200 213/229/200 214/230/200
1307
+ f 196/227/201 195/226/201 206/231/201 207/232/201
1308
+ f 204/216/202 203/225/202 214/230/202 215/233/202
1309
+ f 197/218/203 196/227/203 207/232/203 208/234/203
1310
+ f 205/217/204 204/216/204 215/233/204 216/235/204
1311
+ f 198/219/205 197/218/205 208/234/205 209/236/205
1312
+ f 183/237/206 205/217/206 216/235/206
1313
+ f 199/221/207 198/219/207 209/236/207 210/238/207
1314
+ f 200/222/208 199/221/208 210/238/208 211/239/208
1315
+ f 201/223/209 200/222/209 211/239/209 212/228/209
1316
+ f 209/236/210 208/234/210 219/240/210 220/241/210
1317
+ f 183/242/211 216/235/211 227/243/211
1318
+ f 210/238/212 209/236/212 220/241/212 221/244/212
1319
+ f 211/239/213 210/238/213 221/244/213 222/245/213
1320
+ f 212/228/214 211/239/214 222/245/214 223/246/214
1321
+ f 213/229/215 212/228/215 223/246/215 224/247/215
1322
+ f 214/230/216 213/229/216 224/247/216 225/248/216
1323
+ f 207/232/217 206/231/217 217/249/217 218/250/217
1324
+ f 215/233/218 214/230/218 225/248/218 226/251/218
1325
+ f 208/234/219 207/232/219 218/250/219 219/240/219
1326
+ f 216/235/220 215/233/220 226/251/220 227/243/220
1327
+ f 224/247/221 223/246/221 234/252/221 235/253/221
1328
+ f 225/248/222 224/247/222 235/253/222 236/254/222
1329
+ f 218/250/223 217/249/223 228/255/223 229/256/223
1330
+ f 226/251/224 225/248/224 236/254/224 237/257/224
1331
+ f 219/240/225 218/250/225 229/256/225 230/258/225
1332
+ f 227/243/226 226/251/226 237/257/226 238/259/226
1333
+ f 220/241/227 219/240/227 230/258/227 231/260/227
1334
+ f 183/261/228 227/243/228 238/259/228
1335
+ f 221/244/229 220/241/229 231/260/229 232/262/229
1336
+ f 222/245/230 221/244/230 232/262/230 233/263/230
1337
+ f 223/246/231 222/245/231 233/263/231 234/252/231
1338
+ f 183/264/232 238/259/232 249/265/232
1339
+ f 232/262/233 231/260/233 242/266/233 243/267/233
1340
+ f 233/263/234 232/262/234 243/267/234 244/268/234
1341
+ f 234/252/235 233/263/235 244/268/235 245/269/235
1342
+ f 235/253/236 234/252/236 245/269/236 246/270/236
1343
+ f 236/254/237 235/253/237 246/270/237 247/271/237
1344
+ f 229/256/238 228/255/238 239/272/238 240/273/238
1345
+ f 237/257/239 236/254/239 247/271/239 248/274/239
1346
+ f 230/258/240 229/256/240 240/273/240 241/275/240
1347
+ f 238/259/241 237/257/241 248/274/241 249/265/241
1348
+ f 231/260/242 230/258/242 241/275/242 242/266/242
1349
+ f 247/271/243 246/270/243 257/276/243 258/277/243
1350
+ f 240/273/244 239/272/244 250/278/244 251/279/244
1351
+ f 248/274/245 247/271/245 258/277/245 259/280/245
1352
+ f 241/275/246 240/273/246 251/279/246 252/281/246
1353
+ f 249/265/247 248/274/247 259/280/247 260/282/247
1354
+ f 242/266/248 241/275/248 252/281/248 253/283/248
1355
+ f 183/284/249 249/265/249 260/282/249
1356
+ f 243/267/250 242/266/250 253/283/250 254/285/250
1357
+ f 244/268/251 243/267/251 254/285/251 255/286/251
1358
+ f 245/269/252 244/268/252 255/286/252 256/287/252
1359
+ f 246/270/253 245/269/253 256/287/253 257/276/253
1360
+ f 255/286/254 254/285/254 265/288/254 266/289/254
1361
+ f 256/287/255 255/286/255 266/289/255 267/290/255
1362
+ f 257/276/256 256/287/256 267/290/256 268/291/256
1363
+ f 258/277/257 257/276/257 268/291/257 269/292/257
1364
+ f 251/279/258 250/278/258 261/293/258 262/294/258
1365
+ f 259/280/259 258/277/259 269/292/259 270/295/259
1366
+ f 252/281/260 251/279/260 262/294/260 263/296/260
1367
+ f 260/282/261 259/280/261 270/295/261 271/297/261
1368
+ f 253/283/262 252/281/262 263/296/262 264/298/262
1369
+ f 183/299/263 260/282/263 271/297/263
1370
+ f 254/285/264 253/283/264 264/298/264 265/288/264
1371
+ f 262/300/265 261/301/265 272/302/265 273/303/265
1372
+ f 270/304/266 269/305/266 280/306/266 281/307/266
1373
+ f 263/308/267 262/300/267 273/303/267 274/309/267
1374
+ f 271/310/268 270/304/268 281/307/268 282/311/268
1375
+ f 264/312/269 263/308/269 274/309/269 275/313/269
1376
+ f 183/314/270 271/310/270 282/311/270
1377
+ f 265/315/271 264/312/271 275/313/271 276/316/271
1378
+ f 266/317/272 265/315/272 276/316/272 277/318/272
1379
+ f 267/319/273 266/317/273 277/318/273 278/320/273
1380
+ f 268/321/274 267/319/274 278/320/274 279/322/274
1381
+ f 269/305/275 268/321/275 279/322/275 280/306/275
1382
+ f 277/318/276 276/316/276 287/323/276 288/324/276
1383
+ f 278/320/277 277/318/277 288/324/277 289/325/277
1384
+ f 279/322/278 278/320/278 289/325/278 290/326/278
1385
+ f 280/306/279 279/322/279 290/326/279 291/327/279
1386
+ f 273/303/280 272/302/280 283/328/280 284/329/280
1387
+ f 281/307/281 280/306/281 291/327/281 292/330/281
1388
+ f 274/309/282 273/303/282 284/329/282 285/331/282
1389
+ f 282/311/283 281/307/283 292/330/283 293/332/283
1390
+ f 275/313/284 274/309/284 285/331/284 286/333/284
1391
+ f 183/334/285 282/311/285 293/332/285
1392
+ f 276/316/286 275/313/286 286/333/286 287/323/286
1393
+ f 292/330/287 291/327/287 302/335/287 303/336/287
1394
+ f 285/331/288 284/329/288 295/337/288 296/338/288
1395
+ f 293/332/289 292/330/289 303/336/289 304/339/289
1396
+ f 286/333/290 285/331/290 296/338/290 297/340/290
1397
+ f 183/341/291 293/332/291 304/339/291
1398
+ f 287/323/292 286/333/292 297/340/292 298/342/292
1399
+ f 288/324/293 287/323/293 298/342/293 299/343/293
1400
+ f 289/325/294 288/324/294 299/343/294 300/344/294
1401
+ f 290/326/295 289/325/295 300/344/295 301/345/295
1402
+ f 291/327/296 290/326/296 301/345/296 302/335/296
1403
+ f 284/329/297 283/328/297 294/346/297 295/337/297
1404
+ f 300/344/298 299/343/298 310/347/298 311/348/298
1405
+ f 301/345/299 300/344/299 311/348/299 312/349/299
1406
+ f 302/335/300 301/345/300 312/349/300 313/350/300
1407
+ f 295/337/301 294/346/301 305/351/301 306/352/301
1408
+ f 303/336/302 302/335/302 313/350/302 314/353/302
1409
+ f 296/338/303 295/337/303 306/352/303 307/354/303
1410
+ f 304/339/304 303/336/304 314/353/304 315/355/304
1411
+ f 297/340/305 296/338/305 307/354/305 308/356/305
1412
+ f 183/357/306 304/339/306 315/355/306
1413
+ f 298/342/307 297/340/307 308/356/307 309/358/307
1414
+ f 299/343/308 298/342/308 309/358/308 310/347/308
1415
+ f 307/354/309 306/352/309 317/359/309 318/360/309
1416
+ f 315/355/310 314/353/310 325/361/310 326/362/310
1417
+ f 308/356/311 307/354/311 318/360/311 319/363/311
1418
+ f 183/364/312 315/355/312 326/362/312
1419
+ f 309/358/313 308/356/313 319/363/313 320/365/313
1420
+ f 310/347/314 309/358/314 320/365/314 321/366/314
1421
+ f 311/348/315 310/347/315 321/366/315 322/367/315
1422
+ f 312/349/316 311/348/316 322/367/316 323/368/316
1423
+ f 313/350/317 312/349/317 323/368/317 324/369/317
1424
+ f 306/352/318 305/351/318 316/370/318 317/359/318
1425
+ f 314/353/319 313/350/319 324/369/319 325/361/319
1426
+ f 322/367/320 321/366/320 332/371/320 333/372/320
1427
+ f 323/368/321 322/367/321 333/372/321 334/373/321
1428
+ f 324/369/322 323/368/322 334/373/322 335/374/322
1429
+ f 317/359/323 316/370/323 327/375/323 328/376/323
1430
+ f 325/361/324 324/369/324 335/374/324 336/377/324
1431
+ f 318/360/325 317/359/325 328/376/325 329/378/325
1432
+ f 326/362/326 325/361/326 336/377/326 337/379/326
1433
+ f 319/363/327 318/360/327 329/378/327 330/380/327
1434
+ f 183/381/328 326/362/328 337/379/328
1435
+ f 320/365/329 319/363/329 330/380/329 331/382/329
1436
+ f 321/366/330 320/365/330 331/382/330 332/371/330
1437
+ f 337/379/331 336/377/331 347/383/331 348/384/331
1438
+ f 330/380/332 329/378/332 340/385/332 341/386/332
1439
+ f 183/387/333 337/379/333 348/384/333
1440
+ f 331/382/334 330/380/334 341/386/334 342/388/334
1441
+ f 332/371/335 331/382/335 342/388/335 343/389/335
1442
+ f 333/372/336 332/371/336 343/389/336 344/390/336
1443
+ f 334/373/337 333/372/337 344/390/337 345/391/337
1444
+ f 335/374/338 334/373/338 345/391/338 346/392/338
1445
+ f 328/376/339 327/375/339 338/393/339 339/394/339
1446
+ f 336/377/340 335/374/340 346/392/340 347/383/340
1447
+ f 329/378/341 328/376/341 339/394/341 340/385/341
1448
+ f 345/391/342 344/390/342 5/2/342 351/1/342
1449
+ f 346/392/343 345/391/343 351/1/343 352/5/343
1450
+ f 339/394/344 338/393/344 1/8/344 2/7/344
1451
+ f 347/383/345 346/392/345 352/5/345 353/11/345
1452
+ f 340/385/346 339/394/346 2/7/346 3/13/346
1453
+ f 348/384/347 347/383/347 353/11/347 6/15/347
1454
+ f 341/386/348 340/385/348 3/13/348 4/17/348
1455
+ f 183/395/349 348/384/349 6/15/349
1456
+ f 342/388/350 341/386/350 4/17/350 349/20/350
1457
+ f 343/389/351 342/388/351 349/20/351 350/22/351
1458
+ f 344/390/352 343/389/352 350/22/352 5/2/352
cliport/environments/assets/bags/bl_sphere_bag_basic_002.mtl ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl CustomColor.003
5
+ Ns 323.999994
6
+ Ka 1.000000 1.000000 1.000000
7
+ Kd 0.000000 0.000000 1.000000
8
+ Ks 0.500000 0.500000 0.500000
9
+ Ke 0.000000 0.000000 0.000000
10
+ Ni 1.000000
11
+ d 1.000000
12
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_basic_002.obj ADDED
@@ -0,0 +1,1329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_basic_002.mtl
4
+ o Sphere.002
5
+ v 0.000000 2.306147 -0.739104
6
+ v 0.000000 2.156072 -0.784628
7
+ v 0.000000 2.000000 -0.800000
8
+ v 0.000000 1.555544 -0.665176
9
+ v 0.000000 1.215372 -0.156072
10
+ v 0.144192 2.306147 -0.724902
11
+ v 0.153073 2.156072 -0.769552
12
+ v 0.156072 2.000000 -0.784628
13
+ v 0.153073 1.843928 -0.769552
14
+ v 0.144192 1.693853 -0.724902
15
+ v 0.129769 1.555544 -0.652395
16
+ v 0.110360 1.434314 -0.554816
17
+ v 0.086709 1.334824 -0.435916
18
+ v 0.059726 1.260896 -0.300264
19
+ v 0.030448 1.215372 -0.153073
20
+ v 0.282843 2.306147 -0.682843
21
+ v 0.300264 2.156072 -0.724902
22
+ v 0.306147 2.000000 -0.739104
23
+ v 0.300264 1.843928 -0.724902
24
+ v 0.282843 1.693853 -0.682843
25
+ v 0.254552 1.555544 -0.614542
26
+ v 0.216479 1.434314 -0.522625
27
+ v 0.170086 1.334824 -0.410624
28
+ v 0.117157 1.260896 -0.282843
29
+ v 0.059726 1.215372 -0.144192
30
+ v 0.410624 2.306147 -0.614542
31
+ v 0.435916 2.156072 -0.652394
32
+ v 0.444456 2.000000 -0.665176
33
+ v 0.435916 1.843928 -0.652394
34
+ v 0.410624 1.693853 -0.614542
35
+ v 0.369552 1.555544 -0.553073
36
+ v 0.314278 1.434314 -0.470350
37
+ v 0.246927 1.334824 -0.369552
38
+ v 0.170086 1.260896 -0.254552
39
+ v 0.086709 1.215372 -0.129769
40
+ v 0.522625 2.306147 -0.522625
41
+ v 0.554816 2.156072 -0.554816
42
+ v 0.565686 2.000000 -0.565685
43
+ v 0.554816 1.843928 -0.554816
44
+ v 0.522625 1.693853 -0.522625
45
+ v 0.470350 1.555544 -0.470350
46
+ v 0.400000 1.434314 -0.400000
47
+ v 0.314278 1.334824 -0.314278
48
+ v 0.216479 1.260896 -0.216478
49
+ v 0.110360 1.215372 -0.110360
50
+ v 0.614542 2.306147 -0.410624
51
+ v 0.652395 2.156072 -0.435916
52
+ v 0.665176 2.000000 -0.444456
53
+ v 0.652395 1.843928 -0.435916
54
+ v 0.614542 1.693853 -0.410624
55
+ v 0.553074 1.555544 -0.369552
56
+ v 0.470350 1.434314 -0.314278
57
+ v 0.369552 1.334824 -0.246926
58
+ v 0.254552 1.260896 -0.170086
59
+ v 0.129769 1.215372 -0.086709
60
+ v 0.682843 2.306147 -0.282842
61
+ v 0.724902 2.156072 -0.300264
62
+ v 0.739104 2.000000 -0.306146
63
+ v 0.724902 1.843928 -0.300264
64
+ v 0.682843 1.693853 -0.282843
65
+ v 0.614542 1.555544 -0.254551
66
+ v 0.522625 1.434314 -0.216478
67
+ v 0.410624 1.334824 -0.170086
68
+ v 0.282843 1.260896 -0.117157
69
+ v 0.144192 1.215372 -0.059726
70
+ v 0.724902 2.306147 -0.144192
71
+ v 0.769552 2.156072 -0.153073
72
+ v 0.784628 2.000000 -0.156072
73
+ v 0.769552 1.843928 -0.153073
74
+ v 0.724902 1.693853 -0.144192
75
+ v 0.652395 1.555544 -0.129769
76
+ v 0.554816 1.434314 -0.110359
77
+ v 0.435916 1.334824 -0.086709
78
+ v 0.300264 1.260896 -0.059726
79
+ v 0.153073 1.215372 -0.030448
80
+ v 0.739104 2.306147 0.000000
81
+ v 0.784628 2.156072 0.000000
82
+ v 0.800000 2.000000 0.000000
83
+ v 0.784628 1.843928 0.000000
84
+ v 0.739104 1.693853 0.000000
85
+ v 0.665176 1.555544 0.000000
86
+ v 0.565686 1.434314 0.000000
87
+ v 0.444456 1.334824 0.000000
88
+ v 0.306147 1.260896 0.000000
89
+ v 0.156072 1.215372 0.000000
90
+ v 0.724902 2.306147 0.144192
91
+ v 0.769552 2.156072 0.153074
92
+ v 0.784628 2.000000 0.156073
93
+ v 0.769552 1.843928 0.153074
94
+ v 0.724902 1.693853 0.144192
95
+ v 0.652395 1.555544 0.129770
96
+ v 0.554816 1.434314 0.110360
97
+ v 0.435916 1.334824 0.086709
98
+ v 0.300264 1.260896 0.059727
99
+ v 0.153073 1.215372 0.030448
100
+ v 0.682843 2.306147 0.282843
101
+ v 0.724902 2.156072 0.300264
102
+ v 0.739104 2.000000 0.306147
103
+ v 0.724902 1.843928 0.300265
104
+ v 0.682843 1.693853 0.282843
105
+ v 0.614542 1.555544 0.254552
106
+ v 0.522625 1.434314 0.216479
107
+ v 0.410624 1.334824 0.170086
108
+ v 0.282843 1.260896 0.117158
109
+ v 0.144192 1.215372 0.059727
110
+ v 0.614542 2.306147 0.410624
111
+ v 0.652395 2.156072 0.435916
112
+ v 0.665176 2.000000 0.444457
113
+ v 0.652395 1.843928 0.435916
114
+ v 0.614542 1.693853 0.410624
115
+ v 0.553073 1.555544 0.369552
116
+ v 0.470350 1.434314 0.314278
117
+ v 0.369552 1.334824 0.246927
118
+ v 0.254552 1.260896 0.170086
119
+ v 0.129769 1.215372 0.086709
120
+ v 0.522625 2.306147 0.522626
121
+ v 0.554816 2.156072 0.554816
122
+ v 0.565685 2.000000 0.565686
123
+ v 0.554816 1.843928 0.554816
124
+ v 0.522625 1.693853 0.522626
125
+ v 0.470350 1.555544 0.470351
126
+ v 0.400000 1.434314 0.400000
127
+ v 0.314278 1.334824 0.314278
128
+ v 0.216479 1.260896 0.216479
129
+ v 0.110360 1.215372 0.110360
130
+ v 0.410624 2.306147 0.614542
131
+ v 0.435916 2.156072 0.652395
132
+ v 0.444456 2.000000 0.665176
133
+ v 0.435916 1.843928 0.652395
134
+ v 0.410624 1.693853 0.614542
135
+ v 0.369552 1.555544 0.553074
136
+ v 0.314278 1.434314 0.470351
137
+ v 0.246927 1.334824 0.369552
138
+ v 0.170086 1.260896 0.254552
139
+ v 0.086709 1.215372 0.129770
140
+ v 0.282843 2.306147 0.682843
141
+ v 0.300264 2.156072 0.724902
142
+ v 0.306147 2.000000 0.739104
143
+ v 0.300264 1.843928 0.724902
144
+ v 0.282843 1.693853 0.682843
145
+ v 0.254552 1.555544 0.614543
146
+ v 0.216478 1.434314 0.522626
147
+ v 0.170086 1.334824 0.410624
148
+ v 0.117157 1.260896 0.282843
149
+ v 0.059726 1.215372 0.144192
150
+ v 0.144192 2.306147 0.724902
151
+ v 0.153073 2.156072 0.769552
152
+ v 0.156072 2.000000 0.784628
153
+ v 0.153073 1.843928 0.769552
154
+ v 0.144192 1.693853 0.724902
155
+ v 0.129769 1.555544 0.652395
156
+ v 0.110360 1.434314 0.554816
157
+ v 0.086709 1.334824 0.435916
158
+ v 0.059726 1.260896 0.300265
159
+ v 0.030448 1.215372 0.153074
160
+ v -0.000000 2.306147 0.739104
161
+ v 0.000000 2.156072 0.784628
162
+ v -0.000000 2.000000 0.800000
163
+ v 0.000000 1.843928 0.784628
164
+ v -0.000000 1.693853 0.739104
165
+ v -0.000000 1.555544 0.665176
166
+ v -0.000000 1.434314 0.565686
167
+ v -0.000000 1.334824 0.444456
168
+ v 0.000000 1.260896 0.306147
169
+ v -0.000000 1.215372 0.156072
170
+ v 0.000000 1.200000 0.000000
171
+ v -0.144192 2.306147 0.724902
172
+ v -0.153073 2.156072 0.769552
173
+ v -0.156072 2.000000 0.784628
174
+ v -0.153073 1.843928 0.769552
175
+ v -0.144192 1.693853 0.724902
176
+ v -0.129770 1.555544 0.652395
177
+ v -0.110360 1.434314 0.554816
178
+ v -0.086709 1.334824 0.435916
179
+ v -0.059726 1.260896 0.300264
180
+ v -0.030448 1.215372 0.153074
181
+ v -0.282843 2.306147 0.682843
182
+ v -0.300264 2.156072 0.724902
183
+ v -0.306147 2.000000 0.739104
184
+ v -0.300264 1.843928 0.724902
185
+ v -0.282843 1.693853 0.682843
186
+ v -0.254552 1.555544 0.614542
187
+ v -0.216479 1.434314 0.522625
188
+ v -0.170086 1.334824 0.410624
189
+ v -0.117157 1.260896 0.282843
190
+ v -0.059726 1.215372 0.144192
191
+ v -0.410624 2.306147 0.614542
192
+ v -0.435916 2.156072 0.652395
193
+ v -0.444456 2.000000 0.665176
194
+ v -0.435916 1.843928 0.652395
195
+ v -0.410624 1.693853 0.614542
196
+ v -0.369552 1.555544 0.553073
197
+ v -0.314278 1.434314 0.470350
198
+ v -0.246927 1.334824 0.369552
199
+ v -0.170086 1.260896 0.254552
200
+ v -0.086709 1.215372 0.129770
201
+ v -0.522625 2.306147 0.522625
202
+ v -0.554816 2.156072 0.554816
203
+ v -0.565685 2.000000 0.565685
204
+ v -0.554816 1.843928 0.554816
205
+ v -0.522625 1.693853 0.522625
206
+ v -0.470350 1.555544 0.470350
207
+ v -0.400000 1.434314 0.400000
208
+ v -0.314278 1.334824 0.314278
209
+ v -0.216478 1.260896 0.216479
210
+ v -0.110360 1.215372 0.110360
211
+ v -0.614542 2.306147 0.410624
212
+ v -0.652394 2.156072 0.435916
213
+ v -0.665175 2.000000 0.444456
214
+ v -0.652394 1.843928 0.435916
215
+ v -0.614542 1.693853 0.410624
216
+ v -0.553073 1.555544 0.369552
217
+ v -0.470350 1.434314 0.314278
218
+ v -0.369552 1.334824 0.246927
219
+ v -0.254552 1.260896 0.170086
220
+ v -0.129769 1.215372 0.086709
221
+ v -0.682842 2.306147 0.282843
222
+ v -0.724902 2.156072 0.300265
223
+ v -0.739103 2.000000 0.306147
224
+ v -0.724902 1.843928 0.300264
225
+ v -0.682842 1.693853 0.282843
226
+ v -0.614542 1.555544 0.254552
227
+ v -0.522625 1.434314 0.216479
228
+ v -0.410624 1.334824 0.170086
229
+ v -0.282843 1.260896 0.117158
230
+ v -0.144192 1.215372 0.059726
231
+ v -0.724902 2.306147 0.144192
232
+ v -0.769552 2.156072 0.153074
233
+ v -0.784628 2.000000 0.156072
234
+ v -0.769552 1.843928 0.153074
235
+ v -0.724902 1.693853 0.144192
236
+ v -0.652394 1.555544 0.129769
237
+ v -0.554816 1.434314 0.110360
238
+ v -0.435916 1.334824 0.086709
239
+ v -0.300264 1.260896 0.059726
240
+ v -0.153073 1.215372 0.030448
241
+ v -0.739103 2.306147 0.000000
242
+ v -0.784628 2.156072 0.000000
243
+ v -0.800000 2.000000 0.000000
244
+ v -0.784628 1.843928 0.000000
245
+ v -0.739103 1.693853 0.000000
246
+ v -0.665175 1.555544 0.000000
247
+ v -0.565685 1.434314 0.000000
248
+ v -0.444456 1.334824 0.000000
249
+ v -0.306147 1.260896 0.000000
250
+ v -0.156072 1.215372 0.000000
251
+ v -0.724901 2.306147 -0.144192
252
+ v -0.769552 2.156072 -0.153073
253
+ v -0.784628 2.000000 -0.156072
254
+ v -0.769552 1.843928 -0.153073
255
+ v -0.724901 1.693853 -0.144192
256
+ v -0.652394 1.555544 -0.129769
257
+ v -0.554816 1.434314 -0.110360
258
+ v -0.435916 1.334824 -0.086709
259
+ v -0.300264 1.260896 -0.059726
260
+ v -0.153073 1.215372 -0.030448
261
+ v -0.682842 2.306147 -0.282842
262
+ v -0.724902 2.156072 -0.300264
263
+ v -0.739103 2.000000 -0.306147
264
+ v -0.724902 1.843928 -0.300264
265
+ v -0.682842 1.693853 -0.282842
266
+ v -0.614542 1.555544 -0.254552
267
+ v -0.522625 1.434314 -0.216478
268
+ v -0.410624 1.334824 -0.170086
269
+ v -0.282843 1.260896 -0.117157
270
+ v -0.144192 1.215372 -0.059726
271
+ v -0.614542 2.306147 -0.410624
272
+ v -0.652394 2.156072 -0.435916
273
+ v -0.665175 2.000000 -0.444456
274
+ v -0.652394 1.843928 -0.435916
275
+ v -0.614542 1.693853 -0.410624
276
+ v -0.553073 1.555544 -0.369552
277
+ v -0.470350 1.434314 -0.314278
278
+ v -0.369551 1.334824 -0.246926
279
+ v -0.254552 1.260896 -0.170086
280
+ v -0.129769 1.215372 -0.086709
281
+ v -0.522625 2.306147 -0.522625
282
+ v -0.554816 2.156072 -0.554815
283
+ v -0.565685 2.000000 -0.565685
284
+ v -0.554816 1.843928 -0.554815
285
+ v -0.522625 1.693853 -0.522625
286
+ v -0.470350 1.555544 -0.470350
287
+ v -0.400000 1.434314 -0.400000
288
+ v -0.314278 1.334824 -0.314278
289
+ v -0.216478 1.260896 -0.216478
290
+ v -0.110360 1.215372 -0.110359
291
+ v -0.410623 2.306147 -0.614542
292
+ v -0.435916 2.156072 -0.652394
293
+ v -0.444456 2.000000 -0.665175
294
+ v -0.435916 1.843928 -0.652394
295
+ v -0.410623 1.693853 -0.614542
296
+ v -0.369551 1.555544 -0.553073
297
+ v -0.314278 1.434314 -0.470350
298
+ v -0.246926 1.334824 -0.369551
299
+ v -0.170086 1.260896 -0.254551
300
+ v -0.086709 1.215372 -0.129769
301
+ v -0.282842 2.306147 -0.682842
302
+ v -0.300264 2.156072 -0.724901
303
+ v -0.306146 2.000000 -0.739103
304
+ v -0.300264 1.843928 -0.724901
305
+ v -0.282842 1.693853 -0.682842
306
+ v -0.254551 1.555544 -0.614542
307
+ v -0.216478 1.434314 -0.522625
308
+ v -0.170086 1.334824 -0.410623
309
+ v -0.117157 1.260896 -0.282842
310
+ v -0.059726 1.215372 -0.144192
311
+ v -0.144192 2.306147 -0.724901
312
+ v -0.153073 2.156072 -0.769551
313
+ v -0.156072 2.000000 -0.784627
314
+ v -0.153073 1.843928 -0.769551
315
+ v -0.144192 1.693853 -0.724901
316
+ v -0.129769 1.555544 -0.652394
317
+ v -0.110360 1.434314 -0.554815
318
+ v -0.086709 1.334824 -0.435915
319
+ v -0.059726 1.260896 -0.300264
320
+ v -0.030448 1.215372 -0.153073
321
+ v 0.000000 1.843928 -0.784628
322
+ v 0.000000 1.693853 -0.739103
323
+ v 0.000000 1.434314 -0.565685
324
+ v 0.000000 1.334824 -0.444456
325
+ v 0.000000 1.260896 -0.306146
326
+ vt 0.750000 0.250000
327
+ vt 0.750000 0.312500
328
+ vt 0.718750 0.312500
329
+ vt 0.718750 0.250000
330
+ vt 0.750000 0.187500
331
+ vt 0.718750 0.187500
332
+ vt 0.750000 0.125000
333
+ vt 0.718750 0.125000
334
+ vt 0.750000 0.562500
335
+ vt 0.750000 0.625000
336
+ vt 0.718750 0.625000
337
+ vt 0.718750 0.562500
338
+ vt 0.750000 0.062500
339
+ vt 0.718750 0.062500
340
+ vt 0.750000 0.500000
341
+ vt 0.718750 0.500000
342
+ vt 0.734375 0.000000
343
+ vt 0.750000 0.437500
344
+ vt 0.718750 0.437500
345
+ vt 0.750000 0.375000
346
+ vt 0.718750 0.375000
347
+ vt 0.687500 0.437500
348
+ vt 0.687500 0.375000
349
+ vt 0.687500 0.312500
350
+ vt 0.687500 0.250000
351
+ vt 0.687500 0.187500
352
+ vt 0.687500 0.125000
353
+ vt 0.687500 0.625000
354
+ vt 0.687500 0.562500
355
+ vt 0.687500 0.062500
356
+ vt 0.687500 0.500000
357
+ vt 0.703125 0.000000
358
+ vt 0.656250 0.187500
359
+ vt 0.656250 0.125000
360
+ vt 0.656250 0.625000
361
+ vt 0.656250 0.562500
362
+ vt 0.656250 0.062500
363
+ vt 0.656250 0.500000
364
+ vt 0.671875 0.000000
365
+ vt 0.656250 0.437500
366
+ vt 0.656250 0.375000
367
+ vt 0.656250 0.312500
368
+ vt 0.656250 0.250000
369
+ vt 0.625000 0.375000
370
+ vt 0.625000 0.312500
371
+ vt 0.625000 0.250000
372
+ vt 0.625000 0.187500
373
+ vt 0.625000 0.125000
374
+ vt 0.625000 0.625000
375
+ vt 0.625000 0.562500
376
+ vt 0.625000 0.062500
377
+ vt 0.625000 0.500000
378
+ vt 0.640625 0.000000
379
+ vt 0.625000 0.437500
380
+ vt 0.593750 0.125000
381
+ vt 0.593750 0.062500
382
+ vt 0.593750 0.562500
383
+ vt 0.593750 0.500000
384
+ vt 0.609375 0.000000
385
+ vt 0.593750 0.437500
386
+ vt 0.593750 0.375000
387
+ vt 0.593750 0.312500
388
+ vt 0.593750 0.250000
389
+ vt 0.593750 0.187500
390
+ vt 0.593750 0.625000
391
+ vt 0.562500 0.312500
392
+ vt 0.562500 0.250000
393
+ vt 0.562500 0.187500
394
+ vt 0.562500 0.125000
395
+ vt 0.562500 0.625000
396
+ vt 0.562500 0.562500
397
+ vt 0.562500 0.062500
398
+ vt 0.562500 0.500000
399
+ vt 0.578125 0.000000
400
+ vt 0.562500 0.437500
401
+ vt 0.562500 0.375000
402
+ vt 0.531250 0.562500
403
+ vt 0.531250 0.500000
404
+ vt 0.546875 0.000000
405
+ vt 0.531250 0.062500
406
+ vt 0.531250 0.437500
407
+ vt 0.531250 0.375000
408
+ vt 0.531250 0.312500
409
+ vt 0.531250 0.250000
410
+ vt 0.531250 0.187500
411
+ vt 0.531250 0.125000
412
+ vt 0.531250 0.625000
413
+ vt 0.500000 0.312500
414
+ vt 0.500000 0.250000
415
+ vt 0.500000 0.187500
416
+ vt 0.500000 0.125000
417
+ vt 0.500000 0.625000
418
+ vt 0.500000 0.562500
419
+ vt 0.500000 0.062500
420
+ vt 0.500000 0.500000
421
+ vt 0.515625 0.000000
422
+ vt 0.500000 0.437500
423
+ vt 0.500000 0.375000
424
+ vt 0.484375 0.000000
425
+ vt 0.468750 0.062500
426
+ vt 0.468750 0.500000
427
+ vt 0.468750 0.437500
428
+ vt 0.468750 0.375000
429
+ vt 0.468750 0.312500
430
+ vt 0.468750 0.250000
431
+ vt 0.468750 0.187500
432
+ vt 0.468750 0.125000
433
+ vt 0.468750 0.625000
434
+ vt 0.468750 0.562500
435
+ vt 0.437500 0.250000
436
+ vt 0.437500 0.187500
437
+ vt 0.437500 0.125000
438
+ vt 0.437500 0.625000
439
+ vt 0.437500 0.562500
440
+ vt 0.437500 0.062500
441
+ vt 0.437500 0.500000
442
+ vt 0.453125 0.000000
443
+ vt 0.437500 0.437500
444
+ vt 0.437500 0.375000
445
+ vt 0.437500 0.312500
446
+ vt 0.406250 0.500000
447
+ vt 0.406250 0.437500
448
+ vt 0.406250 0.375000
449
+ vt 0.406250 0.312500
450
+ vt 0.406250 0.250000
451
+ vt 0.406250 0.187500
452
+ vt 0.406250 0.125000
453
+ vt 0.406250 0.625000
454
+ vt 0.406250 0.562500
455
+ vt 0.406250 0.062500
456
+ vt 0.421875 0.000000
457
+ vt 0.375000 0.250000
458
+ vt 0.375000 0.187500
459
+ vt 0.375000 0.125000
460
+ vt 0.375000 0.625000
461
+ vt 0.375000 0.562500
462
+ vt 0.375000 0.062500
463
+ vt 0.375000 0.500000
464
+ vt 0.390625 0.000000
465
+ vt 0.375000 0.437500
466
+ vt 0.375000 0.375000
467
+ vt 0.375000 0.312500
468
+ vt 0.343750 0.437500
469
+ vt 0.343750 0.375000
470
+ vt 0.343750 0.312500
471
+ vt 0.343750 0.250000
472
+ vt 0.343750 0.187500
473
+ vt 0.343750 0.125000
474
+ vt 0.343750 0.625000
475
+ vt 0.343750 0.562500
476
+ vt 0.343750 0.062500
477
+ vt 0.343750 0.500000
478
+ vt 0.359375 0.000000
479
+ vt 0.312500 0.187500
480
+ vt 0.312500 0.125000
481
+ vt 0.312500 0.625000
482
+ vt 0.312500 0.562500
483
+ vt 0.312500 0.062500
484
+ vt 0.312500 0.500000
485
+ vt 0.328125 0.000000
486
+ vt 0.312500 0.437500
487
+ vt 0.312500 0.375000
488
+ vt 0.312500 0.312500
489
+ vt 0.312500 0.250000
490
+ vt 0.281250 0.375000
491
+ vt 0.281250 0.312500
492
+ vt 0.281250 0.250000
493
+ vt 0.281250 0.187500
494
+ vt 0.281250 0.125000
495
+ vt 0.281250 0.625000
496
+ vt 0.281250 0.562500
497
+ vt 0.281250 0.062500
498
+ vt 0.281250 0.500000
499
+ vt 0.296875 0.000000
500
+ vt 0.281250 0.437500
501
+ vt 0.250000 0.625000
502
+ vt 0.250000 0.562500
503
+ vt 0.250000 0.125000
504
+ vt 0.250000 0.062500
505
+ vt 0.250000 0.500000
506
+ vt 0.265625 0.000000
507
+ vt 0.250000 0.437500
508
+ vt 0.250000 0.375000
509
+ vt 0.250000 0.312500
510
+ vt 0.250000 0.250000
511
+ vt 0.250000 0.187500
512
+ vt 0.218750 0.375000
513
+ vt 0.218750 0.312500
514
+ vt 0.218750 0.250000
515
+ vt 0.218750 0.187500
516
+ vt 0.218750 0.125000
517
+ vt 0.218750 0.625000
518
+ vt 0.218750 0.562500
519
+ vt 0.218750 0.062500
520
+ vt 0.218750 0.500000
521
+ vt 0.234375 0.000000
522
+ vt 0.218750 0.437500
523
+ vt 0.187500 0.125000
524
+ vt 0.187500 0.062500
525
+ vt 0.187500 0.562500
526
+ vt 0.187500 0.500000
527
+ vt 0.203125 0.000000
528
+ vt 0.187500 0.437500
529
+ vt 0.187500 0.375000
530
+ vt 0.187500 0.312500
531
+ vt 0.187500 0.250000
532
+ vt 0.187500 0.187500
533
+ vt 0.187500 0.625000
534
+ vt 0.156250 0.312500
535
+ vt 0.156250 0.250000
536
+ vt 0.156250 0.187500
537
+ vt 0.156250 0.125000
538
+ vt 0.156250 0.625000
539
+ vt 0.156250 0.562500
540
+ vt 0.156250 0.062500
541
+ vt 0.156250 0.500000
542
+ vt 0.171875 0.000000
543
+ vt 0.156250 0.437500
544
+ vt 0.156250 0.375000
545
+ vt 0.125000 0.562500
546
+ vt 0.125000 0.500000
547
+ vt 0.140625 0.000000
548
+ vt 0.125000 0.062500
549
+ vt 0.125000 0.437500
550
+ vt 0.125000 0.375000
551
+ vt 0.125000 0.312500
552
+ vt 0.125000 0.250000
553
+ vt 0.125000 0.187500
554
+ vt 0.125000 0.125000
555
+ vt 0.125000 0.625000
556
+ vt 0.093750 0.312500
557
+ vt 0.093750 0.250000
558
+ vt 0.093750 0.187500
559
+ vt 0.093750 0.125000
560
+ vt 0.093750 0.625000
561
+ vt 0.093750 0.562500
562
+ vt 0.093750 0.062500
563
+ vt 0.093750 0.500000
564
+ vt 0.109375 0.000000
565
+ vt 0.093750 0.437500
566
+ vt 0.093750 0.375000
567
+ vt 0.078125 0.000000
568
+ vt 0.062500 0.062500
569
+ vt 0.062500 0.500000
570
+ vt 0.062500 0.437500
571
+ vt 0.062500 0.375000
572
+ vt 0.062500 0.312500
573
+ vt 0.062500 0.250000
574
+ vt 0.062500 0.187500
575
+ vt 0.062500 0.125000
576
+ vt 0.062500 0.625000
577
+ vt 0.062500 0.562500
578
+ vt 0.031250 0.250000
579
+ vt 0.031250 0.187500
580
+ vt 0.031250 0.125000
581
+ vt 0.031250 0.625000
582
+ vt 0.031250 0.562500
583
+ vt 0.031250 0.062500
584
+ vt 0.031250 0.500000
585
+ vt 0.046875 0.000000
586
+ vt 0.031250 0.437500
587
+ vt 0.031250 0.375000
588
+ vt 0.031250 0.312500
589
+ vt 0.000000 0.437500
590
+ vt 0.000000 0.375000
591
+ vt 0.000000 0.312500
592
+ vt 0.000000 0.250000
593
+ vt 0.000000 0.187500
594
+ vt 0.000000 0.125000
595
+ vt 0.000000 0.625000
596
+ vt 0.000000 0.562500
597
+ vt 0.000000 0.062500
598
+ vt 0.000000 0.500000
599
+ vt 0.015625 0.000000
600
+ vt 1.000000 0.125000
601
+ vt 1.000000 0.187500
602
+ vt 0.968750 0.187500
603
+ vt 0.968750 0.125000
604
+ vt 1.000000 0.562500
605
+ vt 1.000000 0.625000
606
+ vt 0.968750 0.625000
607
+ vt 0.968750 0.562500
608
+ vt 1.000000 0.062500
609
+ vt 0.968750 0.062500
610
+ vt 1.000000 0.500000
611
+ vt 0.968750 0.500000
612
+ vt 0.984375 0.000000
613
+ vt 1.000000 0.437500
614
+ vt 0.968750 0.437500
615
+ vt 1.000000 0.375000
616
+ vt 0.968750 0.375000
617
+ vt 1.000000 0.312500
618
+ vt 0.968750 0.312500
619
+ vt 1.000000 0.250000
620
+ vt 0.968750 0.250000
621
+ vt 0.937500 0.437500
622
+ vt 0.937500 0.375000
623
+ vt 0.937500 0.312500
624
+ vt 0.937500 0.250000
625
+ vt 0.937500 0.187500
626
+ vt 0.937500 0.125000
627
+ vt 0.937500 0.625000
628
+ vt 0.937500 0.562500
629
+ vt 0.937500 0.062500
630
+ vt 0.937500 0.500000
631
+ vt 0.953125 0.000000
632
+ vt 0.906250 0.187500
633
+ vt 0.906250 0.125000
634
+ vt 0.906250 0.625000
635
+ vt 0.906250 0.562500
636
+ vt 0.906250 0.062500
637
+ vt 0.906250 0.500000
638
+ vt 0.921875 0.000000
639
+ vt 0.906250 0.437500
640
+ vt 0.906250 0.375000
641
+ vt 0.906250 0.312500
642
+ vt 0.906250 0.250000
643
+ vt 0.875000 0.375000
644
+ vt 0.875000 0.312500
645
+ vt 0.875000 0.250000
646
+ vt 0.875000 0.187500
647
+ vt 0.875000 0.125000
648
+ vt 0.875000 0.625000
649
+ vt 0.875000 0.562500
650
+ vt 0.875000 0.062500
651
+ vt 0.875000 0.500000
652
+ vt 0.890625 0.000000
653
+ vt 0.875000 0.437500
654
+ vt 0.843750 0.625000
655
+ vt 0.843750 0.562500
656
+ vt 0.843750 0.125000
657
+ vt 0.843750 0.062500
658
+ vt 0.843750 0.500000
659
+ vt 0.859375 0.000000
660
+ vt 0.843750 0.437500
661
+ vt 0.843750 0.375000
662
+ vt 0.843750 0.312500
663
+ vt 0.843750 0.250000
664
+ vt 0.843750 0.187500
665
+ vt 0.812500 0.375000
666
+ vt 0.812500 0.312500
667
+ vt 0.812500 0.250000
668
+ vt 0.812500 0.187500
669
+ vt 0.812500 0.125000
670
+ vt 0.812500 0.625000
671
+ vt 0.812500 0.562500
672
+ vt 0.812500 0.062500
673
+ vt 0.812500 0.500000
674
+ vt 0.828125 0.000000
675
+ vt 0.812500 0.437500
676
+ vt 0.781250 0.125000
677
+ vt 0.781250 0.062500
678
+ vt 0.781250 0.562500
679
+ vt 0.781250 0.500000
680
+ vt 0.796875 0.000000
681
+ vt 0.781250 0.437500
682
+ vt 0.781250 0.375000
683
+ vt 0.781250 0.312500
684
+ vt 0.781250 0.250000
685
+ vt 0.781250 0.187500
686
+ vt 0.781250 0.625000
687
+ vt 0.765625 0.000000
688
+ vn 0.0759 -0.6326 -0.7708
689
+ vn 0.0624 -0.7715 -0.6332
690
+ vn 0.0464 -0.8810 -0.4709
691
+ vn 0.0938 0.2890 -0.9527
692
+ vn 0.0286 -0.9565 -0.2902
693
+ vn 0.0975 0.0975 -0.9904
694
+ vn 0.0097 -0.9951 -0.0980
695
+ vn 0.0975 -0.0976 -0.9904
696
+ vn 0.0938 -0.2890 -0.9527
697
+ vn 0.0865 -0.4696 -0.8786
698
+ vn 0.2779 -0.2890 -0.9161
699
+ vn 0.2563 -0.4696 -0.8448
700
+ vn 0.2248 -0.6326 -0.7412
701
+ vn 0.1847 -0.7715 -0.6088
702
+ vn 0.1374 -0.8810 -0.4528
703
+ vn 0.2779 0.2890 -0.9161
704
+ vn 0.0846 -0.9565 -0.2790
705
+ vn 0.2889 0.0975 -0.9524
706
+ vn 0.0286 -0.9951 -0.0942
707
+ vn 0.2889 -0.0975 -0.9524
708
+ vn 0.2231 -0.8810 -0.4173
709
+ vn 0.4513 0.2890 -0.8443
710
+ vn 0.1374 -0.9565 -0.2571
711
+ vn 0.4691 0.0975 -0.8777
712
+ vn 0.0464 -0.9951 -0.0869
713
+ vn 0.4691 -0.0975 -0.8777
714
+ vn 0.4513 -0.2890 -0.8443
715
+ vn 0.4162 -0.4696 -0.7786
716
+ vn 0.3651 -0.6326 -0.6831
717
+ vn 0.2999 -0.7715 -0.5611
718
+ vn 0.5601 -0.4696 -0.6825
719
+ vn 0.4913 -0.6326 -0.5987
720
+ vn 0.4036 -0.7715 -0.4918
721
+ vn 0.3002 -0.8810 -0.3658
722
+ vn 0.6073 0.2890 -0.7400
723
+ vn 0.1850 -0.9565 -0.2254
724
+ vn 0.6314 0.0975 -0.7693
725
+ vn 0.0625 -0.9951 -0.0761
726
+ vn 0.6314 -0.0975 -0.7693
727
+ vn 0.6073 -0.2890 -0.7400
728
+ vn 0.2254 -0.9565 -0.1850
729
+ vn 0.7693 0.0975 -0.6314
730
+ vn 0.0761 -0.9951 -0.0625
731
+ vn 0.7693 -0.0975 -0.6314
732
+ vn 0.7400 -0.2890 -0.6073
733
+ vn 0.6825 -0.4696 -0.5601
734
+ vn 0.5987 -0.6326 -0.4913
735
+ vn 0.4918 -0.7715 -0.4036
736
+ vn 0.3658 -0.8810 -0.3002
737
+ vn 0.7400 0.2890 -0.6073
738
+ vn 0.6831 -0.6326 -0.3651
739
+ vn 0.5611 -0.7715 -0.2999
740
+ vn 0.4173 -0.8810 -0.2230
741
+ vn 0.8443 0.2890 -0.4513
742
+ vn 0.2571 -0.9565 -0.1374
743
+ vn 0.8777 0.0975 -0.4691
744
+ vn 0.0869 -0.9951 -0.0464
745
+ vn 0.8777 -0.0975 -0.4691
746
+ vn 0.8443 -0.2890 -0.4513
747
+ vn 0.7786 -0.4696 -0.4162
748
+ vn 0.9524 0.0975 -0.2889
749
+ vn 0.0942 -0.9951 -0.0286
750
+ vn 0.9524 -0.0975 -0.2889
751
+ vn 0.9161 -0.2890 -0.2779
752
+ vn 0.8448 -0.4696 -0.2563
753
+ vn 0.7412 -0.6326 -0.2248
754
+ vn 0.6088 -0.7715 -0.1847
755
+ vn 0.4528 -0.8810 -0.1374
756
+ vn 0.9161 0.2890 -0.2779
757
+ vn 0.2790 -0.9565 -0.0846
758
+ vn 0.7708 -0.6326 -0.0759
759
+ vn 0.6332 -0.7715 -0.0624
760
+ vn 0.4709 -0.8810 -0.0464
761
+ vn 0.9527 0.2890 -0.0938
762
+ vn 0.2902 -0.9565 -0.0286
763
+ vn 0.9904 0.0975 -0.0975
764
+ vn 0.0980 -0.9951 -0.0097
765
+ vn 0.9904 -0.0975 -0.0975
766
+ vn 0.9527 -0.2890 -0.0938
767
+ vn 0.8786 -0.4696 -0.0865
768
+ vn 0.0980 -0.9951 0.0096
769
+ vn 0.9904 -0.0975 0.0975
770
+ vn 0.9527 -0.2890 0.0938
771
+ vn 0.8786 -0.4696 0.0865
772
+ vn 0.7708 -0.6326 0.0759
773
+ vn 0.6332 -0.7715 0.0624
774
+ vn 0.4709 -0.8810 0.0464
775
+ vn 0.9527 0.2890 0.0938
776
+ vn 0.2902 -0.9565 0.0286
777
+ vn 0.9904 0.0975 0.0975
778
+ vn 0.6088 -0.7715 0.1847
779
+ vn 0.4528 -0.8810 0.1374
780
+ vn 0.9161 0.2890 0.2779
781
+ vn 0.2790 -0.9565 0.0846
782
+ vn 0.9524 0.0975 0.2889
783
+ vn 0.0942 -0.9951 0.0286
784
+ vn 0.9524 -0.0975 0.2889
785
+ vn 0.9161 -0.2890 0.2779
786
+ vn 0.8448 -0.4696 0.2563
787
+ vn 0.7412 -0.6326 0.2248
788
+ vn 0.8777 -0.0975 0.4691
789
+ vn 0.8443 -0.2890 0.4513
790
+ vn 0.7786 -0.4696 0.4162
791
+ vn 0.6831 -0.6326 0.3651
792
+ vn 0.5611 -0.7715 0.2999
793
+ vn 0.4173 -0.8810 0.2231
794
+ vn 0.8443 0.2890 0.4513
795
+ vn 0.2571 -0.9565 0.1374
796
+ vn 0.8777 0.0975 0.4691
797
+ vn 0.0869 -0.9951 0.0464
798
+ vn 0.4918 -0.7715 0.4036
799
+ vn 0.3658 -0.8810 0.3002
800
+ vn 0.7400 0.2890 0.6073
801
+ vn 0.2254 -0.9565 0.1850
802
+ vn 0.7693 0.0975 0.6314
803
+ vn 0.0761 -0.9951 0.0625
804
+ vn 0.7693 -0.0975 0.6314
805
+ vn 0.7400 -0.2890 0.6073
806
+ vn 0.6825 -0.4696 0.5601
807
+ vn 0.5987 -0.6326 0.4913
808
+ vn 0.6073 -0.2890 0.7400
809
+ vn 0.5601 -0.4696 0.6825
810
+ vn 0.4913 -0.6326 0.5987
811
+ vn 0.4036 -0.7715 0.4918
812
+ vn 0.3002 -0.8810 0.3658
813
+ vn 0.6073 0.2890 0.7400
814
+ vn 0.1850 -0.9565 0.2254
815
+ vn 0.6314 0.0975 0.7693
816
+ vn 0.0625 -0.9951 0.0761
817
+ vn 0.6314 -0.0975 0.7693
818
+ vn 0.2231 -0.8810 0.4173
819
+ vn 0.4513 0.2890 0.8443
820
+ vn 0.1374 -0.9565 0.2571
821
+ vn 0.4691 0.0975 0.8777
822
+ vn 0.0464 -0.9951 0.0869
823
+ vn 0.4691 -0.0975 0.8777
824
+ vn 0.4513 -0.2890 0.8443
825
+ vn 0.4162 -0.4696 0.7786
826
+ vn 0.3651 -0.6326 0.6831
827
+ vn 0.2999 -0.7715 0.5611
828
+ vn 0.2563 -0.4696 0.8448
829
+ vn 0.2248 -0.6326 0.7412
830
+ vn 0.1847 -0.7715 0.6088
831
+ vn 0.1374 -0.8810 0.4528
832
+ vn 0.2779 0.2890 0.9161
833
+ vn 0.0846 -0.9565 0.2790
834
+ vn 0.2889 0.0975 0.9524
835
+ vn 0.0286 -0.9951 0.0942
836
+ vn 0.2889 -0.0975 0.9524
837
+ vn 0.2779 -0.2890 0.9161
838
+ vn 0.0938 0.2890 0.9527
839
+ vn 0.0286 -0.9565 0.2902
840
+ vn 0.0975 0.0975 0.9904
841
+ vn 0.0097 -0.9951 0.0980
842
+ vn 0.0975 -0.0975 0.9904
843
+ vn 0.0938 -0.2890 0.9527
844
+ vn 0.0865 -0.4696 0.8786
845
+ vn 0.0759 -0.6326 0.7708
846
+ vn 0.0624 -0.7715 0.6332
847
+ vn 0.0464 -0.8810 0.4709
848
+ vn -0.0865 -0.4696 0.8786
849
+ vn -0.0759 -0.6326 0.7708
850
+ vn -0.0624 -0.7715 0.6332
851
+ vn -0.0464 -0.8810 0.4709
852
+ vn -0.0938 0.2890 0.9527
853
+ vn -0.0286 -0.9565 0.2902
854
+ vn -0.0976 0.0975 0.9904
855
+ vn -0.0097 -0.9951 0.0980
856
+ vn -0.0975 -0.0975 0.9904
857
+ vn -0.0938 -0.2890 0.9527
858
+ vn -0.0846 -0.9565 0.2790
859
+ vn -0.2889 0.0975 0.9524
860
+ vn -0.0286 -0.9951 0.0942
861
+ vn -0.2889 -0.0975 0.9524
862
+ vn -0.2779 -0.2890 0.9161
863
+ vn -0.2563 -0.4696 0.8448
864
+ vn -0.2248 -0.6326 0.7412
865
+ vn -0.1847 -0.7715 0.6088
866
+ vn -0.1374 -0.8810 0.4528
867
+ vn -0.2779 0.2890 0.9161
868
+ vn -0.3651 -0.6326 0.6831
869
+ vn -0.2999 -0.7715 0.5611
870
+ vn -0.2231 -0.8810 0.4173
871
+ vn -0.4513 0.2890 0.8443
872
+ vn -0.1374 -0.9565 0.2571
873
+ vn -0.4691 0.0975 0.8777
874
+ vn -0.0464 -0.9951 0.0869
875
+ vn -0.4691 -0.0975 0.8777
876
+ vn -0.4513 -0.2890 0.8443
877
+ vn -0.4162 -0.4696 0.7786
878
+ vn -0.6314 0.0975 0.7693
879
+ vn -0.0625 -0.9951 0.0761
880
+ vn -0.6314 -0.0975 0.7693
881
+ vn -0.6073 -0.2890 0.7400
882
+ vn -0.5601 -0.4696 0.6825
883
+ vn -0.4913 -0.6326 0.5987
884
+ vn -0.4036 -0.7715 0.4918
885
+ vn -0.3002 -0.8810 0.3658
886
+ vn -0.6073 0.2890 0.7400
887
+ vn -0.1850 -0.9565 0.2254
888
+ vn -0.5987 -0.6326 0.4913
889
+ vn -0.4918 -0.7715 0.4036
890
+ vn -0.3658 -0.8810 0.3002
891
+ vn -0.7400 0.2890 0.6073
892
+ vn -0.2254 -0.9565 0.1850
893
+ vn -0.7693 0.0975 0.6314
894
+ vn -0.0761 -0.9951 0.0625
895
+ vn -0.7693 -0.0975 0.6314
896
+ vn -0.7400 -0.2890 0.6073
897
+ vn -0.6825 -0.4696 0.5601
898
+ vn -0.0869 -0.9951 0.0464
899
+ vn -0.8777 -0.0975 0.4691
900
+ vn -0.8443 -0.2890 0.4513
901
+ vn -0.7786 -0.4696 0.4162
902
+ vn -0.6831 -0.6326 0.3651
903
+ vn -0.5611 -0.7715 0.2999
904
+ vn -0.4173 -0.8810 0.2231
905
+ vn -0.8443 0.2890 0.4513
906
+ vn -0.2571 -0.9565 0.1374
907
+ vn -0.8777 0.0975 0.4691
908
+ vn -0.6088 -0.7715 0.1847
909
+ vn -0.4528 -0.8810 0.1374
910
+ vn -0.9161 0.2890 0.2779
911
+ vn -0.2790 -0.9565 0.0846
912
+ vn -0.9524 0.0975 0.2889
913
+ vn -0.0942 -0.9951 0.0286
914
+ vn -0.9524 -0.0975 0.2889
915
+ vn -0.9161 -0.2890 0.2779
916
+ vn -0.8448 -0.4696 0.2563
917
+ vn -0.7412 -0.6326 0.2248
918
+ vn -0.9527 -0.2890 0.0938
919
+ vn -0.8786 -0.4696 0.0865
920
+ vn -0.7708 -0.6326 0.0759
921
+ vn -0.6332 -0.7715 0.0624
922
+ vn -0.4709 -0.8810 0.0464
923
+ vn -0.9527 0.2890 0.0938
924
+ vn -0.2902 -0.9565 0.0286
925
+ vn -0.9904 0.0975 0.0975
926
+ vn -0.0980 -0.9951 0.0097
927
+ vn -0.9904 -0.0975 0.0975
928
+ vn -0.4709 -0.8810 -0.0464
929
+ vn -0.9527 0.2890 -0.0938
930
+ vn -0.2902 -0.9565 -0.0286
931
+ vn -0.9904 0.0975 -0.0976
932
+ vn -0.0980 -0.9951 -0.0097
933
+ vn -0.9904 -0.0975 -0.0976
934
+ vn -0.9527 -0.2890 -0.0938
935
+ vn -0.8786 -0.4696 -0.0865
936
+ vn -0.7708 -0.6326 -0.0759
937
+ vn -0.6332 -0.7715 -0.0624
938
+ vn -0.9161 -0.2890 -0.2779
939
+ vn -0.8448 -0.4696 -0.2563
940
+ vn -0.7412 -0.6326 -0.2248
941
+ vn -0.6088 -0.7715 -0.1847
942
+ vn -0.4528 -0.8810 -0.1374
943
+ vn -0.9161 0.2890 -0.2779
944
+ vn -0.2790 -0.9565 -0.0846
945
+ vn -0.9524 0.0975 -0.2889
946
+ vn -0.0942 -0.9951 -0.0286
947
+ vn -0.9524 -0.0975 -0.2889
948
+ vn -0.4173 -0.8810 -0.2231
949
+ vn -0.8443 0.2890 -0.4513
950
+ vn -0.2571 -0.9565 -0.1374
951
+ vn -0.8777 0.0975 -0.4691
952
+ vn -0.0869 -0.9951 -0.0464
953
+ vn -0.8777 -0.0975 -0.4691
954
+ vn -0.8443 -0.2890 -0.4513
955
+ vn -0.7786 -0.4696 -0.4162
956
+ vn -0.6831 -0.6326 -0.3651
957
+ vn -0.5611 -0.7715 -0.2999
958
+ vn -0.6825 -0.4696 -0.5601
959
+ vn -0.5987 -0.6326 -0.4913
960
+ vn -0.4918 -0.7715 -0.4036
961
+ vn -0.3658 -0.8810 -0.3002
962
+ vn -0.7400 0.2890 -0.6073
963
+ vn -0.2254 -0.9565 -0.1850
964
+ vn -0.7693 0.0975 -0.6314
965
+ vn -0.0761 -0.9951 -0.0625
966
+ vn -0.7693 -0.0975 -0.6314
967
+ vn -0.7400 -0.2890 -0.6073
968
+ vn -0.6073 0.2890 -0.7400
969
+ vn -0.1850 -0.9565 -0.2254
970
+ vn -0.6314 0.0975 -0.7693
971
+ vn -0.0625 -0.9951 -0.0761
972
+ vn -0.6314 -0.0975 -0.7693
973
+ vn -0.6073 -0.2890 -0.7400
974
+ vn -0.5601 -0.4696 -0.6825
975
+ vn -0.4913 -0.6326 -0.5987
976
+ vn -0.4036 -0.7715 -0.4918
977
+ vn -0.3002 -0.8810 -0.3658
978
+ vn -0.4162 -0.4696 -0.7786
979
+ vn -0.3651 -0.6326 -0.6831
980
+ vn -0.2999 -0.7715 -0.5611
981
+ vn -0.2231 -0.8810 -0.4173
982
+ vn -0.4513 0.2890 -0.8443
983
+ vn -0.1374 -0.9565 -0.2571
984
+ vn -0.4691 0.0975 -0.8777
985
+ vn -0.0464 -0.9951 -0.0869
986
+ vn -0.4691 -0.0975 -0.8777
987
+ vn -0.4513 -0.2890 -0.8443
988
+ vn -0.0846 -0.9565 -0.2790
989
+ vn -0.2889 0.0975 -0.9524
990
+ vn -0.0286 -0.9951 -0.0942
991
+ vn -0.2889 -0.0975 -0.9524
992
+ vn -0.2779 -0.2890 -0.9161
993
+ vn -0.2563 -0.4696 -0.8448
994
+ vn -0.2248 -0.6326 -0.7412
995
+ vn -0.1847 -0.7715 -0.6088
996
+ vn -0.1374 -0.8810 -0.4528
997
+ vn -0.2779 0.2890 -0.9161
998
+ vn -0.0759 -0.6326 -0.7708
999
+ vn -0.0624 -0.7715 -0.6332
1000
+ vn -0.0464 -0.8810 -0.4709
1001
+ vn -0.0938 0.2890 -0.9527
1002
+ vn -0.0286 -0.9565 -0.2902
1003
+ vn -0.0976 0.0975 -0.9904
1004
+ vn -0.0097 -0.9951 -0.0980
1005
+ vn -0.0976 -0.0976 -0.9904
1006
+ vn -0.0938 -0.2890 -0.9527
1007
+ vn -0.0865 -0.4696 -0.8786
1008
+ usemtl CustomColor.003
1009
+ s off
1010
+ f 319/1/1 4/2/1 11/3/1 12/4/1
1011
+ f 320/5/2 319/1/2 12/4/2 13/6/2
1012
+ f 321/7/3 320/5/3 13/6/3 14/8/3
1013
+ f 2/9/4 1/10/4 6/11/4 7/12/4
1014
+ f 5/13/5 321/7/5 14/8/5 15/14/5
1015
+ f 3/15/6 2/9/6 7/12/6 8/16/6
1016
+ f 166/17/7 5/13/7 15/14/7
1017
+ f 317/18/8 3/15/8 8/16/8 9/19/8
1018
+ f 318/20/9 317/18/9 9/19/9 10/21/9
1019
+ f 4/2/10 318/20/10 10/21/10 11/3/10
1020
+ f 10/21/11 9/19/11 19/22/11 20/23/11
1021
+ f 11/3/12 10/21/12 20/23/12 21/24/12
1022
+ f 12/4/13 11/3/13 21/24/13 22/25/13
1023
+ f 13/6/14 12/4/14 22/25/14 23/26/14
1024
+ f 14/8/15 13/6/15 23/26/15 24/27/15
1025
+ f 7/12/16 6/11/16 16/28/16 17/29/16
1026
+ f 15/14/17 14/8/17 24/27/17 25/30/17
1027
+ f 8/16/18 7/12/18 17/29/18 18/31/18
1028
+ f 166/32/19 15/14/19 25/30/19
1029
+ f 9/19/20 8/16/20 18/31/20 19/22/20
1030
+ f 24/27/21 23/26/21 33/33/21 34/34/21
1031
+ f 17/29/22 16/28/22 26/35/22 27/36/22
1032
+ f 25/30/23 24/27/23 34/34/23 35/37/23
1033
+ f 18/31/24 17/29/24 27/36/24 28/38/24
1034
+ f 166/39/25 25/30/25 35/37/25
1035
+ f 19/22/26 18/31/26 28/38/26 29/40/26
1036
+ f 20/23/27 19/22/27 29/40/27 30/41/27
1037
+ f 21/24/28 20/23/28 30/41/28 31/42/28
1038
+ f 22/25/29 21/24/29 31/42/29 32/43/29
1039
+ f 23/26/30 22/25/30 32/43/30 33/33/30
1040
+ f 31/42/31 30/41/31 40/44/31 41/45/31
1041
+ f 32/43/32 31/42/32 41/45/32 42/46/32
1042
+ f 33/33/33 32/43/33 42/46/33 43/47/33
1043
+ f 34/34/34 33/33/34 43/47/34 44/48/34
1044
+ f 27/36/35 26/35/35 36/49/35 37/50/35
1045
+ f 35/37/36 34/34/36 44/48/36 45/51/36
1046
+ f 28/38/37 27/36/37 37/50/37 38/52/37
1047
+ f 166/53/38 35/37/38 45/51/38
1048
+ f 29/40/39 28/38/39 38/52/39 39/54/39
1049
+ f 30/41/40 29/40/40 39/54/40 40/44/40
1050
+ f 45/51/41 44/48/41 54/55/41 55/56/41
1051
+ f 38/52/42 37/50/42 47/57/42 48/58/42
1052
+ f 166/59/43 45/51/43 55/56/43
1053
+ f 39/54/44 38/52/44 48/58/44 49/60/44
1054
+ f 40/44/45 39/54/45 49/60/45 50/61/45
1055
+ f 41/45/46 40/44/46 50/61/46 51/62/46
1056
+ f 42/46/47 41/45/47 51/62/47 52/63/47
1057
+ f 43/47/48 42/46/48 52/63/48 53/64/48
1058
+ f 44/48/49 43/47/49 53/64/49 54/55/49
1059
+ f 37/50/50 36/49/50 46/65/50 47/57/50
1060
+ f 52/63/51 51/62/51 61/66/51 62/67/51
1061
+ f 53/64/52 52/63/52 62/67/52 63/68/52
1062
+ f 54/55/53 53/64/53 63/68/53 64/69/53
1063
+ f 47/57/54 46/65/54 56/70/54 57/71/54
1064
+ f 55/56/55 54/55/55 64/69/55 65/72/55
1065
+ f 48/58/56 47/57/56 57/71/56 58/73/56
1066
+ f 166/74/57 55/56/57 65/72/57
1067
+ f 49/60/58 48/58/58 58/73/58 59/75/58
1068
+ f 50/61/59 49/60/59 59/75/59 60/76/59
1069
+ f 51/62/60 50/61/60 60/76/60 61/66/60
1070
+ f 58/73/61 57/71/61 67/77/61 68/78/61
1071
+ f 166/79/62 65/72/62 75/80/62
1072
+ f 59/75/63 58/73/63 68/78/63 69/81/63
1073
+ f 60/76/64 59/75/64 69/81/64 70/82/64
1074
+ f 61/66/65 60/76/65 70/82/65 71/83/65
1075
+ f 62/67/66 61/66/66 71/83/66 72/84/66
1076
+ f 63/68/67 62/67/67 72/84/67 73/85/67
1077
+ f 64/69/68 63/68/68 73/85/68 74/86/68
1078
+ f 57/71/69 56/70/69 66/87/69 67/77/69
1079
+ f 65/72/70 64/69/70 74/86/70 75/80/70
1080
+ f 72/84/71 71/83/71 81/88/71 82/89/71
1081
+ f 73/85/72 72/84/72 82/89/72 83/90/72
1082
+ f 74/86/73 73/85/73 83/90/73 84/91/73
1083
+ f 67/77/74 66/87/74 76/92/74 77/93/74
1084
+ f 75/80/75 74/86/75 84/91/75 85/94/75
1085
+ f 68/78/76 67/77/76 77/93/76 78/95/76
1086
+ f 166/96/77 75/80/77 85/94/77
1087
+ f 69/81/78 68/78/78 78/95/78 79/97/78
1088
+ f 70/82/79 69/81/79 79/97/79 80/98/79
1089
+ f 71/83/80 70/82/80 80/98/80 81/88/80
1090
+ f 166/99/81 85/94/81 95/100/81
1091
+ f 79/97/82 78/95/82 88/101/82 89/102/82
1092
+ f 80/98/83 79/97/83 89/102/83 90/103/83
1093
+ f 81/88/84 80/98/84 90/103/84 91/104/84
1094
+ f 82/89/85 81/88/85 91/104/85 92/105/85
1095
+ f 83/90/86 82/89/86 92/105/86 93/106/86
1096
+ f 84/91/87 83/90/87 93/106/87 94/107/87
1097
+ f 77/93/88 76/92/88 86/108/88 87/109/88
1098
+ f 85/94/89 84/91/89 94/107/89 95/100/89
1099
+ f 78/95/90 77/93/90 87/109/90 88/101/90
1100
+ f 93/106/91 92/105/91 102/110/91 103/111/91
1101
+ f 94/107/92 93/106/92 103/111/92 104/112/92
1102
+ f 87/109/93 86/108/93 96/113/93 97/114/93
1103
+ f 95/100/94 94/107/94 104/112/94 105/115/94
1104
+ f 88/101/95 87/109/95 97/114/95 98/116/95
1105
+ f 166/117/96 95/100/96 105/115/96
1106
+ f 89/102/97 88/101/97 98/116/97 99/118/97
1107
+ f 90/103/98 89/102/98 99/118/98 100/119/98
1108
+ f 91/104/99 90/103/99 100/119/99 101/120/99
1109
+ f 92/105/100 91/104/100 101/120/100 102/110/100
1110
+ f 99/118/101 98/116/101 108/121/101 109/122/101
1111
+ f 100/119/102 99/118/102 109/122/102 110/123/102
1112
+ f 101/120/103 100/119/103 110/123/103 111/124/103
1113
+ f 102/110/104 101/120/104 111/124/104 112/125/104
1114
+ f 103/111/105 102/110/105 112/125/105 113/126/105
1115
+ f 104/112/106 103/111/106 113/126/106 114/127/106
1116
+ f 97/114/107 96/113/107 106/128/107 107/129/107
1117
+ f 105/115/108 104/112/108 114/127/108 115/130/108
1118
+ f 98/116/109 97/114/109 107/129/109 108/121/109
1119
+ f 166/131/110 105/115/110 115/130/110
1120
+ f 113/126/111 112/125/111 122/132/111 123/133/111
1121
+ f 114/127/112 113/126/112 123/133/112 124/134/112
1122
+ f 107/129/113 106/128/113 116/135/113 117/136/113
1123
+ f 115/130/114 114/127/114 124/134/114 125/137/114
1124
+ f 108/121/115 107/129/115 117/136/115 118/138/115
1125
+ f 166/139/116 115/130/116 125/137/116
1126
+ f 109/122/117 108/121/117 118/138/117 119/140/117
1127
+ f 110/123/118 109/122/118 119/140/118 120/141/118
1128
+ f 111/124/119 110/123/119 120/141/119 121/142/119
1129
+ f 112/125/120 111/124/120 121/142/120 122/132/120
1130
+ f 120/141/121 119/140/121 129/143/121 130/144/121
1131
+ f 121/142/122 120/141/122 130/144/122 131/145/122
1132
+ f 122/132/123 121/142/123 131/145/123 132/146/123
1133
+ f 123/133/124 122/132/124 132/146/124 133/147/124
1134
+ f 124/134/125 123/133/125 133/147/125 134/148/125
1135
+ f 117/136/126 116/135/126 126/149/126 127/150/126
1136
+ f 125/137/127 124/134/127 134/148/127 135/151/127
1137
+ f 118/138/128 117/136/128 127/150/128 128/152/128
1138
+ f 166/153/129 125/137/129 135/151/129
1139
+ f 119/140/130 118/138/130 128/152/130 129/143/130
1140
+ f 134/148/131 133/147/131 143/154/131 144/155/131
1141
+ f 127/150/132 126/149/132 136/156/132 137/157/132
1142
+ f 135/151/133 134/148/133 144/155/133 145/158/133
1143
+ f 128/152/134 127/150/134 137/157/134 138/159/134
1144
+ f 166/160/135 135/151/135 145/158/135
1145
+ f 129/143/136 128/152/136 138/159/136 139/161/136
1146
+ f 130/144/137 129/143/137 139/161/137 140/162/137
1147
+ f 131/145/138 130/144/138 140/162/138 141/163/138
1148
+ f 132/146/139 131/145/139 141/163/139 142/164/139
1149
+ f 133/147/140 132/146/140 142/164/140 143/154/140
1150
+ f 141/163/141 140/162/141 150/165/141 151/166/141
1151
+ f 142/164/142 141/163/142 151/166/142 152/167/142
1152
+ f 143/154/143 142/164/143 152/167/143 153/168/143
1153
+ f 144/155/144 143/154/144 153/168/144 154/169/144
1154
+ f 137/157/145 136/156/145 146/170/145 147/171/145
1155
+ f 145/158/146 144/155/146 154/169/146 155/172/146
1156
+ f 138/159/147 137/157/147 147/171/147 148/173/147
1157
+ f 166/174/148 145/158/148 155/172/148
1158
+ f 139/161/149 138/159/149 148/173/149 149/175/149
1159
+ f 140/162/150 139/161/150 149/175/150 150/165/150
1160
+ f 147/171/151 146/170/151 156/176/151 157/177/151
1161
+ f 155/172/152 154/169/152 164/178/152 165/179/152
1162
+ f 148/173/153 147/171/153 157/177/153 158/180/153
1163
+ f 166/181/154 155/172/154 165/179/154
1164
+ f 149/175/155 148/173/155 158/180/155 159/182/155
1165
+ f 150/165/156 149/175/156 159/182/156 160/183/156
1166
+ f 151/166/157 150/165/157 160/183/157 161/184/157
1167
+ f 152/167/158 151/166/158 161/184/158 162/185/158
1168
+ f 153/168/159 152/167/159 162/185/159 163/186/159
1169
+ f 154/169/160 153/168/160 163/186/160 164/178/160
1170
+ f 161/184/161 160/183/161 171/187/161 172/188/161
1171
+ f 162/185/162 161/184/162 172/188/162 173/189/162
1172
+ f 163/186/163 162/185/163 173/189/163 174/190/163
1173
+ f 164/178/164 163/186/164 174/190/164 175/191/164
1174
+ f 157/177/165 156/176/165 167/192/165 168/193/165
1175
+ f 165/179/166 164/178/166 175/191/166 176/194/166
1176
+ f 158/180/167 157/177/167 168/193/167 169/195/167
1177
+ f 166/196/168 165/179/168 176/194/168
1178
+ f 159/182/169 158/180/169 169/195/169 170/197/169
1179
+ f 160/183/170 159/182/170 170/197/170 171/187/170
1180
+ f 176/194/171 175/191/171 185/198/171 186/199/171
1181
+ f 169/195/172 168/193/172 178/200/172 179/201/172
1182
+ f 166/202/173 176/194/173 186/199/173
1183
+ f 170/197/174 169/195/174 179/201/174 180/203/174
1184
+ f 171/187/175 170/197/175 180/203/175 181/204/175
1185
+ f 172/188/176 171/187/176 181/204/176 182/205/176
1186
+ f 173/189/177 172/188/177 182/205/177 183/206/177
1187
+ f 174/190/178 173/189/178 183/206/178 184/207/178
1188
+ f 175/191/179 174/190/179 184/207/179 185/198/179
1189
+ f 168/193/180 167/192/180 177/208/180 178/200/180
1190
+ f 183/206/181 182/205/181 192/209/181 193/210/181
1191
+ f 184/207/182 183/206/182 193/210/182 194/211/182
1192
+ f 185/198/183 184/207/183 194/211/183 195/212/183
1193
+ f 178/200/184 177/208/184 187/213/184 188/214/184
1194
+ f 186/199/185 185/198/185 195/212/185 196/215/185
1195
+ f 179/201/186 178/200/186 188/214/186 189/216/186
1196
+ f 166/217/187 186/199/187 196/215/187
1197
+ f 180/203/188 179/201/188 189/216/188 190/218/188
1198
+ f 181/204/189 180/203/189 190/218/189 191/219/189
1199
+ f 182/205/190 181/204/190 191/219/190 192/209/190
1200
+ f 189/216/191 188/214/191 198/220/191 199/221/191
1201
+ f 166/222/192 196/215/192 206/223/192
1202
+ f 190/218/193 189/216/193 199/221/193 200/224/193
1203
+ f 191/219/194 190/218/194 200/224/194 201/225/194
1204
+ f 192/209/195 191/219/195 201/225/195 202/226/195
1205
+ f 193/210/196 192/209/196 202/226/196 203/227/196
1206
+ f 194/211/197 193/210/197 203/227/197 204/228/197
1207
+ f 195/212/198 194/211/198 204/228/198 205/229/198
1208
+ f 188/214/199 187/213/199 197/230/199 198/220/199
1209
+ f 196/215/200 195/212/200 205/229/200 206/223/200
1210
+ f 203/227/201 202/226/201 212/231/201 213/232/201
1211
+ f 204/228/202 203/227/202 213/232/202 214/233/202
1212
+ f 205/229/203 204/228/203 214/233/203 215/234/203
1213
+ f 198/220/204 197/230/204 207/235/204 208/236/204
1214
+ f 206/223/205 205/229/205 215/234/205 216/237/205
1215
+ f 199/221/206 198/220/206 208/236/206 209/238/206
1216
+ f 166/239/207 206/223/207 216/237/207
1217
+ f 200/224/208 199/221/208 209/238/208 210/240/208
1218
+ f 201/225/209 200/224/209 210/240/209 211/241/209
1219
+ f 202/226/210 201/225/210 211/241/210 212/231/210
1220
+ f 166/242/211 216/237/211 226/243/211
1221
+ f 210/240/212 209/238/212 219/244/212 220/245/212
1222
+ f 211/241/213 210/240/213 220/245/213 221/246/213
1223
+ f 212/231/214 211/241/214 221/246/214 222/247/214
1224
+ f 213/232/215 212/231/215 222/247/215 223/248/215
1225
+ f 214/233/216 213/232/216 223/248/216 224/249/216
1226
+ f 215/234/217 214/233/217 224/249/217 225/250/217
1227
+ f 208/236/218 207/235/218 217/251/218 218/252/218
1228
+ f 216/237/219 215/234/219 225/250/219 226/243/219
1229
+ f 209/238/220 208/236/220 218/252/220 219/244/220
1230
+ f 224/249/221 223/248/221 233/253/221 234/254/221
1231
+ f 225/250/222 224/249/222 234/254/222 235/255/222
1232
+ f 218/252/223 217/251/223 227/256/223 228/257/223
1233
+ f 226/243/224 225/250/224 235/255/224 236/258/224
1234
+ f 219/244/225 218/252/225 228/257/225 229/259/225
1235
+ f 166/260/226 226/243/226 236/258/226
1236
+ f 220/245/227 219/244/227 229/259/227 230/261/227
1237
+ f 221/246/228 220/245/228 230/261/228 231/262/228
1238
+ f 222/247/229 221/246/229 231/262/229 232/263/229
1239
+ f 223/248/230 222/247/230 232/263/230 233/253/230
1240
+ f 231/262/231 230/261/231 240/264/231 241/265/231
1241
+ f 232/263/232 231/262/232 241/265/232 242/266/232
1242
+ f 233/253/233 232/263/233 242/266/233 243/267/233
1243
+ f 234/254/234 233/253/234 243/267/234 244/268/234
1244
+ f 235/255/235 234/254/235 244/268/235 245/269/235
1245
+ f 228/257/236 227/256/236 237/270/236 238/271/236
1246
+ f 236/258/237 235/255/237 245/269/237 246/272/237
1247
+ f 229/259/238 228/257/238 238/271/238 239/273/238
1248
+ f 166/274/239 236/258/239 246/272/239
1249
+ f 230/261/240 229/259/240 239/273/240 240/264/240
1250
+ f 245/275/241 244/276/241 254/277/241 255/278/241
1251
+ f 238/279/242 237/280/242 247/281/242 248/282/242
1252
+ f 246/283/243 245/275/243 255/278/243 256/284/243
1253
+ f 239/285/244 238/279/244 248/282/244 249/286/244
1254
+ f 166/287/245 246/283/245 256/284/245
1255
+ f 240/288/246 239/285/246 249/286/246 250/289/246
1256
+ f 241/290/247 240/288/247 250/289/247 251/291/247
1257
+ f 242/292/248 241/290/248 251/291/248 252/293/248
1258
+ f 243/294/249 242/292/249 252/293/249 253/295/249
1259
+ f 244/276/250 243/294/250 253/295/250 254/277/250
1260
+ f 251/291/251 250/289/251 260/296/251 261/297/251
1261
+ f 252/293/252 251/291/252 261/297/252 262/298/252
1262
+ f 253/295/253 252/293/253 262/298/253 263/299/253
1263
+ f 254/277/254 253/295/254 263/299/254 264/300/254
1264
+ f 255/278/255 254/277/255 264/300/255 265/301/255
1265
+ f 248/282/256 247/281/256 257/302/256 258/303/256
1266
+ f 256/284/257 255/278/257 265/301/257 266/304/257
1267
+ f 249/286/258 248/282/258 258/303/258 259/305/258
1268
+ f 166/306/259 256/284/259 266/304/259
1269
+ f 250/289/260 249/286/260 259/305/260 260/296/260
1270
+ f 265/301/261 264/300/261 274/307/261 275/308/261
1271
+ f 258/303/262 257/302/262 267/309/262 268/310/262
1272
+ f 266/304/263 265/301/263 275/308/263 276/311/263
1273
+ f 259/305/264 258/303/264 268/310/264 269/312/264
1274
+ f 166/313/265 266/304/265 276/311/265
1275
+ f 260/296/266 259/305/266 269/312/266 270/314/266
1276
+ f 261/297/267 260/296/267 270/314/267 271/315/267
1277
+ f 262/298/268 261/297/268 271/315/268 272/316/268
1278
+ f 263/299/269 262/298/269 272/316/269 273/317/269
1279
+ f 264/300/270 263/299/270 273/317/270 274/307/270
1280
+ f 272/316/271 271/315/271 281/318/271 282/319/271
1281
+ f 273/317/272 272/316/272 282/319/272 283/320/272
1282
+ f 274/307/273 273/317/273 283/320/273 284/321/273
1283
+ f 275/308/274 274/307/274 284/321/274 285/322/274
1284
+ f 268/310/275 267/309/275 277/323/275 278/324/275
1285
+ f 276/311/276 275/308/276 285/322/276 286/325/276
1286
+ f 269/312/277 268/310/277 278/324/277 279/326/277
1287
+ f 166/327/278 276/311/278 286/325/278
1288
+ f 270/314/279 269/312/279 279/326/279 280/328/279
1289
+ f 271/315/280 270/314/280 280/328/280 281/318/280
1290
+ f 278/324/281 277/323/281 287/329/281 288/330/281
1291
+ f 286/325/282 285/322/282 295/331/282 296/332/282
1292
+ f 279/326/283 278/324/283 288/330/283 289/333/283
1293
+ f 166/334/284 286/325/284 296/332/284
1294
+ f 280/328/285 279/326/285 289/333/285 290/335/285
1295
+ f 281/318/286 280/328/286 290/335/286 291/336/286
1296
+ f 282/319/287 281/318/287 291/336/287 292/337/287
1297
+ f 283/320/288 282/319/288 292/337/288 293/338/288
1298
+ f 284/321/289 283/320/289 293/338/289 294/339/289
1299
+ f 285/322/290 284/321/290 294/339/290 295/331/290
1300
+ f 292/337/291 291/336/291 301/340/291 302/341/291
1301
+ f 293/338/292 292/337/292 302/341/292 303/342/292
1302
+ f 294/339/293 293/338/293 303/342/293 304/343/293
1303
+ f 295/331/294 294/339/294 304/343/294 305/344/294
1304
+ f 288/330/295 287/329/295 297/345/295 298/346/295
1305
+ f 296/332/296 295/331/296 305/344/296 306/347/296
1306
+ f 289/333/297 288/330/297 298/346/297 299/348/297
1307
+ f 166/349/298 296/332/298 306/347/298
1308
+ f 290/335/299 289/333/299 299/348/299 300/350/299
1309
+ f 291/336/300 290/335/300 300/350/300 301/340/300
1310
+ f 306/347/301 305/344/301 315/351/301 316/352/301
1311
+ f 299/348/302 298/346/302 308/353/302 309/354/302
1312
+ f 166/355/303 306/347/303 316/352/303
1313
+ f 300/350/304 299/348/304 309/354/304 310/356/304
1314
+ f 301/340/305 300/350/305 310/356/305 311/357/305
1315
+ f 302/341/306 301/340/306 311/357/306 312/358/306
1316
+ f 303/342/307 302/341/307 312/358/307 313/359/307
1317
+ f 304/343/308 303/342/308 313/359/308 314/360/308
1318
+ f 305/344/309 304/343/309 314/360/309 315/351/309
1319
+ f 298/346/310 297/345/310 307/361/310 308/353/310
1320
+ f 313/359/311 312/358/311 4/2/311 319/1/311
1321
+ f 314/360/312 313/359/312 319/1/312 320/5/312
1322
+ f 315/351/313 314/360/313 320/5/313 321/7/313
1323
+ f 308/353/314 307/361/314 1/10/314 2/9/314
1324
+ f 316/352/315 315/351/315 321/7/315 5/13/315
1325
+ f 309/354/316 308/353/316 2/9/316 3/15/316
1326
+ f 166/362/317 316/352/317 5/13/317
1327
+ f 310/356/318 309/354/318 3/15/318 317/18/318
1328
+ f 311/357/319 310/356/319 317/18/319 318/20/319
1329
+ f 312/358/320 311/357/320 318/20/320 4/2/320
cliport/environments/assets/bags/bl_sphere_bag_basic_003.mtl ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl CustomColor.004
5
+ Ns 323.999994
6
+ Ka 1.000000 1.000000 1.000000
7
+ Kd 0.000000 0.000000 1.000000
8
+ Ks 0.500000 0.500000 0.500000
9
+ Ke 0.000000 0.000000 0.000000
10
+ Ni 1.000000
11
+ d 1.000000
12
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_basic_003.obj ADDED
@@ -0,0 +1,1200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_basic_003.mtl
4
+ o Sphere.003
5
+ v 2.000000 2.156072 -0.784628
6
+ v 2.000000 2.000000 -0.800000
7
+ v 2.000000 1.555544 -0.665176
8
+ v 2.000000 1.215372 -0.156072
9
+ v 2.153073 2.156072 -0.769552
10
+ v 2.156072 2.000000 -0.784628
11
+ v 2.153073 1.843928 -0.769552
12
+ v 2.144192 1.693853 -0.724902
13
+ v 2.129769 1.555544 -0.652395
14
+ v 2.110360 1.434314 -0.554816
15
+ v 2.086709 1.334824 -0.435916
16
+ v 2.059726 1.260896 -0.300264
17
+ v 2.030448 1.215372 -0.153073
18
+ v 2.300264 2.156072 -0.724902
19
+ v 2.306147 2.000000 -0.739104
20
+ v 2.300264 1.843928 -0.724902
21
+ v 2.282843 1.693853 -0.682843
22
+ v 2.254552 1.555544 -0.614542
23
+ v 2.216479 1.434314 -0.522625
24
+ v 2.170086 1.334824 -0.410624
25
+ v 2.117157 1.260896 -0.282843
26
+ v 2.059726 1.215372 -0.144192
27
+ v 2.435916 2.156072 -0.652394
28
+ v 2.444456 2.000000 -0.665176
29
+ v 2.435916 1.843928 -0.652394
30
+ v 2.410624 1.693853 -0.614542
31
+ v 2.369552 1.555544 -0.553073
32
+ v 2.314278 1.434314 -0.470350
33
+ v 2.246927 1.334824 -0.369552
34
+ v 2.170086 1.260896 -0.254552
35
+ v 2.086709 1.215372 -0.129769
36
+ v 2.554816 2.156072 -0.554816
37
+ v 2.565686 2.000000 -0.565685
38
+ v 2.554816 1.843928 -0.554816
39
+ v 2.522625 1.693853 -0.522625
40
+ v 2.470351 1.555544 -0.470350
41
+ v 2.400000 1.434314 -0.400000
42
+ v 2.314278 1.334824 -0.314278
43
+ v 2.216479 1.260896 -0.216478
44
+ v 2.110360 1.215372 -0.110360
45
+ v 2.652395 2.156072 -0.435916
46
+ v 2.665176 2.000000 -0.444456
47
+ v 2.652395 1.843928 -0.435916
48
+ v 2.614542 1.693853 -0.410624
49
+ v 2.553074 1.555544 -0.369552
50
+ v 2.470351 1.434314 -0.314278
51
+ v 2.369552 1.334824 -0.246926
52
+ v 2.254552 1.260896 -0.170086
53
+ v 2.129769 1.215372 -0.086709
54
+ v 2.724902 2.156072 -0.300264
55
+ v 2.739104 2.000000 -0.306146
56
+ v 2.724902 1.843928 -0.300264
57
+ v 2.682843 1.693853 -0.282843
58
+ v 2.614542 1.555544 -0.254551
59
+ v 2.522625 1.434314 -0.216478
60
+ v 2.410624 1.334824 -0.170086
61
+ v 2.282843 1.260896 -0.117157
62
+ v 2.144192 1.215372 -0.059726
63
+ v 2.769552 2.156072 -0.153073
64
+ v 2.784628 2.000000 -0.156072
65
+ v 2.769552 1.843928 -0.153073
66
+ v 2.724902 1.693853 -0.144192
67
+ v 2.652395 1.555544 -0.129769
68
+ v 2.554816 1.434314 -0.110359
69
+ v 2.435916 1.334824 -0.086709
70
+ v 2.300264 1.260896 -0.059726
71
+ v 2.153073 1.215372 -0.030448
72
+ v 2.784628 2.156072 0.000000
73
+ v 2.800000 2.000000 0.000000
74
+ v 2.784628 1.843928 0.000000
75
+ v 2.739104 1.693853 0.000000
76
+ v 2.665176 1.555544 0.000000
77
+ v 2.565686 1.434314 0.000000
78
+ v 2.444456 1.334824 0.000000
79
+ v 2.306147 1.260896 0.000000
80
+ v 2.156072 1.215372 0.000000
81
+ v 2.769552 2.156072 0.153074
82
+ v 2.784628 2.000000 0.156073
83
+ v 2.769552 1.843928 0.153074
84
+ v 2.724902 1.693853 0.144192
85
+ v 2.652395 1.555544 0.129770
86
+ v 2.554816 1.434314 0.110360
87
+ v 2.435916 1.334824 0.086709
88
+ v 2.300264 1.260896 0.059727
89
+ v 2.153073 1.215372 0.030448
90
+ v 2.724902 2.156072 0.300264
91
+ v 2.739104 2.000000 0.306147
92
+ v 2.724902 1.843928 0.300265
93
+ v 2.682843 1.693853 0.282843
94
+ v 2.614542 1.555544 0.254552
95
+ v 2.522625 1.434314 0.216479
96
+ v 2.410624 1.334824 0.170086
97
+ v 2.282843 1.260896 0.117158
98
+ v 2.144192 1.215372 0.059727
99
+ v 2.652395 2.156072 0.435916
100
+ v 2.665176 2.000000 0.444457
101
+ v 2.652395 1.843928 0.435916
102
+ v 2.614542 1.693853 0.410624
103
+ v 2.553073 1.555544 0.369552
104
+ v 2.470350 1.434314 0.314278
105
+ v 2.369552 1.334824 0.246927
106
+ v 2.254552 1.260896 0.170086
107
+ v 2.129769 1.215372 0.086709
108
+ v 2.554816 2.156072 0.554816
109
+ v 2.565685 2.000000 0.565686
110
+ v 2.554816 1.843928 0.554816
111
+ v 2.522625 1.693853 0.522626
112
+ v 2.470350 1.555544 0.470351
113
+ v 2.400000 1.434314 0.400000
114
+ v 2.314278 1.334824 0.314278
115
+ v 2.216479 1.260896 0.216479
116
+ v 2.110360 1.215372 0.110360
117
+ v 2.435916 2.156072 0.652395
118
+ v 2.444456 2.000000 0.665176
119
+ v 2.435916 1.843928 0.652395
120
+ v 2.410624 1.693853 0.614542
121
+ v 2.369552 1.555544 0.553074
122
+ v 2.314278 1.434314 0.470351
123
+ v 2.246927 1.334824 0.369552
124
+ v 2.170086 1.260896 0.254552
125
+ v 2.086709 1.215372 0.129770
126
+ v 2.300264 2.156072 0.724902
127
+ v 2.306147 2.000000 0.739104
128
+ v 2.300264 1.843928 0.724902
129
+ v 2.282843 1.693853 0.682843
130
+ v 2.254552 1.555544 0.614543
131
+ v 2.216478 1.434314 0.522626
132
+ v 2.170086 1.334824 0.410624
133
+ v 2.117157 1.260896 0.282843
134
+ v 2.059726 1.215372 0.144192
135
+ v 2.153074 2.156072 0.769552
136
+ v 2.156072 2.000000 0.784628
137
+ v 2.153073 1.843928 0.769552
138
+ v 2.144192 1.693853 0.724902
139
+ v 2.129769 1.555544 0.652395
140
+ v 2.110360 1.434314 0.554816
141
+ v 2.086709 1.334824 0.435916
142
+ v 2.059726 1.260896 0.300265
143
+ v 2.030448 1.215372 0.153074
144
+ v 2.000000 2.156072 0.784628
145
+ v 2.000000 2.000000 0.800000
146
+ v 2.000000 1.843928 0.784628
147
+ v 2.000000 1.693853 0.739104
148
+ v 2.000000 1.555544 0.665176
149
+ v 2.000000 1.434314 0.565686
150
+ v 2.000000 1.334824 0.444456
151
+ v 2.000000 1.260896 0.306147
152
+ v 2.000000 1.215372 0.156072
153
+ v 2.000000 1.200000 0.000000
154
+ v 1.846927 2.156072 0.769552
155
+ v 1.843928 2.000000 0.784628
156
+ v 1.846927 1.843928 0.769552
157
+ v 1.855808 1.693853 0.724902
158
+ v 1.870230 1.555544 0.652395
159
+ v 1.889640 1.434314 0.554816
160
+ v 1.913291 1.334824 0.435916
161
+ v 1.940274 1.260896 0.300264
162
+ v 1.969552 1.215372 0.153074
163
+ v 1.699736 2.156072 0.724902
164
+ v 1.693853 2.000000 0.739104
165
+ v 1.699736 1.843928 0.724902
166
+ v 1.717157 1.693853 0.682843
167
+ v 1.745448 1.555544 0.614542
168
+ v 1.783522 1.434314 0.522625
169
+ v 1.829914 1.334824 0.410624
170
+ v 1.882843 1.260896 0.282843
171
+ v 1.940274 1.215372 0.144192
172
+ v 1.564084 2.156072 0.652395
173
+ v 1.555544 2.000000 0.665176
174
+ v 1.564084 1.843928 0.652395
175
+ v 1.589376 1.693853 0.614542
176
+ v 1.630448 1.555544 0.553073
177
+ v 1.685722 1.434314 0.470350
178
+ v 1.753073 1.334824 0.369552
179
+ v 1.829914 1.260896 0.254552
180
+ v 1.913291 1.215372 0.129770
181
+ v 1.445184 2.156072 0.554816
182
+ v 1.434315 2.000000 0.565685
183
+ v 1.445184 1.843928 0.554816
184
+ v 1.477375 1.693853 0.522625
185
+ v 1.529650 1.555544 0.470350
186
+ v 1.600000 1.434314 0.400000
187
+ v 1.685722 1.334824 0.314278
188
+ v 1.783522 1.260896 0.216479
189
+ v 1.889640 1.215372 0.110360
190
+ v 1.347606 2.156072 0.435916
191
+ v 1.334825 2.000000 0.444456
192
+ v 1.347606 1.843928 0.435916
193
+ v 1.385458 1.693853 0.410624
194
+ v 1.446927 1.555544 0.369552
195
+ v 1.529650 1.434314 0.314278
196
+ v 1.630448 1.334824 0.246927
197
+ v 1.745448 1.260896 0.170086
198
+ v 1.870231 1.215372 0.086709
199
+ v 1.275098 2.156072 0.300265
200
+ v 1.260897 2.000000 0.306147
201
+ v 1.275098 1.843928 0.300264
202
+ v 1.317158 1.693853 0.282843
203
+ v 1.385458 1.555544 0.254552
204
+ v 1.477375 1.434314 0.216479
205
+ v 1.589376 1.334824 0.170086
206
+ v 1.717157 1.260896 0.117158
207
+ v 1.855808 1.215372 0.059726
208
+ v 1.230448 2.156072 0.153074
209
+ v 1.215372 2.000000 0.156072
210
+ v 1.230448 1.843928 0.153074
211
+ v 1.275098 1.693853 0.144192
212
+ v 1.347606 1.555544 0.129769
213
+ v 1.445184 1.434314 0.110360
214
+ v 1.564084 1.334824 0.086709
215
+ v 1.699736 1.260896 0.059726
216
+ v 1.846927 1.215372 0.030448
217
+ v 1.215372 2.156072 0.000000
218
+ v 1.200001 2.000000 0.000000
219
+ v 1.215372 1.843928 0.000000
220
+ v 1.260897 1.693853 0.000000
221
+ v 1.334825 1.555544 0.000000
222
+ v 1.434315 1.434314 0.000000
223
+ v 1.555544 1.334824 0.000000
224
+ v 1.693853 1.260896 0.000000
225
+ v 1.843928 1.215372 0.000000
226
+ v 1.230448 2.156072 -0.153073
227
+ v 1.215372 2.000000 -0.156072
228
+ v 1.230448 1.843928 -0.153073
229
+ v 1.275099 1.693853 -0.144192
230
+ v 1.347606 1.555544 -0.129769
231
+ v 1.445184 1.434314 -0.110360
232
+ v 1.564084 1.334824 -0.086709
233
+ v 1.699736 1.260896 -0.059726
234
+ v 1.846927 1.215372 -0.030448
235
+ v 1.275098 2.156072 -0.300264
236
+ v 1.260897 2.000000 -0.306147
237
+ v 1.275098 1.843928 -0.300264
238
+ v 1.317158 1.693853 -0.282842
239
+ v 1.385458 1.555544 -0.254552
240
+ v 1.477375 1.434314 -0.216478
241
+ v 1.589376 1.334824 -0.170086
242
+ v 1.717157 1.260896 -0.117157
243
+ v 1.855808 1.215372 -0.059726
244
+ v 1.347606 2.156072 -0.435916
245
+ v 1.334825 2.000000 -0.444456
246
+ v 1.347606 1.843928 -0.435916
247
+ v 1.385458 1.693853 -0.410624
248
+ v 1.446927 1.555544 -0.369552
249
+ v 1.529650 1.434314 -0.314278
250
+ v 1.630449 1.334824 -0.246926
251
+ v 1.745448 1.260896 -0.170086
252
+ v 1.870231 1.215372 -0.086709
253
+ v 1.445184 2.156072 -0.554815
254
+ v 1.434315 2.000000 -0.565685
255
+ v 1.445184 1.843928 -0.554815
256
+ v 1.477375 1.693853 -0.522625
257
+ v 1.529650 1.555544 -0.470350
258
+ v 1.600000 1.434314 -0.400000
259
+ v 1.685722 1.334824 -0.314278
260
+ v 1.783522 1.260896 -0.216478
261
+ v 1.889640 1.215372 -0.110359
262
+ v 1.564084 2.156072 -0.652394
263
+ v 1.555544 2.000000 -0.665175
264
+ v 1.564084 1.843928 -0.652394
265
+ v 1.589377 1.693853 -0.614542
266
+ v 1.630449 1.555544 -0.553073
267
+ v 1.685722 1.434314 -0.470350
268
+ v 1.753074 1.334824 -0.369551
269
+ v 1.829914 1.260896 -0.254551
270
+ v 1.913291 1.215372 -0.129769
271
+ v 1.699736 2.156072 -0.724901
272
+ v 1.693854 2.000000 -0.739103
273
+ v 1.699736 1.843928 -0.724901
274
+ v 1.717158 1.693853 -0.682842
275
+ v 1.745449 1.555544 -0.614542
276
+ v 1.783522 1.434314 -0.522625
277
+ v 1.829914 1.334824 -0.410623
278
+ v 1.882843 1.260896 -0.282842
279
+ v 1.940274 1.215372 -0.144192
280
+ v 1.846927 2.156072 -0.769551
281
+ v 1.843928 2.000000 -0.784627
282
+ v 1.846927 1.843928 -0.769551
283
+ v 1.855808 1.693853 -0.724901
284
+ v 1.870231 1.555544 -0.652394
285
+ v 1.889640 1.434314 -0.554815
286
+ v 1.913291 1.334824 -0.435915
287
+ v 1.940274 1.260896 -0.300264
288
+ v 1.969552 1.215372 -0.153073
289
+ v 2.000000 1.843928 -0.784628
290
+ v 2.000000 1.693853 -0.739103
291
+ v 2.000000 1.434314 -0.565685
292
+ v 2.000000 1.334824 -0.444456
293
+ v 2.000000 1.260896 -0.306146
294
+ vt 0.750000 0.250000
295
+ vt 0.750000 0.312500
296
+ vt 0.718750 0.312500
297
+ vt 0.718750 0.250000
298
+ vt 0.750000 0.187500
299
+ vt 0.718750 0.187500
300
+ vt 0.750000 0.125000
301
+ vt 0.718750 0.125000
302
+ vt 0.750000 0.062500
303
+ vt 0.718750 0.062500
304
+ vt 0.750000 0.500000
305
+ vt 0.750000 0.562500
306
+ vt 0.718750 0.562500
307
+ vt 0.718750 0.500000
308
+ vt 0.734375 0.000000
309
+ vt 0.750000 0.437500
310
+ vt 0.718750 0.437500
311
+ vt 0.750000 0.375000
312
+ vt 0.718750 0.375000
313
+ vt 0.687500 0.437500
314
+ vt 0.687500 0.375000
315
+ vt 0.687500 0.312500
316
+ vt 0.687500 0.250000
317
+ vt 0.687500 0.187500
318
+ vt 0.687500 0.125000
319
+ vt 0.687500 0.062500
320
+ vt 0.687500 0.562500
321
+ vt 0.687500 0.500000
322
+ vt 0.703125 0.000000
323
+ vt 0.656250 0.187500
324
+ vt 0.656250 0.125000
325
+ vt 0.656250 0.062500
326
+ vt 0.656250 0.562500
327
+ vt 0.656250 0.500000
328
+ vt 0.671875 0.000000
329
+ vt 0.656250 0.437500
330
+ vt 0.656250 0.375000
331
+ vt 0.656250 0.312500
332
+ vt 0.656250 0.250000
333
+ vt 0.625000 0.375000
334
+ vt 0.625000 0.312500
335
+ vt 0.625000 0.250000
336
+ vt 0.625000 0.187500
337
+ vt 0.625000 0.125000
338
+ vt 0.625000 0.062500
339
+ vt 0.625000 0.562500
340
+ vt 0.625000 0.500000
341
+ vt 0.640625 0.000000
342
+ vt 0.625000 0.437500
343
+ vt 0.593750 0.125000
344
+ vt 0.593750 0.062500
345
+ vt 0.593750 0.562500
346
+ vt 0.593750 0.500000
347
+ vt 0.609375 0.000000
348
+ vt 0.593750 0.437500
349
+ vt 0.593750 0.375000
350
+ vt 0.593750 0.312500
351
+ vt 0.593750 0.250000
352
+ vt 0.593750 0.187500
353
+ vt 0.562500 0.312500
354
+ vt 0.562500 0.250000
355
+ vt 0.562500 0.187500
356
+ vt 0.562500 0.125000
357
+ vt 0.562500 0.062500
358
+ vt 0.562500 0.562500
359
+ vt 0.562500 0.500000
360
+ vt 0.578125 0.000000
361
+ vt 0.562500 0.437500
362
+ vt 0.562500 0.375000
363
+ vt 0.531250 0.562500
364
+ vt 0.531250 0.500000
365
+ vt 0.546875 0.000000
366
+ vt 0.531250 0.062500
367
+ vt 0.531250 0.437500
368
+ vt 0.531250 0.375000
369
+ vt 0.531250 0.312500
370
+ vt 0.531250 0.250000
371
+ vt 0.531250 0.187500
372
+ vt 0.531250 0.125000
373
+ vt 0.500000 0.312500
374
+ vt 0.500000 0.250000
375
+ vt 0.500000 0.187500
376
+ vt 0.500000 0.125000
377
+ vt 0.500000 0.062500
378
+ vt 0.500000 0.562500
379
+ vt 0.500000 0.500000
380
+ vt 0.515625 0.000000
381
+ vt 0.500000 0.437500
382
+ vt 0.500000 0.375000
383
+ vt 0.484375 0.000000
384
+ vt 0.468750 0.062500
385
+ vt 0.468750 0.500000
386
+ vt 0.468750 0.437500
387
+ vt 0.468750 0.375000
388
+ vt 0.468750 0.312500
389
+ vt 0.468750 0.250000
390
+ vt 0.468750 0.187500
391
+ vt 0.468750 0.125000
392
+ vt 0.468750 0.562500
393
+ vt 0.437500 0.250000
394
+ vt 0.437500 0.187500
395
+ vt 0.437500 0.125000
396
+ vt 0.437500 0.062500
397
+ vt 0.437500 0.562500
398
+ vt 0.437500 0.500000
399
+ vt 0.453125 0.000000
400
+ vt 0.437500 0.437500
401
+ vt 0.437500 0.375000
402
+ vt 0.437500 0.312500
403
+ vt 0.406250 0.500000
404
+ vt 0.406250 0.437500
405
+ vt 0.406250 0.375000
406
+ vt 0.406250 0.312500
407
+ vt 0.406250 0.250000
408
+ vt 0.406250 0.187500
409
+ vt 0.406250 0.125000
410
+ vt 0.406250 0.062500
411
+ vt 0.406250 0.562500
412
+ vt 0.421875 0.000000
413
+ vt 0.375000 0.250000
414
+ vt 0.375000 0.187500
415
+ vt 0.375000 0.125000
416
+ vt 0.375000 0.062500
417
+ vt 0.375000 0.562500
418
+ vt 0.375000 0.500000
419
+ vt 0.390625 0.000000
420
+ vt 0.375000 0.437500
421
+ vt 0.375000 0.375000
422
+ vt 0.375000 0.312500
423
+ vt 0.343750 0.437500
424
+ vt 0.343750 0.375000
425
+ vt 0.343750 0.312500
426
+ vt 0.343750 0.250000
427
+ vt 0.343750 0.187500
428
+ vt 0.343750 0.125000
429
+ vt 0.343750 0.062500
430
+ vt 0.343750 0.562500
431
+ vt 0.343750 0.500000
432
+ vt 0.359375 0.000000
433
+ vt 0.312500 0.187500
434
+ vt 0.312500 0.125000
435
+ vt 0.312500 0.062500
436
+ vt 0.312500 0.562500
437
+ vt 0.312500 0.500000
438
+ vt 0.328125 0.000000
439
+ vt 0.312500 0.437500
440
+ vt 0.312500 0.375000
441
+ vt 0.312500 0.312500
442
+ vt 0.312500 0.250000
443
+ vt 0.281250 0.375000
444
+ vt 0.281250 0.312500
445
+ vt 0.281250 0.250000
446
+ vt 0.281250 0.187500
447
+ vt 0.281250 0.125000
448
+ vt 0.281250 0.062500
449
+ vt 0.281250 0.562500
450
+ vt 0.281250 0.500000
451
+ vt 0.296875 0.000000
452
+ vt 0.281250 0.437500
453
+ vt 0.250000 0.125000
454
+ vt 0.250000 0.062500
455
+ vt 0.250000 0.562500
456
+ vt 0.250000 0.500000
457
+ vt 0.265625 0.000000
458
+ vt 0.250000 0.437500
459
+ vt 0.250000 0.375000
460
+ vt 0.250000 0.312500
461
+ vt 0.250000 0.250000
462
+ vt 0.250000 0.187500
463
+ vt 0.218750 0.375000
464
+ vt 0.218750 0.312500
465
+ vt 0.218750 0.250000
466
+ vt 0.218750 0.187500
467
+ vt 0.218750 0.125000
468
+ vt 0.218750 0.062500
469
+ vt 0.218750 0.562500
470
+ vt 0.218750 0.500000
471
+ vt 0.234375 0.000000
472
+ vt 0.218750 0.437500
473
+ vt 0.187500 0.125000
474
+ vt 0.187500 0.062500
475
+ vt 0.187500 0.562500
476
+ vt 0.187500 0.500000
477
+ vt 0.203125 0.000000
478
+ vt 0.187500 0.437500
479
+ vt 0.187500 0.375000
480
+ vt 0.187500 0.312500
481
+ vt 0.187500 0.250000
482
+ vt 0.187500 0.187500
483
+ vt 0.156250 0.312500
484
+ vt 0.156250 0.250000
485
+ vt 0.156250 0.187500
486
+ vt 0.156250 0.125000
487
+ vt 0.156250 0.062500
488
+ vt 0.156250 0.562500
489
+ vt 0.156250 0.500000
490
+ vt 0.171875 0.000000
491
+ vt 0.156250 0.437500
492
+ vt 0.156250 0.375000
493
+ vt 0.125000 0.562500
494
+ vt 0.125000 0.500000
495
+ vt 0.140625 0.000000
496
+ vt 0.125000 0.062500
497
+ vt 0.125000 0.437500
498
+ vt 0.125000 0.375000
499
+ vt 0.125000 0.312500
500
+ vt 0.125000 0.250000
501
+ vt 0.125000 0.187500
502
+ vt 0.125000 0.125000
503
+ vt 0.093750 0.312500
504
+ vt 0.093750 0.250000
505
+ vt 0.093750 0.187500
506
+ vt 0.093750 0.125000
507
+ vt 0.093750 0.062500
508
+ vt 0.093750 0.562500
509
+ vt 0.093750 0.500000
510
+ vt 0.109375 0.000000
511
+ vt 0.093750 0.437500
512
+ vt 0.093750 0.375000
513
+ vt 0.078125 0.000000
514
+ vt 0.062500 0.062500
515
+ vt 0.062500 0.500000
516
+ vt 0.062500 0.437500
517
+ vt 0.062500 0.375000
518
+ vt 0.062500 0.312500
519
+ vt 0.062500 0.250000
520
+ vt 0.062500 0.187500
521
+ vt 0.062500 0.125000
522
+ vt 0.062500 0.562500
523
+ vt 0.031250 0.250000
524
+ vt 0.031250 0.187500
525
+ vt 0.031250 0.125000
526
+ vt 0.031250 0.062500
527
+ vt 0.031250 0.562500
528
+ vt 0.031250 0.500000
529
+ vt 0.046875 0.000000
530
+ vt 0.031250 0.437500
531
+ vt 0.031250 0.375000
532
+ vt 0.031250 0.312500
533
+ vt 0.000000 0.437500
534
+ vt 0.000000 0.375000
535
+ vt 0.000000 0.312500
536
+ vt 0.000000 0.250000
537
+ vt 0.000000 0.187500
538
+ vt 0.000000 0.125000
539
+ vt 0.000000 0.062500
540
+ vt 0.000000 0.562500
541
+ vt 0.000000 0.500000
542
+ vt 0.015625 0.000000
543
+ vt 1.000000 0.125000
544
+ vt 1.000000 0.187500
545
+ vt 0.968750 0.187500
546
+ vt 0.968750 0.125000
547
+ vt 1.000000 0.062500
548
+ vt 0.968750 0.062500
549
+ vt 1.000000 0.500000
550
+ vt 1.000000 0.562500
551
+ vt 0.968750 0.562500
552
+ vt 0.968750 0.500000
553
+ vt 0.984375 0.000000
554
+ vt 1.000000 0.437500
555
+ vt 0.968750 0.437500
556
+ vt 1.000000 0.375000
557
+ vt 0.968750 0.375000
558
+ vt 1.000000 0.312500
559
+ vt 0.968750 0.312500
560
+ vt 1.000000 0.250000
561
+ vt 0.968750 0.250000
562
+ vt 0.937500 0.437500
563
+ vt 0.937500 0.375000
564
+ vt 0.937500 0.312500
565
+ vt 0.937500 0.250000
566
+ vt 0.937500 0.187500
567
+ vt 0.937500 0.125000
568
+ vt 0.937500 0.062500
569
+ vt 0.937500 0.562500
570
+ vt 0.937500 0.500000
571
+ vt 0.953125 0.000000
572
+ vt 0.906250 0.187500
573
+ vt 0.906250 0.125000
574
+ vt 0.906250 0.062500
575
+ vt 0.906250 0.562500
576
+ vt 0.906250 0.500000
577
+ vt 0.921875 0.000000
578
+ vt 0.906250 0.437500
579
+ vt 0.906250 0.375000
580
+ vt 0.906250 0.312500
581
+ vt 0.906250 0.250000
582
+ vt 0.875000 0.375000
583
+ vt 0.875000 0.312500
584
+ vt 0.875000 0.250000
585
+ vt 0.875000 0.187500
586
+ vt 0.875000 0.125000
587
+ vt 0.875000 0.062500
588
+ vt 0.875000 0.562500
589
+ vt 0.875000 0.500000
590
+ vt 0.890625 0.000000
591
+ vt 0.875000 0.437500
592
+ vt 0.843750 0.125000
593
+ vt 0.843750 0.062500
594
+ vt 0.843750 0.562500
595
+ vt 0.843750 0.500000
596
+ vt 0.859375 0.000000
597
+ vt 0.843750 0.437500
598
+ vt 0.843750 0.375000
599
+ vt 0.843750 0.312500
600
+ vt 0.843750 0.250000
601
+ vt 0.843750 0.187500
602
+ vt 0.812500 0.375000
603
+ vt 0.812500 0.312500
604
+ vt 0.812500 0.250000
605
+ vt 0.812500 0.187500
606
+ vt 0.812500 0.125000
607
+ vt 0.812500 0.062500
608
+ vt 0.812500 0.562500
609
+ vt 0.812500 0.500000
610
+ vt 0.828125 0.000000
611
+ vt 0.812500 0.437500
612
+ vt 0.781250 0.125000
613
+ vt 0.781250 0.062500
614
+ vt 0.781250 0.562500
615
+ vt 0.781250 0.500000
616
+ vt 0.796875 0.000000
617
+ vt 0.781250 0.437500
618
+ vt 0.781250 0.375000
619
+ vt 0.781250 0.312500
620
+ vt 0.781250 0.250000
621
+ vt 0.781250 0.187500
622
+ vt 0.765625 0.000000
623
+ vn 0.0759 -0.6326 -0.7708
624
+ vn 0.0624 -0.7715 -0.6332
625
+ vn 0.0464 -0.8810 -0.4709
626
+ vn 0.0286 -0.9565 -0.2902
627
+ vn 0.0975 0.0975 -0.9904
628
+ vn 0.0097 -0.9951 -0.0980
629
+ vn 0.0975 -0.0976 -0.9904
630
+ vn 0.0938 -0.2890 -0.9527
631
+ vn 0.0865 -0.4696 -0.8786
632
+ vn 0.2779 -0.2890 -0.9161
633
+ vn 0.2563 -0.4696 -0.8448
634
+ vn 0.2248 -0.6326 -0.7412
635
+ vn 0.1847 -0.7715 -0.6088
636
+ vn 0.1374 -0.8810 -0.4528
637
+ vn 0.0846 -0.9565 -0.2790
638
+ vn 0.2889 0.0975 -0.9524
639
+ vn 0.0286 -0.9951 -0.0942
640
+ vn 0.2889 -0.0975 -0.9524
641
+ vn 0.2231 -0.8810 -0.4173
642
+ vn 0.1374 -0.9565 -0.2571
643
+ vn 0.4691 0.0975 -0.8777
644
+ vn 0.0464 -0.9951 -0.0869
645
+ vn 0.4691 -0.0975 -0.8777
646
+ vn 0.4513 -0.2890 -0.8443
647
+ vn 0.4162 -0.4696 -0.7786
648
+ vn 0.3651 -0.6326 -0.6831
649
+ vn 0.2999 -0.7715 -0.5611
650
+ vn 0.5601 -0.4696 -0.6825
651
+ vn 0.4913 -0.6326 -0.5987
652
+ vn 0.4036 -0.7715 -0.4918
653
+ vn 0.3002 -0.8810 -0.3658
654
+ vn 0.1850 -0.9566 -0.2254
655
+ vn 0.6314 0.0975 -0.7693
656
+ vn 0.0625 -0.9951 -0.0761
657
+ vn 0.6314 -0.0975 -0.7693
658
+ vn 0.6073 -0.2890 -0.7400
659
+ vn 0.2254 -0.9565 -0.1850
660
+ vn 0.7693 0.0976 -0.6314
661
+ vn 0.0761 -0.9951 -0.0625
662
+ vn 0.7693 -0.0975 -0.6314
663
+ vn 0.7400 -0.2890 -0.6073
664
+ vn 0.6825 -0.4696 -0.5601
665
+ vn 0.5987 -0.6326 -0.4913
666
+ vn 0.4918 -0.7715 -0.4036
667
+ vn 0.3658 -0.8810 -0.3002
668
+ vn 0.6831 -0.6326 -0.3651
669
+ vn 0.5611 -0.7715 -0.2999
670
+ vn 0.4173 -0.8810 -0.2231
671
+ vn 0.2571 -0.9566 -0.1374
672
+ vn 0.8777 0.0975 -0.4691
673
+ vn 0.0869 -0.9951 -0.0464
674
+ vn 0.8777 -0.0975 -0.4691
675
+ vn 0.8443 -0.2890 -0.4513
676
+ vn 0.7786 -0.4696 -0.4162
677
+ vn 0.9524 0.0975 -0.2889
678
+ vn 0.0942 -0.9951 -0.0286
679
+ vn 0.9524 -0.0975 -0.2889
680
+ vn 0.9161 -0.2890 -0.2779
681
+ vn 0.8448 -0.4696 -0.2563
682
+ vn 0.7412 -0.6326 -0.2248
683
+ vn 0.6088 -0.7715 -0.1847
684
+ vn 0.4528 -0.8810 -0.1374
685
+ vn 0.2790 -0.9566 -0.0846
686
+ vn 0.7708 -0.6326 -0.0759
687
+ vn 0.6332 -0.7715 -0.0624
688
+ vn 0.4709 -0.8810 -0.0464
689
+ vn 0.2902 -0.9565 -0.0286
690
+ vn 0.9904 0.0975 -0.0975
691
+ vn 0.0980 -0.9951 -0.0097
692
+ vn 0.9904 -0.0975 -0.0975
693
+ vn 0.9527 -0.2890 -0.0938
694
+ vn 0.8786 -0.4696 -0.0865
695
+ vn 0.0980 -0.9951 0.0097
696
+ vn 0.9904 -0.0976 0.0975
697
+ vn 0.9527 -0.2890 0.0938
698
+ vn 0.8786 -0.4696 0.0865
699
+ vn 0.7708 -0.6326 0.0759
700
+ vn 0.6332 -0.7715 0.0624
701
+ vn 0.4709 -0.8810 0.0464
702
+ vn 0.2902 -0.9565 0.0286
703
+ vn 0.9904 0.0976 0.0975
704
+ vn 0.6088 -0.7715 0.1847
705
+ vn 0.4528 -0.8810 0.1374
706
+ vn 0.2790 -0.9565 0.0846
707
+ vn 0.9524 0.0975 0.2889
708
+ vn 0.0942 -0.9951 0.0286
709
+ vn 0.9524 -0.0975 0.2889
710
+ vn 0.9161 -0.2890 0.2779
711
+ vn 0.8448 -0.4696 0.2563
712
+ vn 0.7412 -0.6326 0.2248
713
+ vn 0.8777 -0.0975 0.4691
714
+ vn 0.8443 -0.2890 0.4513
715
+ vn 0.7786 -0.4696 0.4162
716
+ vn 0.6831 -0.6326 0.3651
717
+ vn 0.5611 -0.7715 0.2999
718
+ vn 0.4173 -0.8810 0.2230
719
+ vn 0.2571 -0.9566 0.1374
720
+ vn 0.8777 0.0975 0.4691
721
+ vn 0.0869 -0.9951 0.0464
722
+ vn 0.4918 -0.7715 0.4036
723
+ vn 0.3658 -0.8810 0.3002
724
+ vn 0.2254 -0.9565 0.1850
725
+ vn 0.7693 0.0975 0.6314
726
+ vn 0.0761 -0.9951 0.0625
727
+ vn 0.7693 -0.0975 0.6314
728
+ vn 0.7400 -0.2890 0.6073
729
+ vn 0.6825 -0.4696 0.5601
730
+ vn 0.5987 -0.6326 0.4913
731
+ vn 0.6073 -0.2890 0.7400
732
+ vn 0.5601 -0.4696 0.6825
733
+ vn 0.4913 -0.6326 0.5987
734
+ vn 0.4036 -0.7715 0.4918
735
+ vn 0.3002 -0.8810 0.3658
736
+ vn 0.1850 -0.9565 0.2254
737
+ vn 0.6314 0.0975 0.7693
738
+ vn 0.0625 -0.9951 0.0761
739
+ vn 0.6314 -0.0975 0.7693
740
+ vn 0.2230 -0.8810 0.4173
741
+ vn 0.1374 -0.9566 0.2571
742
+ vn 0.4691 0.0975 0.8777
743
+ vn 0.0464 -0.9951 0.0869
744
+ vn 0.4691 -0.0975 0.8777
745
+ vn 0.4513 -0.2890 0.8443
746
+ vn 0.4162 -0.4696 0.7786
747
+ vn 0.3651 -0.6326 0.6831
748
+ vn 0.2999 -0.7715 0.5611
749
+ vn 0.2563 -0.4696 0.8448
750
+ vn 0.2248 -0.6326 0.7412
751
+ vn 0.1847 -0.7715 0.6088
752
+ vn 0.1374 -0.8810 0.4528
753
+ vn 0.0846 -0.9565 0.2790
754
+ vn 0.2889 0.0975 0.9524
755
+ vn 0.0286 -0.9951 0.0942
756
+ vn 0.2889 -0.0975 0.9524
757
+ vn 0.2779 -0.2890 0.9161
758
+ vn 0.0286 -0.9566 0.2902
759
+ vn 0.0975 0.0975 0.9904
760
+ vn 0.0097 -0.9951 0.0980
761
+ vn 0.0975 -0.0975 0.9904
762
+ vn 0.0938 -0.2890 0.9527
763
+ vn 0.0865 -0.4696 0.8786
764
+ vn 0.0759 -0.6326 0.7708
765
+ vn 0.0624 -0.7715 0.6332
766
+ vn 0.0464 -0.8810 0.4709
767
+ vn -0.0865 -0.4696 0.8786
768
+ vn -0.0759 -0.6326 0.7708
769
+ vn -0.0624 -0.7715 0.6332
770
+ vn -0.0464 -0.8810 0.4709
771
+ vn -0.0286 -0.9566 0.2902
772
+ vn -0.0976 0.0975 0.9904
773
+ vn -0.0097 -0.9951 0.0980
774
+ vn -0.0976 -0.0975 0.9904
775
+ vn -0.0938 -0.2890 0.9527
776
+ vn -0.0846 -0.9565 0.2790
777
+ vn -0.2889 0.0975 0.9524
778
+ vn -0.0286 -0.9951 0.0942
779
+ vn -0.2889 -0.0975 0.9524
780
+ vn -0.2779 -0.2890 0.9161
781
+ vn -0.2563 -0.4696 0.8448
782
+ vn -0.2248 -0.6326 0.7412
783
+ vn -0.1847 -0.7715 0.6088
784
+ vn -0.1374 -0.8810 0.4528
785
+ vn -0.3651 -0.6326 0.6831
786
+ vn -0.2999 -0.7715 0.5611
787
+ vn -0.2231 -0.8810 0.4173
788
+ vn -0.1374 -0.9565 0.2571
789
+ vn -0.4691 0.0975 0.8777
790
+ vn -0.0464 -0.9951 0.0869
791
+ vn -0.4691 -0.0975 0.8777
792
+ vn -0.4513 -0.2890 0.8443
793
+ vn -0.4162 -0.4696 0.7786
794
+ vn -0.6314 0.0975 0.7693
795
+ vn -0.0625 -0.9951 0.0761
796
+ vn -0.6314 -0.0975 0.7693
797
+ vn -0.6073 -0.2890 0.7400
798
+ vn -0.5601 -0.4696 0.6825
799
+ vn -0.4913 -0.6326 0.5987
800
+ vn -0.4036 -0.7715 0.4918
801
+ vn -0.3002 -0.8810 0.3658
802
+ vn -0.1850 -0.9565 0.2254
803
+ vn -0.5987 -0.6326 0.4913
804
+ vn -0.4918 -0.7715 0.4036
805
+ vn -0.3658 -0.8810 0.3002
806
+ vn -0.2254 -0.9565 0.1850
807
+ vn -0.7693 0.0975 0.6314
808
+ vn -0.0761 -0.9951 0.0625
809
+ vn -0.7693 -0.0975 0.6314
810
+ vn -0.7400 -0.2890 0.6073
811
+ vn -0.6825 -0.4696 0.5601
812
+ vn -0.0869 -0.9951 0.0464
813
+ vn -0.8777 -0.0975 0.4691
814
+ vn -0.8443 -0.2890 0.4513
815
+ vn -0.7786 -0.4696 0.4162
816
+ vn -0.6831 -0.6326 0.3651
817
+ vn -0.5611 -0.7715 0.2999
818
+ vn -0.4173 -0.8810 0.2231
819
+ vn -0.2571 -0.9565 0.1374
820
+ vn -0.8777 0.0975 0.4691
821
+ vn -0.6088 -0.7715 0.1847
822
+ vn -0.4528 -0.8810 0.1374
823
+ vn -0.2790 -0.9565 0.0846
824
+ vn -0.9524 0.0975 0.2889
825
+ vn -0.0942 -0.9951 0.0286
826
+ vn -0.9524 -0.0975 0.2889
827
+ vn -0.9161 -0.2890 0.2779
828
+ vn -0.8448 -0.4696 0.2563
829
+ vn -0.7412 -0.6326 0.2248
830
+ vn -0.9527 -0.2890 0.0938
831
+ vn -0.8786 -0.4696 0.0865
832
+ vn -0.7708 -0.6326 0.0759
833
+ vn -0.6332 -0.7715 0.0624
834
+ vn -0.4709 -0.8810 0.0464
835
+ vn -0.2902 -0.9565 0.0286
836
+ vn -0.9904 0.0975 0.0975
837
+ vn -0.0980 -0.9951 0.0097
838
+ vn -0.9904 -0.0975 0.0975
839
+ vn -0.4709 -0.8810 -0.0464
840
+ vn -0.2902 -0.9565 -0.0286
841
+ vn -0.9904 0.0975 -0.0975
842
+ vn -0.0980 -0.9951 -0.0097
843
+ vn -0.9904 -0.0975 -0.0975
844
+ vn -0.9527 -0.2890 -0.0938
845
+ vn -0.8786 -0.4696 -0.0865
846
+ vn -0.7708 -0.6326 -0.0759
847
+ vn -0.6332 -0.7715 -0.0624
848
+ vn -0.9161 -0.2890 -0.2779
849
+ vn -0.8448 -0.4696 -0.2563
850
+ vn -0.7412 -0.6326 -0.2248
851
+ vn -0.6088 -0.7715 -0.1847
852
+ vn -0.4528 -0.8810 -0.1374
853
+ vn -0.2790 -0.9565 -0.0846
854
+ vn -0.9524 0.0975 -0.2889
855
+ vn -0.0942 -0.9951 -0.0286
856
+ vn -0.9524 -0.0975 -0.2889
857
+ vn -0.4173 -0.8810 -0.2231
858
+ vn -0.2571 -0.9566 -0.1374
859
+ vn -0.8777 0.0975 -0.4691
860
+ vn -0.0869 -0.9951 -0.0464
861
+ vn -0.8777 -0.0975 -0.4691
862
+ vn -0.8443 -0.2890 -0.4513
863
+ vn -0.7786 -0.4696 -0.4162
864
+ vn -0.6831 -0.6326 -0.3651
865
+ vn -0.5611 -0.7715 -0.2999
866
+ vn -0.6825 -0.4696 -0.5601
867
+ vn -0.5987 -0.6326 -0.4913
868
+ vn -0.4918 -0.7715 -0.4036
869
+ vn -0.3658 -0.8810 -0.3002
870
+ vn -0.2254 -0.9565 -0.1850
871
+ vn -0.7693 0.0975 -0.6314
872
+ vn -0.0761 -0.9951 -0.0625
873
+ vn -0.7693 -0.0975 -0.6314
874
+ vn -0.7400 -0.2890 -0.6073
875
+ vn -0.1850 -0.9565 -0.2254
876
+ vn -0.6314 0.0975 -0.7693
877
+ vn -0.0625 -0.9951 -0.0761
878
+ vn -0.6314 -0.0975 -0.7693
879
+ vn -0.6073 -0.2890 -0.7400
880
+ vn -0.5601 -0.4696 -0.6825
881
+ vn -0.4913 -0.6326 -0.5987
882
+ vn -0.4036 -0.7715 -0.4918
883
+ vn -0.3002 -0.8810 -0.3658
884
+ vn -0.4162 -0.4696 -0.7786
885
+ vn -0.3651 -0.6326 -0.6831
886
+ vn -0.2999 -0.7715 -0.5611
887
+ vn -0.2231 -0.8810 -0.4173
888
+ vn -0.1374 -0.9565 -0.2571
889
+ vn -0.4691 0.0975 -0.8777
890
+ vn -0.0464 -0.9951 -0.0869
891
+ vn -0.4691 -0.0975 -0.8777
892
+ vn -0.4513 -0.2890 -0.8443
893
+ vn -0.0846 -0.9565 -0.2790
894
+ vn -0.2889 0.0975 -0.9524
895
+ vn -0.0286 -0.9951 -0.0942
896
+ vn -0.2889 -0.0975 -0.9524
897
+ vn -0.2779 -0.2890 -0.9161
898
+ vn -0.2563 -0.4696 -0.8448
899
+ vn -0.2248 -0.6326 -0.7412
900
+ vn -0.1847 -0.7715 -0.6088
901
+ vn -0.1374 -0.8810 -0.4528
902
+ vn -0.0759 -0.6326 -0.7708
903
+ vn -0.0624 -0.7715 -0.6332
904
+ vn -0.0464 -0.8810 -0.4709
905
+ vn -0.0286 -0.9565 -0.2902
906
+ vn -0.0976 0.0975 -0.9904
907
+ vn -0.0097 -0.9951 -0.0980
908
+ vn -0.0976 -0.0976 -0.9904
909
+ vn -0.0938 -0.2890 -0.9527
910
+ vn -0.0865 -0.4696 -0.8786
911
+ usemtl CustomColor.004
912
+ s off
913
+ f 287/1/1 3/2/1 9/3/1 10/4/1
914
+ f 288/5/2 287/1/2 10/4/2 11/6/2
915
+ f 289/7/3 288/5/3 11/6/3 12/8/3
916
+ f 4/9/4 289/7/4 12/8/4 13/10/4
917
+ f 2/11/5 1/12/5 5/13/5 6/14/5
918
+ f 149/15/6 4/9/6 13/10/6
919
+ f 285/16/7 2/11/7 6/14/7 7/17/7
920
+ f 286/18/8 285/16/8 7/17/8 8/19/8
921
+ f 3/2/9 286/18/9 8/19/9 9/3/9
922
+ f 8/19/10 7/17/10 16/20/10 17/21/10
923
+ f 9/3/11 8/19/11 17/21/11 18/22/11
924
+ f 10/4/12 9/3/12 18/22/12 19/23/12
925
+ f 11/6/13 10/4/13 19/23/13 20/24/13
926
+ f 12/8/14 11/6/14 20/24/14 21/25/14
927
+ f 13/10/15 12/8/15 21/25/15 22/26/15
928
+ f 6/14/16 5/13/16 14/27/16 15/28/16
929
+ f 149/29/17 13/10/17 22/26/17
930
+ f 7/17/18 6/14/18 15/28/18 16/20/18
931
+ f 21/25/19 20/24/19 29/30/19 30/31/19
932
+ f 22/26/20 21/25/20 30/31/20 31/32/20
933
+ f 15/28/21 14/27/21 23/33/21 24/34/21
934
+ f 149/35/22 22/26/22 31/32/22
935
+ f 16/20/23 15/28/23 24/34/23 25/36/23
936
+ f 17/21/24 16/20/24 25/36/24 26/37/24
937
+ f 18/22/25 17/21/25 26/37/25 27/38/25
938
+ f 19/23/26 18/22/26 27/38/26 28/39/26
939
+ f 20/24/27 19/23/27 28/39/27 29/30/27
940
+ f 27/38/28 26/37/28 35/40/28 36/41/28
941
+ f 28/39/29 27/38/29 36/41/29 37/42/29
942
+ f 29/30/30 28/39/30 37/42/30 38/43/30
943
+ f 30/31/31 29/30/31 38/43/31 39/44/31
944
+ f 31/32/32 30/31/32 39/44/32 40/45/32
945
+ f 24/34/33 23/33/33 32/46/33 33/47/33
946
+ f 149/48/34 31/32/34 40/45/34
947
+ f 25/36/35 24/34/35 33/47/35 34/49/35
948
+ f 26/37/36 25/36/36 34/49/36 35/40/36
949
+ f 40/45/37 39/44/37 48/50/37 49/51/37
950
+ f 33/47/38 32/46/38 41/52/38 42/53/38
951
+ f 149/54/39 40/45/39 49/51/39
952
+ f 34/49/40 33/47/40 42/53/40 43/55/40
953
+ f 35/40/41 34/49/41 43/55/41 44/56/41
954
+ f 36/41/42 35/40/42 44/56/42 45/57/42
955
+ f 37/42/43 36/41/43 45/57/43 46/58/43
956
+ f 38/43/44 37/42/44 46/58/44 47/59/44
957
+ f 39/44/45 38/43/45 47/59/45 48/50/45
958
+ f 46/58/46 45/57/46 54/60/46 55/61/46
959
+ f 47/59/47 46/58/47 55/61/47 56/62/47
960
+ f 48/50/48 47/59/48 56/62/48 57/63/48
961
+ f 49/51/49 48/50/49 57/63/49 58/64/49
962
+ f 42/53/50 41/52/50 50/65/50 51/66/50
963
+ f 149/67/51 49/51/51 58/64/51
964
+ f 43/55/52 42/53/52 51/66/52 52/68/52
965
+ f 44/56/53 43/55/53 52/68/53 53/69/53
966
+ f 45/57/54 44/56/54 53/69/54 54/60/54
967
+ f 51/66/55 50/65/55 59/70/55 60/71/55
968
+ f 149/72/56 58/64/56 67/73/56
969
+ f 52/68/57 51/66/57 60/71/57 61/74/57
970
+ f 53/69/58 52/68/58 61/74/58 62/75/58
971
+ f 54/60/59 53/69/59 62/75/59 63/76/59
972
+ f 55/61/60 54/60/60 63/76/60 64/77/60
973
+ f 56/62/61 55/61/61 64/77/61 65/78/61
974
+ f 57/63/62 56/62/62 65/78/62 66/79/62
975
+ f 58/64/63 57/63/63 66/79/63 67/73/63
976
+ f 64/77/64 63/76/64 72/80/64 73/81/64
977
+ f 65/78/65 64/77/65 73/81/65 74/82/65
978
+ f 66/79/66 65/78/66 74/82/66 75/83/66
979
+ f 67/73/67 66/79/67 75/83/67 76/84/67
980
+ f 60/71/68 59/70/68 68/85/68 69/86/68
981
+ f 149/87/69 67/73/69 76/84/69
982
+ f 61/74/70 60/71/70 69/86/70 70/88/70
983
+ f 62/75/71 61/74/71 70/88/71 71/89/71
984
+ f 63/76/72 62/75/72 71/89/72 72/80/72
985
+ f 149/90/73 76/84/73 85/91/73
986
+ f 70/88/74 69/86/74 78/92/74 79/93/74
987
+ f 71/89/75 70/88/75 79/93/75 80/94/75
988
+ f 72/80/76 71/89/76 80/94/76 81/95/76
989
+ f 73/81/77 72/80/77 81/95/77 82/96/77
990
+ f 74/82/78 73/81/78 82/96/78 83/97/78
991
+ f 75/83/79 74/82/79 83/97/79 84/98/79
992
+ f 76/84/80 75/83/80 84/98/80 85/91/80
993
+ f 69/86/81 68/85/81 77/99/81 78/92/81
994
+ f 83/97/82 82/96/82 91/100/82 92/101/82
995
+ f 84/98/83 83/97/83 92/101/83 93/102/83
996
+ f 85/91/84 84/98/84 93/102/84 94/103/84
997
+ f 78/92/85 77/99/85 86/104/85 87/105/85
998
+ f 149/106/86 85/91/86 94/103/86
999
+ f 79/93/87 78/92/87 87/105/87 88/107/87
1000
+ f 80/94/88 79/93/88 88/107/88 89/108/88
1001
+ f 81/95/89 80/94/89 89/108/89 90/109/89
1002
+ f 82/96/90 81/95/90 90/109/90 91/100/90
1003
+ f 88/107/91 87/105/91 96/110/91 97/111/91
1004
+ f 89/108/92 88/107/92 97/111/92 98/112/92
1005
+ f 90/109/93 89/108/93 98/112/93 99/113/93
1006
+ f 91/100/94 90/109/94 99/113/94 100/114/94
1007
+ f 92/101/95 91/100/95 100/114/95 101/115/95
1008
+ f 93/102/96 92/101/96 101/115/96 102/116/96
1009
+ f 94/103/97 93/102/97 102/116/97 103/117/97
1010
+ f 87/105/98 86/104/98 95/118/98 96/110/98
1011
+ f 149/119/99 94/103/99 103/117/99
1012
+ f 101/115/100 100/114/100 109/120/100 110/121/100
1013
+ f 102/116/101 101/115/101 110/121/101 111/122/101
1014
+ f 103/117/102 102/116/102 111/122/102 112/123/102
1015
+ f 96/110/103 95/118/103 104/124/103 105/125/103
1016
+ f 149/126/104 103/117/104 112/123/104
1017
+ f 97/111/105 96/110/105 105/125/105 106/127/105
1018
+ f 98/112/106 97/111/106 106/127/106 107/128/106
1019
+ f 99/113/107 98/112/107 107/128/107 108/129/107
1020
+ f 100/114/108 99/113/108 108/129/108 109/120/108
1021
+ f 107/128/109 106/127/109 115/130/109 116/131/109
1022
+ f 108/129/110 107/128/110 116/131/110 117/132/110
1023
+ f 109/120/111 108/129/111 117/132/111 118/133/111
1024
+ f 110/121/112 109/120/112 118/133/112 119/134/112
1025
+ f 111/122/113 110/121/113 119/134/113 120/135/113
1026
+ f 112/123/114 111/122/114 120/135/114 121/136/114
1027
+ f 105/125/115 104/124/115 113/137/115 114/138/115
1028
+ f 149/139/116 112/123/116 121/136/116
1029
+ f 106/127/117 105/125/117 114/138/117 115/130/117
1030
+ f 120/135/118 119/134/118 128/140/118 129/141/118
1031
+ f 121/136/119 120/135/119 129/141/119 130/142/119
1032
+ f 114/138/120 113/137/120 122/143/120 123/144/120
1033
+ f 149/145/121 121/136/121 130/142/121
1034
+ f 115/130/122 114/138/122 123/144/122 124/146/122
1035
+ f 116/131/123 115/130/123 124/146/123 125/147/123
1036
+ f 117/132/124 116/131/124 125/147/124 126/148/124
1037
+ f 118/133/125 117/132/125 126/148/125 127/149/125
1038
+ f 119/134/126 118/133/126 127/149/126 128/140/126
1039
+ f 126/148/127 125/147/127 134/150/127 135/151/127
1040
+ f 127/149/128 126/148/128 135/151/128 136/152/128
1041
+ f 128/140/129 127/149/129 136/152/129 137/153/129
1042
+ f 129/141/130 128/140/130 137/153/130 138/154/130
1043
+ f 130/142/131 129/141/131 138/154/131 139/155/131
1044
+ f 123/144/132 122/143/132 131/156/132 132/157/132
1045
+ f 149/158/133 130/142/133 139/155/133
1046
+ f 124/146/134 123/144/134 132/157/134 133/159/134
1047
+ f 125/147/135 124/146/135 133/159/135 134/150/135
1048
+ f 139/155/136 138/154/136 147/160/136 148/161/136
1049
+ f 132/157/137 131/156/137 140/162/137 141/163/137
1050
+ f 149/164/138 139/155/138 148/161/138
1051
+ f 133/159/139 132/157/139 141/163/139 142/165/139
1052
+ f 134/150/140 133/159/140 142/165/140 143/166/140
1053
+ f 135/151/141 134/150/141 143/166/141 144/167/141
1054
+ f 136/152/142 135/151/142 144/167/142 145/168/142
1055
+ f 137/153/143 136/152/143 145/168/143 146/169/143
1056
+ f 138/154/144 137/153/144 146/169/144 147/160/144
1057
+ f 144/167/145 143/166/145 153/170/145 154/171/145
1058
+ f 145/168/146 144/167/146 154/171/146 155/172/146
1059
+ f 146/169/147 145/168/147 155/172/147 156/173/147
1060
+ f 147/160/148 146/169/148 156/173/148 157/174/148
1061
+ f 148/161/149 147/160/149 157/174/149 158/175/149
1062
+ f 141/163/150 140/162/150 150/176/150 151/177/150
1063
+ f 149/178/151 148/161/151 158/175/151
1064
+ f 142/165/152 141/163/152 151/177/152 152/179/152
1065
+ f 143/166/153 142/165/153 152/179/153 153/170/153
1066
+ f 158/175/154 157/174/154 166/180/154 167/181/154
1067
+ f 151/177/155 150/176/155 159/182/155 160/183/155
1068
+ f 149/184/156 158/175/156 167/181/156
1069
+ f 152/179/157 151/177/157 160/183/157 161/185/157
1070
+ f 153/170/158 152/179/158 161/185/158 162/186/158
1071
+ f 154/171/159 153/170/159 162/186/159 163/187/159
1072
+ f 155/172/160 154/171/160 163/187/160 164/188/160
1073
+ f 156/173/161 155/172/161 164/188/161 165/189/161
1074
+ f 157/174/162 156/173/162 165/189/162 166/180/162
1075
+ f 164/188/163 163/187/163 172/190/163 173/191/163
1076
+ f 165/189/164 164/188/164 173/191/164 174/192/164
1077
+ f 166/180/165 165/189/165 174/192/165 175/193/165
1078
+ f 167/181/166 166/180/166 175/193/166 176/194/166
1079
+ f 160/183/167 159/182/167 168/195/167 169/196/167
1080
+ f 149/197/168 167/181/168 176/194/168
1081
+ f 161/185/169 160/183/169 169/196/169 170/198/169
1082
+ f 162/186/170 161/185/170 170/198/170 171/199/170
1083
+ f 163/187/171 162/186/171 171/199/171 172/190/171
1084
+ f 169/196/172 168/195/172 177/200/172 178/201/172
1085
+ f 149/202/173 176/194/173 185/203/173
1086
+ f 170/198/174 169/196/174 178/201/174 179/204/174
1087
+ f 171/199/175 170/198/175 179/204/175 180/205/175
1088
+ f 172/190/176 171/199/176 180/205/176 181/206/176
1089
+ f 173/191/177 172/190/177 181/206/177 182/207/177
1090
+ f 174/192/178 173/191/178 182/207/178 183/208/178
1091
+ f 175/193/179 174/192/179 183/208/179 184/209/179
1092
+ f 176/194/180 175/193/180 184/209/180 185/203/180
1093
+ f 182/207/181 181/206/181 190/210/181 191/211/181
1094
+ f 183/208/182 182/207/182 191/211/182 192/212/182
1095
+ f 184/209/183 183/208/183 192/212/183 193/213/183
1096
+ f 185/203/184 184/209/184 193/213/184 194/214/184
1097
+ f 178/201/185 177/200/185 186/215/185 187/216/185
1098
+ f 149/217/186 185/203/186 194/214/186
1099
+ f 179/204/187 178/201/187 187/216/187 188/218/187
1100
+ f 180/205/188 179/204/188 188/218/188 189/219/188
1101
+ f 181/206/189 180/205/189 189/219/189 190/210/189
1102
+ f 149/220/190 194/214/190 203/221/190
1103
+ f 188/218/191 187/216/191 196/222/191 197/223/191
1104
+ f 189/219/192 188/218/192 197/223/192 198/224/192
1105
+ f 190/210/193 189/219/193 198/224/193 199/225/193
1106
+ f 191/211/194 190/210/194 199/225/194 200/226/194
1107
+ f 192/212/195 191/211/195 200/226/195 201/227/195
1108
+ f 193/213/196 192/212/196 201/227/196 202/228/196
1109
+ f 194/214/197 193/213/197 202/228/197 203/221/197
1110
+ f 187/216/198 186/215/198 195/229/198 196/222/198
1111
+ f 201/227/199 200/226/199 209/230/199 210/231/199
1112
+ f 202/228/200 201/227/200 210/231/200 211/232/200
1113
+ f 203/221/201 202/228/201 211/232/201 212/233/201
1114
+ f 196/222/202 195/229/202 204/234/202 205/235/202
1115
+ f 149/236/203 203/221/203 212/233/203
1116
+ f 197/223/204 196/222/204 205/235/204 206/237/204
1117
+ f 198/224/205 197/223/205 206/237/205 207/238/205
1118
+ f 199/225/206 198/224/206 207/238/206 208/239/206
1119
+ f 200/226/207 199/225/207 208/239/207 209/230/207
1120
+ f 207/238/208 206/237/208 215/240/208 216/241/208
1121
+ f 208/239/209 207/238/209 216/241/209 217/242/209
1122
+ f 209/230/210 208/239/210 217/242/210 218/243/210
1123
+ f 210/231/211 209/230/211 218/243/211 219/244/211
1124
+ f 211/232/212 210/231/212 219/244/212 220/245/212
1125
+ f 212/233/213 211/232/213 220/245/213 221/246/213
1126
+ f 205/235/214 204/234/214 213/247/214 214/248/214
1127
+ f 149/249/215 212/233/215 221/246/215
1128
+ f 206/237/216 205/235/216 214/248/216 215/240/216
1129
+ f 220/250/217 219/251/217 228/252/217 229/253/217
1130
+ f 221/254/218 220/250/218 229/253/218 230/255/218
1131
+ f 214/256/219 213/257/219 222/258/219 223/259/219
1132
+ f 149/260/220 221/254/220 230/255/220
1133
+ f 215/261/221 214/256/221 223/259/221 224/262/221
1134
+ f 216/263/222 215/261/222 224/262/222 225/264/222
1135
+ f 217/265/223 216/263/223 225/264/223 226/266/223
1136
+ f 218/267/224 217/265/224 226/266/224 227/268/224
1137
+ f 219/251/225 218/267/225 227/268/225 228/252/225
1138
+ f 225/264/226 224/262/226 233/269/226 234/270/226
1139
+ f 226/266/227 225/264/227 234/270/227 235/271/227
1140
+ f 227/268/228 226/266/228 235/271/228 236/272/228
1141
+ f 228/252/229 227/268/229 236/272/229 237/273/229
1142
+ f 229/253/230 228/252/230 237/273/230 238/274/230
1143
+ f 230/255/231 229/253/231 238/274/231 239/275/231
1144
+ f 223/259/232 222/258/232 231/276/232 232/277/232
1145
+ f 149/278/233 230/255/233 239/275/233
1146
+ f 224/262/234 223/259/234 232/277/234 233/269/234
1147
+ f 238/274/235 237/273/235 246/279/235 247/280/235
1148
+ f 239/275/236 238/274/236 247/280/236 248/281/236
1149
+ f 232/277/237 231/276/237 240/282/237 241/283/237
1150
+ f 149/284/238 239/275/238 248/281/238
1151
+ f 233/269/239 232/277/239 241/283/239 242/285/239
1152
+ f 234/270/240 233/269/240 242/285/240 243/286/240
1153
+ f 235/271/241 234/270/241 243/286/241 244/287/241
1154
+ f 236/272/242 235/271/242 244/287/242 245/288/242
1155
+ f 237/273/243 236/272/243 245/288/243 246/279/243
1156
+ f 244/287/244 243/286/244 252/289/244 253/290/244
1157
+ f 245/288/245 244/287/245 253/290/245 254/291/245
1158
+ f 246/279/246 245/288/246 254/291/246 255/292/246
1159
+ f 247/280/247 246/279/247 255/292/247 256/293/247
1160
+ f 248/281/248 247/280/248 256/293/248 257/294/248
1161
+ f 241/283/249 240/282/249 249/295/249 250/296/249
1162
+ f 149/297/250 248/281/250 257/294/250
1163
+ f 242/285/251 241/283/251 250/296/251 251/298/251
1164
+ f 243/286/252 242/285/252 251/298/252 252/289/252
1165
+ f 257/294/253 256/293/253 265/299/253 266/300/253
1166
+ f 250/296/254 249/295/254 258/301/254 259/302/254
1167
+ f 149/303/255 257/294/255 266/300/255
1168
+ f 251/298/256 250/296/256 259/302/256 260/304/256
1169
+ f 252/289/257 251/298/257 260/304/257 261/305/257
1170
+ f 253/290/258 252/289/258 261/305/258 262/306/258
1171
+ f 254/291/259 253/290/259 262/306/259 263/307/259
1172
+ f 255/292/260 254/291/260 263/307/260 264/308/260
1173
+ f 256/293/261 255/292/261 264/308/261 265/299/261
1174
+ f 262/306/262 261/305/262 270/309/262 271/310/262
1175
+ f 263/307/263 262/306/263 271/310/263 272/311/263
1176
+ f 264/308/264 263/307/264 272/311/264 273/312/264
1177
+ f 265/299/265 264/308/265 273/312/265 274/313/265
1178
+ f 266/300/266 265/299/266 274/313/266 275/314/266
1179
+ f 259/302/267 258/301/267 267/315/267 268/316/267
1180
+ f 149/317/268 266/300/268 275/314/268
1181
+ f 260/304/269 259/302/269 268/316/269 269/318/269
1182
+ f 261/305/270 260/304/270 269/318/270 270/309/270
1183
+ f 275/314/271 274/313/271 283/319/271 284/320/271
1184
+ f 268/316/272 267/315/272 276/321/272 277/322/272
1185
+ f 149/323/273 275/314/273 284/320/273
1186
+ f 269/318/274 268/316/274 277/322/274 278/324/274
1187
+ f 270/309/275 269/318/275 278/324/275 279/325/275
1188
+ f 271/310/276 270/309/276 279/325/276 280/326/276
1189
+ f 272/311/277 271/310/277 280/326/277 281/327/277
1190
+ f 273/312/278 272/311/278 281/327/278 282/328/278
1191
+ f 274/313/279 273/312/279 282/328/279 283/319/279
1192
+ f 281/327/280 280/326/280 3/2/280 287/1/280
1193
+ f 282/328/281 281/327/281 287/1/281 288/5/281
1194
+ f 283/319/282 282/328/282 288/5/282 289/7/282
1195
+ f 284/320/283 283/319/283 289/7/283 4/9/283
1196
+ f 277/322/284 276/321/284 1/12/284 2/11/284
1197
+ f 149/329/285 284/320/285 4/9/285
1198
+ f 278/324/286 277/322/286 2/11/286 285/16/286
1199
+ f 279/325/287 278/324/287 285/16/287 286/18/287
1200
+ f 280/326/288 279/325/288 286/18/288 3/2/288
cliport/environments/assets/bags/bl_sphere_bag_basic_004.mtl ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl CustomColor.005
5
+ Ns 323.999994
6
+ Ka 1.000000 1.000000 1.000000
7
+ Kd 0.000000 0.000000 1.000000
8
+ Ks 0.500000 0.500000 0.500000
9
+ Ke 0.000000 0.000000 0.000000
10
+ Ni 1.000000
11
+ d 1.000000
12
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_basic_004.obj ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_basic_004.mtl
4
+ o Sphere.004
5
+ v 4.000000 2.000000 -0.800000
6
+ v 4.000000 1.555544 -0.665176
7
+ v 4.000000 1.215372 -0.156072
8
+ v 4.156072 2.000000 -0.784628
9
+ v 4.153073 1.843928 -0.769552
10
+ v 4.144192 1.693853 -0.724902
11
+ v 4.129769 1.555544 -0.652395
12
+ v 4.110360 1.434314 -0.554816
13
+ v 4.086709 1.334824 -0.435916
14
+ v 4.059726 1.260896 -0.300264
15
+ v 4.030448 1.215372 -0.153073
16
+ v 4.306147 2.000000 -0.739104
17
+ v 4.300264 1.843928 -0.724902
18
+ v 4.282843 1.693853 -0.682843
19
+ v 4.254552 1.555544 -0.614542
20
+ v 4.216478 1.434314 -0.522625
21
+ v 4.170086 1.334824 -0.410624
22
+ v 4.117157 1.260896 -0.282843
23
+ v 4.059726 1.215372 -0.144192
24
+ v 4.444456 2.000000 -0.665176
25
+ v 4.435916 1.843928 -0.652394
26
+ v 4.410624 1.693853 -0.614542
27
+ v 4.369552 1.555544 -0.553073
28
+ v 4.314278 1.434314 -0.470350
29
+ v 4.246927 1.334824 -0.369552
30
+ v 4.170086 1.260896 -0.254552
31
+ v 4.086709 1.215372 -0.129769
32
+ v 4.565686 2.000000 -0.565685
33
+ v 4.554816 1.843928 -0.554816
34
+ v 4.522625 1.693853 -0.522625
35
+ v 4.470350 1.555544 -0.470350
36
+ v 4.400000 1.434314 -0.400000
37
+ v 4.314278 1.334824 -0.314278
38
+ v 4.216478 1.260896 -0.216478
39
+ v 4.110360 1.215372 -0.110360
40
+ v 4.665176 2.000000 -0.444456
41
+ v 4.652395 1.843928 -0.435916
42
+ v 4.614542 1.693853 -0.410624
43
+ v 4.553073 1.555544 -0.369552
44
+ v 4.470350 1.434314 -0.314278
45
+ v 4.369552 1.334824 -0.246926
46
+ v 4.254552 1.260896 -0.170086
47
+ v 4.129769 1.215372 -0.086709
48
+ v 4.739104 2.000000 -0.306146
49
+ v 4.724902 1.843928 -0.300264
50
+ v 4.682843 1.693853 -0.282843
51
+ v 4.614542 1.555544 -0.254551
52
+ v 4.522625 1.434314 -0.216478
53
+ v 4.410624 1.334824 -0.170086
54
+ v 4.282843 1.260896 -0.117157
55
+ v 4.144192 1.215372 -0.059726
56
+ v 4.784628 2.000000 -0.156072
57
+ v 4.769552 1.843928 -0.153073
58
+ v 4.724902 1.693853 -0.144192
59
+ v 4.652395 1.555544 -0.129769
60
+ v 4.554816 1.434314 -0.110359
61
+ v 4.435916 1.334824 -0.086709
62
+ v 4.300264 1.260896 -0.059726
63
+ v 4.153073 1.215372 -0.030448
64
+ v 4.800000 2.000000 0.000000
65
+ v 4.784628 1.843928 0.000000
66
+ v 4.739104 1.693853 0.000000
67
+ v 4.665176 1.555544 0.000000
68
+ v 4.565686 1.434314 0.000000
69
+ v 4.444456 1.334824 0.000000
70
+ v 4.306147 1.260896 0.000000
71
+ v 4.156072 1.215372 0.000000
72
+ v 4.784628 2.000000 0.156073
73
+ v 4.769552 1.843928 0.153074
74
+ v 4.724902 1.693853 0.144192
75
+ v 4.652395 1.555544 0.129770
76
+ v 4.554816 1.434314 0.110360
77
+ v 4.435916 1.334824 0.086709
78
+ v 4.300264 1.260896 0.059727
79
+ v 4.153073 1.215372 0.030448
80
+ v 4.739104 2.000000 0.306147
81
+ v 4.724902 1.843928 0.300265
82
+ v 4.682843 1.693853 0.282843
83
+ v 4.614542 1.555544 0.254552
84
+ v 4.522625 1.434314 0.216479
85
+ v 4.410624 1.334824 0.170086
86
+ v 4.282843 1.260896 0.117158
87
+ v 4.144192 1.215372 0.059727
88
+ v 4.665175 2.000000 0.444457
89
+ v 4.652395 1.843928 0.435916
90
+ v 4.614542 1.693853 0.410624
91
+ v 4.553073 1.555544 0.369552
92
+ v 4.470350 1.434314 0.314278
93
+ v 4.369552 1.334824 0.246927
94
+ v 4.254552 1.260896 0.170086
95
+ v 4.129769 1.215372 0.086709
96
+ v 4.565685 2.000000 0.565686
97
+ v 4.554816 1.843928 0.554816
98
+ v 4.522625 1.693853 0.522626
99
+ v 4.470350 1.555544 0.470351
100
+ v 4.400000 1.434314 0.400000
101
+ v 4.314278 1.334824 0.314278
102
+ v 4.216478 1.260896 0.216479
103
+ v 4.110360 1.215372 0.110360
104
+ v 4.444456 2.000000 0.665176
105
+ v 4.435916 1.843928 0.652395
106
+ v 4.410624 1.693853 0.614542
107
+ v 4.369552 1.555544 0.553074
108
+ v 4.314278 1.434314 0.470351
109
+ v 4.246927 1.334824 0.369552
110
+ v 4.170086 1.260896 0.254552
111
+ v 4.086709 1.215372 0.129770
112
+ v 4.306147 2.000000 0.739104
113
+ v 4.300264 1.843928 0.724902
114
+ v 4.282843 1.693853 0.682843
115
+ v 4.254552 1.555544 0.614543
116
+ v 4.216478 1.434314 0.522626
117
+ v 4.170086 1.334824 0.410624
118
+ v 4.117157 1.260896 0.282843
119
+ v 4.059726 1.215372 0.144192
120
+ v 4.156072 2.000000 0.784628
121
+ v 4.153073 1.843928 0.769552
122
+ v 4.144192 1.693853 0.724902
123
+ v 4.129769 1.555544 0.652395
124
+ v 4.110360 1.434314 0.554816
125
+ v 4.086709 1.334824 0.435916
126
+ v 4.059726 1.260896 0.300265
127
+ v 4.030448 1.215372 0.153074
128
+ v 4.000000 2.000000 0.800000
129
+ v 4.000000 1.843928 0.784628
130
+ v 4.000000 1.693853 0.739104
131
+ v 4.000000 1.555544 0.665176
132
+ v 4.000000 1.434314 0.565686
133
+ v 4.000000 1.334824 0.444456
134
+ v 4.000000 1.260896 0.306147
135
+ v 4.000000 1.215372 0.156072
136
+ v 4.000000 1.200000 0.000000
137
+ v 3.843928 2.000000 0.784628
138
+ v 3.846927 1.843928 0.769552
139
+ v 3.855808 1.693853 0.724902
140
+ v 3.870230 1.555544 0.652395
141
+ v 3.889640 1.434314 0.554816
142
+ v 3.913291 1.334824 0.435916
143
+ v 3.940274 1.260896 0.300264
144
+ v 3.969552 1.215372 0.153074
145
+ v 3.693853 2.000000 0.739104
146
+ v 3.699736 1.843928 0.724902
147
+ v 3.717157 1.693853 0.682843
148
+ v 3.745448 1.555544 0.614542
149
+ v 3.783521 1.434314 0.522625
150
+ v 3.829914 1.334824 0.410624
151
+ v 3.882843 1.260896 0.282843
152
+ v 3.940274 1.215372 0.144192
153
+ v 3.555544 2.000000 0.665176
154
+ v 3.564084 1.843928 0.652395
155
+ v 3.589376 1.693853 0.614542
156
+ v 3.630448 1.555544 0.553073
157
+ v 3.685722 1.434314 0.470350
158
+ v 3.753073 1.334824 0.369552
159
+ v 3.829914 1.260896 0.254552
160
+ v 3.913291 1.215372 0.129770
161
+ v 3.434315 2.000000 0.565685
162
+ v 3.445184 1.843928 0.554816
163
+ v 3.477375 1.693853 0.522625
164
+ v 3.529650 1.555544 0.470350
165
+ v 3.600000 1.434314 0.400000
166
+ v 3.685722 1.334824 0.314278
167
+ v 3.783522 1.260896 0.216479
168
+ v 3.889640 1.215372 0.110360
169
+ v 3.334825 2.000000 0.444456
170
+ v 3.347606 1.843928 0.435916
171
+ v 3.385458 1.693853 0.410624
172
+ v 3.446927 1.555544 0.369552
173
+ v 3.529650 1.434314 0.314278
174
+ v 3.630448 1.334824 0.246927
175
+ v 3.745448 1.260896 0.170086
176
+ v 3.870231 1.215372 0.086709
177
+ v 3.260897 2.000000 0.306147
178
+ v 3.275098 1.843928 0.300264
179
+ v 3.317158 1.693853 0.282843
180
+ v 3.385458 1.555544 0.254552
181
+ v 3.477375 1.434314 0.216479
182
+ v 3.589376 1.334824 0.170086
183
+ v 3.717157 1.260896 0.117158
184
+ v 3.855808 1.215372 0.059726
185
+ v 3.215372 2.000000 0.156072
186
+ v 3.230448 1.843928 0.153074
187
+ v 3.275098 1.693853 0.144192
188
+ v 3.347606 1.555544 0.129769
189
+ v 3.445184 1.434314 0.110360
190
+ v 3.564084 1.334824 0.086709
191
+ v 3.699736 1.260896 0.059726
192
+ v 3.846927 1.215372 0.030448
193
+ v 3.200001 2.000000 0.000000
194
+ v 3.215372 1.843928 0.000000
195
+ v 3.260897 1.693853 0.000000
196
+ v 3.334825 1.555544 0.000000
197
+ v 3.434315 1.434314 0.000000
198
+ v 3.555544 1.334824 0.000000
199
+ v 3.693853 1.260896 0.000000
200
+ v 3.843928 1.215372 0.000000
201
+ v 3.215372 2.000000 -0.156072
202
+ v 3.230448 1.843928 -0.153073
203
+ v 3.275099 1.693853 -0.144192
204
+ v 3.347606 1.555544 -0.129769
205
+ v 3.445184 1.434314 -0.110360
206
+ v 3.564084 1.334824 -0.086709
207
+ v 3.699736 1.260896 -0.059726
208
+ v 3.846927 1.215372 -0.030448
209
+ v 3.260897 2.000000 -0.306147
210
+ v 3.275098 1.843928 -0.300264
211
+ v 3.317158 1.693853 -0.282842
212
+ v 3.385458 1.555544 -0.254552
213
+ v 3.477375 1.434314 -0.216478
214
+ v 3.589376 1.334824 -0.170086
215
+ v 3.717157 1.260896 -0.117157
216
+ v 3.855808 1.215372 -0.059726
217
+ v 3.334825 2.000000 -0.444456
218
+ v 3.347606 1.843928 -0.435916
219
+ v 3.385458 1.693853 -0.410624
220
+ v 3.446927 1.555544 -0.369552
221
+ v 3.529650 1.434314 -0.314278
222
+ v 3.630449 1.334824 -0.246926
223
+ v 3.745448 1.260896 -0.170086
224
+ v 3.870231 1.215372 -0.086709
225
+ v 3.434315 2.000000 -0.565685
226
+ v 3.445184 1.843928 -0.554815
227
+ v 3.477375 1.693853 -0.522625
228
+ v 3.529650 1.555544 -0.470350
229
+ v 3.600000 1.434314 -0.400000
230
+ v 3.685722 1.334824 -0.314278
231
+ v 3.783522 1.260896 -0.216478
232
+ v 3.889640 1.215372 -0.110359
233
+ v 3.555544 2.000000 -0.665175
234
+ v 3.564084 1.843928 -0.652394
235
+ v 3.589376 1.693853 -0.614542
236
+ v 3.630449 1.555544 -0.553073
237
+ v 3.685722 1.434314 -0.470350
238
+ v 3.753074 1.334824 -0.369551
239
+ v 3.829914 1.260896 -0.254551
240
+ v 3.913291 1.215372 -0.129769
241
+ v 3.693854 2.000000 -0.739103
242
+ v 3.699736 1.843928 -0.724901
243
+ v 3.717158 1.693853 -0.682842
244
+ v 3.745449 1.555544 -0.614542
245
+ v 3.783522 1.434314 -0.522625
246
+ v 3.829914 1.334824 -0.410623
247
+ v 3.882843 1.260896 -0.282842
248
+ v 3.940274 1.215372 -0.144192
249
+ v 3.843928 2.000000 -0.784627
250
+ v 3.846927 1.843928 -0.769551
251
+ v 3.855808 1.693853 -0.724901
252
+ v 3.870231 1.555544 -0.652394
253
+ v 3.889641 1.434314 -0.554815
254
+ v 3.913291 1.334824 -0.435915
255
+ v 3.940274 1.260896 -0.300264
256
+ v 3.969552 1.215372 -0.153073
257
+ v 4.000000 1.843928 -0.784628
258
+ v 4.000000 1.693853 -0.739103
259
+ v 4.000000 1.434314 -0.565685
260
+ v 4.000000 1.334824 -0.444456
261
+ v 4.000000 1.260896 -0.306146
262
+ vt 0.750000 0.250000
263
+ vt 0.750000 0.312500
264
+ vt 0.718750 0.312500
265
+ vt 0.718750 0.250000
266
+ vt 0.750000 0.187500
267
+ vt 0.718750 0.187500
268
+ vt 0.750000 0.125000
269
+ vt 0.718750 0.125000
270
+ vt 0.750000 0.062500
271
+ vt 0.718750 0.062500
272
+ vt 0.734375 0.000000
273
+ vt 0.750000 0.437500
274
+ vt 0.750000 0.500000
275
+ vt 0.718750 0.500000
276
+ vt 0.718750 0.437500
277
+ vt 0.750000 0.375000
278
+ vt 0.718750 0.375000
279
+ vt 0.687500 0.437500
280
+ vt 0.687500 0.375000
281
+ vt 0.687500 0.312500
282
+ vt 0.687500 0.250000
283
+ vt 0.687500 0.187500
284
+ vt 0.687500 0.125000
285
+ vt 0.687500 0.062500
286
+ vt 0.703125 0.000000
287
+ vt 0.687500 0.500000
288
+ vt 0.656250 0.187500
289
+ vt 0.656250 0.125000
290
+ vt 0.656250 0.062500
291
+ vt 0.671875 0.000000
292
+ vt 0.656250 0.500000
293
+ vt 0.656250 0.437500
294
+ vt 0.656250 0.375000
295
+ vt 0.656250 0.312500
296
+ vt 0.656250 0.250000
297
+ vt 0.625000 0.375000
298
+ vt 0.625000 0.312500
299
+ vt 0.625000 0.250000
300
+ vt 0.625000 0.187500
301
+ vt 0.625000 0.125000
302
+ vt 0.625000 0.062500
303
+ vt 0.640625 0.000000
304
+ vt 0.625000 0.500000
305
+ vt 0.625000 0.437500
306
+ vt 0.593750 0.125000
307
+ vt 0.593750 0.062500
308
+ vt 0.609375 0.000000
309
+ vt 0.593750 0.500000
310
+ vt 0.593750 0.437500
311
+ vt 0.593750 0.375000
312
+ vt 0.593750 0.312500
313
+ vt 0.593750 0.250000
314
+ vt 0.593750 0.187500
315
+ vt 0.562500 0.312500
316
+ vt 0.562500 0.250000
317
+ vt 0.562500 0.187500
318
+ vt 0.562500 0.125000
319
+ vt 0.562500 0.062500
320
+ vt 0.578125 0.000000
321
+ vt 0.562500 0.500000
322
+ vt 0.562500 0.437500
323
+ vt 0.562500 0.375000
324
+ vt 0.546875 0.000000
325
+ vt 0.531250 0.062500
326
+ vt 0.531250 0.500000
327
+ vt 0.531250 0.437500
328
+ vt 0.531250 0.375000
329
+ vt 0.531250 0.312500
330
+ vt 0.531250 0.250000
331
+ vt 0.531250 0.187500
332
+ vt 0.531250 0.125000
333
+ vt 0.500000 0.312500
334
+ vt 0.500000 0.250000
335
+ vt 0.500000 0.187500
336
+ vt 0.500000 0.125000
337
+ vt 0.500000 0.062500
338
+ vt 0.515625 0.000000
339
+ vt 0.500000 0.500000
340
+ vt 0.500000 0.437500
341
+ vt 0.500000 0.375000
342
+ vt 0.484375 0.000000
343
+ vt 0.468750 0.062500
344
+ vt 0.468750 0.500000
345
+ vt 0.468750 0.437500
346
+ vt 0.468750 0.375000
347
+ vt 0.468750 0.312500
348
+ vt 0.468750 0.250000
349
+ vt 0.468750 0.187500
350
+ vt 0.468750 0.125000
351
+ vt 0.437500 0.250000
352
+ vt 0.437500 0.187500
353
+ vt 0.437500 0.125000
354
+ vt 0.437500 0.062500
355
+ vt 0.453125 0.000000
356
+ vt 0.437500 0.500000
357
+ vt 0.437500 0.437500
358
+ vt 0.437500 0.375000
359
+ vt 0.437500 0.312500
360
+ vt 0.406250 0.500000
361
+ vt 0.406250 0.437500
362
+ vt 0.406250 0.375000
363
+ vt 0.406250 0.312500
364
+ vt 0.406250 0.250000
365
+ vt 0.406250 0.187500
366
+ vt 0.406250 0.125000
367
+ vt 0.406250 0.062500
368
+ vt 0.421875 0.000000
369
+ vt 0.375000 0.250000
370
+ vt 0.375000 0.187500
371
+ vt 0.375000 0.125000
372
+ vt 0.375000 0.062500
373
+ vt 0.390625 0.000000
374
+ vt 0.375000 0.500000
375
+ vt 0.375000 0.437500
376
+ vt 0.375000 0.375000
377
+ vt 0.375000 0.312500
378
+ vt 0.343750 0.437500
379
+ vt 0.343750 0.375000
380
+ vt 0.343750 0.312500
381
+ vt 0.343750 0.250000
382
+ vt 0.343750 0.187500
383
+ vt 0.343750 0.125000
384
+ vt 0.343750 0.062500
385
+ vt 0.359375 0.000000
386
+ vt 0.343750 0.500000
387
+ vt 0.312500 0.187500
388
+ vt 0.312500 0.125000
389
+ vt 0.312500 0.062500
390
+ vt 0.328125 0.000000
391
+ vt 0.312500 0.500000
392
+ vt 0.312500 0.437500
393
+ vt 0.312500 0.375000
394
+ vt 0.312500 0.312500
395
+ vt 0.312500 0.250000
396
+ vt 0.281250 0.375000
397
+ vt 0.281250 0.312500
398
+ vt 0.281250 0.250000
399
+ vt 0.281250 0.187500
400
+ vt 0.281250 0.125000
401
+ vt 0.281250 0.062500
402
+ vt 0.296875 0.000000
403
+ vt 0.281250 0.500000
404
+ vt 0.281250 0.437500
405
+ vt 0.250000 0.125000
406
+ vt 0.250000 0.062500
407
+ vt 0.265625 0.000000
408
+ vt 0.250000 0.500000
409
+ vt 0.250000 0.437500
410
+ vt 0.250000 0.375000
411
+ vt 0.250000 0.312500
412
+ vt 0.250000 0.250000
413
+ vt 0.250000 0.187500
414
+ vt 0.218750 0.375000
415
+ vt 0.218750 0.312500
416
+ vt 0.218750 0.250000
417
+ vt 0.218750 0.187500
418
+ vt 0.218750 0.125000
419
+ vt 0.218750 0.062500
420
+ vt 0.234375 0.000000
421
+ vt 0.218750 0.500000
422
+ vt 0.218750 0.437500
423
+ vt 0.187500 0.125000
424
+ vt 0.187500 0.062500
425
+ vt 0.203125 0.000000
426
+ vt 0.187500 0.500000
427
+ vt 0.187500 0.437500
428
+ vt 0.187500 0.375000
429
+ vt 0.187500 0.312500
430
+ vt 0.187500 0.250000
431
+ vt 0.187500 0.187500
432
+ vt 0.156250 0.312500
433
+ vt 0.156250 0.250000
434
+ vt 0.156250 0.187500
435
+ vt 0.156250 0.125000
436
+ vt 0.156250 0.062500
437
+ vt 0.171875 0.000000
438
+ vt 0.156250 0.500000
439
+ vt 0.156250 0.437500
440
+ vt 0.156250 0.375000
441
+ vt 0.140625 0.000000
442
+ vt 0.125000 0.062500
443
+ vt 0.125000 0.500000
444
+ vt 0.125000 0.437500
445
+ vt 0.125000 0.375000
446
+ vt 0.125000 0.312500
447
+ vt 0.125000 0.250000
448
+ vt 0.125000 0.187500
449
+ vt 0.125000 0.125000
450
+ vt 0.093750 0.312500
451
+ vt 0.093750 0.250000
452
+ vt 0.093750 0.187500
453
+ vt 0.093750 0.125000
454
+ vt 0.093750 0.062500
455
+ vt 0.109375 0.000000
456
+ vt 0.093750 0.500000
457
+ vt 0.093750 0.437500
458
+ vt 0.093750 0.375000
459
+ vt 0.078125 0.000000
460
+ vt 0.062500 0.062500
461
+ vt 0.062500 0.500000
462
+ vt 0.062500 0.437500
463
+ vt 0.062500 0.375000
464
+ vt 0.062500 0.312500
465
+ vt 0.062500 0.250000
466
+ vt 0.062500 0.187500
467
+ vt 0.062500 0.125000
468
+ vt 0.031250 0.250000
469
+ vt 0.031250 0.187500
470
+ vt 0.031250 0.125000
471
+ vt 0.031250 0.062500
472
+ vt 0.046875 0.000000
473
+ vt 0.031250 0.500000
474
+ vt 0.031250 0.437500
475
+ vt 0.031250 0.375000
476
+ vt 0.031250 0.312500
477
+ vt 0.000000 0.437500
478
+ vt 0.000000 0.375000
479
+ vt 0.000000 0.312500
480
+ vt 0.000000 0.250000
481
+ vt 0.000000 0.187500
482
+ vt 0.000000 0.125000
483
+ vt 0.000000 0.062500
484
+ vt 0.015625 0.000000
485
+ vt 0.000000 0.500000
486
+ vt 1.000000 0.125000
487
+ vt 1.000000 0.187500
488
+ vt 0.968750 0.187500
489
+ vt 0.968750 0.125000
490
+ vt 1.000000 0.062500
491
+ vt 0.968750 0.062500
492
+ vt 0.984375 0.000000
493
+ vt 1.000000 0.437500
494
+ vt 1.000000 0.500000
495
+ vt 0.968750 0.500000
496
+ vt 0.968750 0.437500
497
+ vt 1.000000 0.375000
498
+ vt 0.968750 0.375000
499
+ vt 1.000000 0.312500
500
+ vt 0.968750 0.312500
501
+ vt 1.000000 0.250000
502
+ vt 0.968750 0.250000
503
+ vt 0.937500 0.437500
504
+ vt 0.937500 0.375000
505
+ vt 0.937500 0.312500
506
+ vt 0.937500 0.250000
507
+ vt 0.937500 0.187500
508
+ vt 0.937500 0.125000
509
+ vt 0.937500 0.062500
510
+ vt 0.953125 0.000000
511
+ vt 0.937500 0.500000
512
+ vt 0.906250 0.187500
513
+ vt 0.906250 0.125000
514
+ vt 0.906250 0.062500
515
+ vt 0.921875 0.000000
516
+ vt 0.906250 0.500000
517
+ vt 0.906250 0.437500
518
+ vt 0.906250 0.375000
519
+ vt 0.906250 0.312500
520
+ vt 0.906250 0.250000
521
+ vt 0.875000 0.375000
522
+ vt 0.875000 0.312500
523
+ vt 0.875000 0.250000
524
+ vt 0.875000 0.187500
525
+ vt 0.875000 0.125000
526
+ vt 0.875000 0.062500
527
+ vt 0.890625 0.000000
528
+ vt 0.875000 0.500000
529
+ vt 0.875000 0.437500
530
+ vt 0.843750 0.125000
531
+ vt 0.843750 0.062500
532
+ vt 0.859375 0.000000
533
+ vt 0.843750 0.500000
534
+ vt 0.843750 0.437500
535
+ vt 0.843750 0.375000
536
+ vt 0.843750 0.312500
537
+ vt 0.843750 0.250000
538
+ vt 0.843750 0.187500
539
+ vt 0.812500 0.375000
540
+ vt 0.812500 0.312500
541
+ vt 0.812500 0.250000
542
+ vt 0.812500 0.187500
543
+ vt 0.812500 0.125000
544
+ vt 0.812500 0.062500
545
+ vt 0.828125 0.000000
546
+ vt 0.812500 0.500000
547
+ vt 0.812500 0.437500
548
+ vt 0.781250 0.125000
549
+ vt 0.781250 0.062500
550
+ vt 0.796875 0.000000
551
+ vt 0.781250 0.500000
552
+ vt 0.781250 0.437500
553
+ vt 0.781250 0.375000
554
+ vt 0.781250 0.312500
555
+ vt 0.781250 0.250000
556
+ vt 0.781250 0.187500
557
+ vt 0.765625 0.000000
558
+ vn 0.0759 -0.6326 -0.7708
559
+ vn 0.0624 -0.7715 -0.6332
560
+ vn 0.0464 -0.8810 -0.4709
561
+ vn 0.0286 -0.9565 -0.2902
562
+ vn 0.0097 -0.9951 -0.0980
563
+ vn 0.0975 -0.0976 -0.9904
564
+ vn 0.0938 -0.2890 -0.9527
565
+ vn 0.0865 -0.4696 -0.8786
566
+ vn 0.2779 -0.2890 -0.9161
567
+ vn 0.2563 -0.4696 -0.8448
568
+ vn 0.2248 -0.6326 -0.7412
569
+ vn 0.1847 -0.7715 -0.6088
570
+ vn 0.1374 -0.8810 -0.4528
571
+ vn 0.0846 -0.9565 -0.2790
572
+ vn 0.0286 -0.9951 -0.0942
573
+ vn 0.2889 -0.0976 -0.9524
574
+ vn 0.2230 -0.8810 -0.4173
575
+ vn 0.1374 -0.9565 -0.2571
576
+ vn 0.0464 -0.9951 -0.0869
577
+ vn 0.4691 -0.0975 -0.8777
578
+ vn 0.4513 -0.2890 -0.8443
579
+ vn 0.4162 -0.4696 -0.7786
580
+ vn 0.3651 -0.6326 -0.6831
581
+ vn 0.2999 -0.7715 -0.5611
582
+ vn 0.5601 -0.4696 -0.6825
583
+ vn 0.4913 -0.6326 -0.5987
584
+ vn 0.4036 -0.7715 -0.4918
585
+ vn 0.3002 -0.8810 -0.3658
586
+ vn 0.1850 -0.9565 -0.2254
587
+ vn 0.0625 -0.9951 -0.0761
588
+ vn 0.6314 -0.0975 -0.7693
589
+ vn 0.6073 -0.2890 -0.7400
590
+ vn 0.2254 -0.9565 -0.1850
591
+ vn 0.0761 -0.9951 -0.0625
592
+ vn 0.7693 -0.0976 -0.6314
593
+ vn 0.7400 -0.2890 -0.6073
594
+ vn 0.6825 -0.4696 -0.5601
595
+ vn 0.5987 -0.6326 -0.4913
596
+ vn 0.4918 -0.7715 -0.4036
597
+ vn 0.3658 -0.8810 -0.3002
598
+ vn 0.6831 -0.6326 -0.3651
599
+ vn 0.5611 -0.7715 -0.2999
600
+ vn 0.4173 -0.8810 -0.2230
601
+ vn 0.2571 -0.9565 -0.1374
602
+ vn 0.0869 -0.9951 -0.0464
603
+ vn 0.8777 -0.0976 -0.4691
604
+ vn 0.8443 -0.2890 -0.4513
605
+ vn 0.7786 -0.4696 -0.4162
606
+ vn 0.0942 -0.9951 -0.0286
607
+ vn 0.9524 -0.0975 -0.2889
608
+ vn 0.9161 -0.2890 -0.2779
609
+ vn 0.8448 -0.4696 -0.2563
610
+ vn 0.7412 -0.6326 -0.2248
611
+ vn 0.6088 -0.7715 -0.1847
612
+ vn 0.4528 -0.8810 -0.1374
613
+ vn 0.2790 -0.9566 -0.0846
614
+ vn 0.7708 -0.6326 -0.0759
615
+ vn 0.6332 -0.7715 -0.0624
616
+ vn 0.4709 -0.8810 -0.0464
617
+ vn 0.2902 -0.9565 -0.0286
618
+ vn 0.0980 -0.9951 -0.0097
619
+ vn 0.9904 -0.0976 -0.0975
620
+ vn 0.9527 -0.2890 -0.0938
621
+ vn 0.8786 -0.4696 -0.0865
622
+ vn 0.0980 -0.9951 0.0097
623
+ vn 0.9904 -0.0976 0.0976
624
+ vn 0.9527 -0.2890 0.0938
625
+ vn 0.8786 -0.4696 0.0865
626
+ vn 0.7708 -0.6326 0.0759
627
+ vn 0.6332 -0.7715 0.0624
628
+ vn 0.4709 -0.8810 0.0464
629
+ vn 0.2902 -0.9566 0.0286
630
+ vn 0.6088 -0.7715 0.1847
631
+ vn 0.4528 -0.8810 0.1374
632
+ vn 0.2790 -0.9565 0.0846
633
+ vn 0.0942 -0.9951 0.0286
634
+ vn 0.9524 -0.0976 0.2889
635
+ vn 0.9161 -0.2890 0.2779
636
+ vn 0.8448 -0.4696 0.2563
637
+ vn 0.7412 -0.6326 0.2248
638
+ vn 0.8777 -0.0976 0.4691
639
+ vn 0.8443 -0.2890 0.4513
640
+ vn 0.7786 -0.4696 0.4162
641
+ vn 0.6831 -0.6326 0.3651
642
+ vn 0.5611 -0.7715 0.2999
643
+ vn 0.4173 -0.8810 0.2231
644
+ vn 0.2571 -0.9565 0.1374
645
+ vn 0.0869 -0.9951 0.0464
646
+ vn 0.4918 -0.7715 0.4036
647
+ vn 0.3658 -0.8810 0.3002
648
+ vn 0.2254 -0.9565 0.1850
649
+ vn 0.0761 -0.9951 0.0625
650
+ vn 0.7693 -0.0975 0.6314
651
+ vn 0.7400 -0.2890 0.6073
652
+ vn 0.6825 -0.4696 0.5601
653
+ vn 0.5987 -0.6326 0.4913
654
+ vn 0.6073 -0.2890 0.7400
655
+ vn 0.5601 -0.4696 0.6825
656
+ vn 0.4913 -0.6326 0.5987
657
+ vn 0.4036 -0.7715 0.4918
658
+ vn 0.3002 -0.8810 0.3658
659
+ vn 0.1850 -0.9565 0.2254
660
+ vn 0.0625 -0.9951 0.0761
661
+ vn 0.6314 -0.0975 0.7693
662
+ vn 0.2230 -0.8810 0.4173
663
+ vn 0.1374 -0.9565 0.2571
664
+ vn 0.0464 -0.9951 0.0869
665
+ vn 0.4691 -0.0975 0.8777
666
+ vn 0.4513 -0.2890 0.8443
667
+ vn 0.4162 -0.4696 0.7786
668
+ vn 0.3651 -0.6326 0.6831
669
+ vn 0.2999 -0.7715 0.5611
670
+ vn 0.2563 -0.4696 0.8448
671
+ vn 0.2248 -0.6326 0.7412
672
+ vn 0.1847 -0.7715 0.6088
673
+ vn 0.1374 -0.8810 0.4528
674
+ vn 0.0846 -0.9566 0.2790
675
+ vn 0.0286 -0.9951 0.0942
676
+ vn 0.2889 -0.0976 0.9524
677
+ vn 0.2779 -0.2890 0.9161
678
+ vn 0.0286 -0.9565 0.2902
679
+ vn 0.0097 -0.9951 0.0980
680
+ vn 0.0975 -0.0975 0.9904
681
+ vn 0.0938 -0.2890 0.9527
682
+ vn 0.0865 -0.4696 0.8786
683
+ vn 0.0759 -0.6326 0.7708
684
+ vn 0.0624 -0.7715 0.6332
685
+ vn 0.0464 -0.8810 0.4709
686
+ vn -0.0865 -0.4696 0.8786
687
+ vn -0.0759 -0.6326 0.7708
688
+ vn -0.0624 -0.7715 0.6332
689
+ vn -0.0464 -0.8810 0.4709
690
+ vn -0.0286 -0.9565 0.2902
691
+ vn -0.0097 -0.9951 0.0980
692
+ vn -0.0976 -0.0975 0.9904
693
+ vn -0.0938 -0.2890 0.9527
694
+ vn -0.0846 -0.9565 0.2790
695
+ vn -0.0286 -0.9951 0.0942
696
+ vn -0.2889 -0.0975 0.9524
697
+ vn -0.2779 -0.2890 0.9161
698
+ vn -0.2563 -0.4696 0.8448
699
+ vn -0.2248 -0.6326 0.7412
700
+ vn -0.1847 -0.7715 0.6088
701
+ vn -0.1374 -0.8810 0.4528
702
+ vn -0.3651 -0.6326 0.6831
703
+ vn -0.2999 -0.7715 0.5611
704
+ vn -0.2230 -0.8810 0.4173
705
+ vn -0.1374 -0.9565 0.2571
706
+ vn -0.0464 -0.9951 0.0869
707
+ vn -0.4691 -0.0975 0.8777
708
+ vn -0.4513 -0.2890 0.8443
709
+ vn -0.4162 -0.4696 0.7786
710
+ vn -0.0625 -0.9951 0.0761
711
+ vn -0.6314 -0.0975 0.7693
712
+ vn -0.6073 -0.2890 0.7400
713
+ vn -0.5601 -0.4696 0.6825
714
+ vn -0.4913 -0.6326 0.5987
715
+ vn -0.4036 -0.7715 0.4918
716
+ vn -0.3002 -0.8810 0.3658
717
+ vn -0.1850 -0.9565 0.2254
718
+ vn -0.5987 -0.6326 0.4913
719
+ vn -0.4918 -0.7715 0.4036
720
+ vn -0.3658 -0.8810 0.3002
721
+ vn -0.2254 -0.9565 0.1850
722
+ vn -0.0761 -0.9951 0.0625
723
+ vn -0.7693 -0.0975 0.6314
724
+ vn -0.7400 -0.2890 0.6073
725
+ vn -0.6825 -0.4696 0.5601
726
+ vn -0.0869 -0.9951 0.0464
727
+ vn -0.8777 -0.0975 0.4691
728
+ vn -0.8443 -0.2890 0.4513
729
+ vn -0.7786 -0.4696 0.4162
730
+ vn -0.6831 -0.6326 0.3651
731
+ vn -0.5611 -0.7715 0.2999
732
+ vn -0.4173 -0.8810 0.2231
733
+ vn -0.2571 -0.9565 0.1374
734
+ vn -0.6088 -0.7715 0.1847
735
+ vn -0.4528 -0.8810 0.1374
736
+ vn -0.2790 -0.9565 0.0846
737
+ vn -0.0942 -0.9951 0.0286
738
+ vn -0.9524 -0.0975 0.2889
739
+ vn -0.9161 -0.2890 0.2779
740
+ vn -0.8448 -0.4696 0.2563
741
+ vn -0.7412 -0.6326 0.2248
742
+ vn -0.9527 -0.2890 0.0938
743
+ vn -0.8786 -0.4696 0.0865
744
+ vn -0.7708 -0.6326 0.0759
745
+ vn -0.6332 -0.7715 0.0624
746
+ vn -0.4709 -0.8810 0.0464
747
+ vn -0.2902 -0.9565 0.0286
748
+ vn -0.0980 -0.9951 0.0097
749
+ vn -0.9904 -0.0975 0.0975
750
+ vn -0.4709 -0.8810 -0.0464
751
+ vn -0.2902 -0.9565 -0.0286
752
+ vn -0.0980 -0.9951 -0.0097
753
+ vn -0.9904 -0.0976 -0.0975
754
+ vn -0.9527 -0.2890 -0.0938
755
+ vn -0.8786 -0.4696 -0.0865
756
+ vn -0.7708 -0.6326 -0.0759
757
+ vn -0.6332 -0.7715 -0.0624
758
+ vn -0.9161 -0.2890 -0.2779
759
+ vn -0.8448 -0.4696 -0.2563
760
+ vn -0.7412 -0.6326 -0.2248
761
+ vn -0.6088 -0.7715 -0.1847
762
+ vn -0.4528 -0.8810 -0.1374
763
+ vn -0.2790 -0.9565 -0.0846
764
+ vn -0.0942 -0.9951 -0.0286
765
+ vn -0.9524 -0.0975 -0.2889
766
+ vn -0.4173 -0.8810 -0.2231
767
+ vn -0.2571 -0.9566 -0.1374
768
+ vn -0.0869 -0.9951 -0.0464
769
+ vn -0.8777 -0.0975 -0.4691
770
+ vn -0.8443 -0.2890 -0.4513
771
+ vn -0.7786 -0.4696 -0.4162
772
+ vn -0.6831 -0.6326 -0.3651
773
+ vn -0.5611 -0.7715 -0.2999
774
+ vn -0.6825 -0.4696 -0.5601
775
+ vn -0.5987 -0.6326 -0.4913
776
+ vn -0.4918 -0.7715 -0.4036
777
+ vn -0.3658 -0.8810 -0.3002
778
+ vn -0.2254 -0.9566 -0.1850
779
+ vn -0.0761 -0.9951 -0.0625
780
+ vn -0.7693 -0.0975 -0.6314
781
+ vn -0.7400 -0.2890 -0.6073
782
+ vn -0.1850 -0.9565 -0.2254
783
+ vn -0.0625 -0.9951 -0.0761
784
+ vn -0.6314 -0.0975 -0.7693
785
+ vn -0.6073 -0.2890 -0.7400
786
+ vn -0.5601 -0.4696 -0.6825
787
+ vn -0.4913 -0.6326 -0.5987
788
+ vn -0.4036 -0.7715 -0.4918
789
+ vn -0.3002 -0.8810 -0.3658
790
+ vn -0.4162 -0.4696 -0.7786
791
+ vn -0.3651 -0.6326 -0.6831
792
+ vn -0.2999 -0.7715 -0.5611
793
+ vn -0.2230 -0.8810 -0.4173
794
+ vn -0.1374 -0.9565 -0.2571
795
+ vn -0.0464 -0.9951 -0.0869
796
+ vn -0.4691 -0.0975 -0.8777
797
+ vn -0.4513 -0.2890 -0.8443
798
+ vn -0.0846 -0.9565 -0.2790
799
+ vn -0.0286 -0.9951 -0.0942
800
+ vn -0.2889 -0.0975 -0.9524
801
+ vn -0.2779 -0.2890 -0.9161
802
+ vn -0.2563 -0.4696 -0.8448
803
+ vn -0.2248 -0.6326 -0.7412
804
+ vn -0.1847 -0.7715 -0.6088
805
+ vn -0.1374 -0.8810 -0.4528
806
+ vn -0.0759 -0.6326 -0.7708
807
+ vn -0.0624 -0.7715 -0.6332
808
+ vn -0.0464 -0.8810 -0.4709
809
+ vn -0.0286 -0.9565 -0.2902
810
+ vn -0.0097 -0.9951 -0.0980
811
+ vn -0.0976 -0.0976 -0.9904
812
+ vn -0.0938 -0.2890 -0.9527
813
+ vn -0.0865 -0.4696 -0.8786
814
+ usemtl CustomColor.005
815
+ s off
816
+ f 255/1/1 2/2/1 7/3/1 8/4/1
817
+ f 256/5/2 255/1/2 8/4/2 9/6/2
818
+ f 257/7/3 256/5/3 9/6/3 10/8/3
819
+ f 3/9/4 257/7/4 10/8/4 11/10/4
820
+ f 132/11/5 3/9/5 11/10/5
821
+ f 253/12/6 1/13/6 4/14/6 5/15/6
822
+ f 254/16/7 253/12/7 5/15/7 6/17/7
823
+ f 2/2/8 254/16/8 6/17/8 7/3/8
824
+ f 6/17/9 5/15/9 13/18/9 14/19/9
825
+ f 7/3/10 6/17/10 14/19/10 15/20/10
826
+ f 8/4/11 7/3/11 15/20/11 16/21/11
827
+ f 9/6/12 8/4/12 16/21/12 17/22/12
828
+ f 10/8/13 9/6/13 17/22/13 18/23/13
829
+ f 11/10/14 10/8/14 18/23/14 19/24/14
830
+ f 132/25/15 11/10/15 19/24/15
831
+ f 5/15/16 4/14/16 12/26/16 13/18/16
832
+ f 18/23/17 17/22/17 25/27/17 26/28/17
833
+ f 19/24/18 18/23/18 26/28/18 27/29/18
834
+ f 132/30/19 19/24/19 27/29/19
835
+ f 13/18/20 12/26/20 20/31/20 21/32/20
836
+ f 14/19/21 13/18/21 21/32/21 22/33/21
837
+ f 15/20/22 14/19/22 22/33/22 23/34/22
838
+ f 16/21/23 15/20/23 23/34/23 24/35/23
839
+ f 17/22/24 16/21/24 24/35/24 25/27/24
840
+ f 23/34/25 22/33/25 30/36/25 31/37/25
841
+ f 24/35/26 23/34/26 31/37/26 32/38/26
842
+ f 25/27/27 24/35/27 32/38/27 33/39/27
843
+ f 26/28/28 25/27/28 33/39/28 34/40/28
844
+ f 27/29/29 26/28/29 34/40/29 35/41/29
845
+ f 132/42/30 27/29/30 35/41/30
846
+ f 21/32/31 20/31/31 28/43/31 29/44/31
847
+ f 22/33/32 21/32/32 29/44/32 30/36/32
848
+ f 35/41/33 34/40/33 42/45/33 43/46/33
849
+ f 132/47/34 35/41/34 43/46/34
850
+ f 29/44/35 28/43/35 36/48/35 37/49/35
851
+ f 30/36/36 29/44/36 37/49/36 38/50/36
852
+ f 31/37/37 30/36/37 38/50/37 39/51/37
853
+ f 32/38/38 31/37/38 39/51/38 40/52/38
854
+ f 33/39/39 32/38/39 40/52/39 41/53/39
855
+ f 34/40/40 33/39/40 41/53/40 42/45/40
856
+ f 40/52/41 39/51/41 47/54/41 48/55/41
857
+ f 41/53/42 40/52/42 48/55/42 49/56/42
858
+ f 42/45/43 41/53/43 49/56/43 50/57/43
859
+ f 43/46/44 42/45/44 50/57/44 51/58/44
860
+ f 132/59/45 43/46/45 51/58/45
861
+ f 37/49/46 36/48/46 44/60/46 45/61/46
862
+ f 38/50/47 37/49/47 45/61/47 46/62/47
863
+ f 39/51/48 38/50/48 46/62/48 47/54/48
864
+ f 132/63/49 51/58/49 59/64/49
865
+ f 45/61/50 44/60/50 52/65/50 53/66/50
866
+ f 46/62/51 45/61/51 53/66/51 54/67/51
867
+ f 47/54/52 46/62/52 54/67/52 55/68/52
868
+ f 48/55/53 47/54/53 55/68/53 56/69/53
869
+ f 49/56/54 48/55/54 56/69/54 57/70/54
870
+ f 50/57/55 49/56/55 57/70/55 58/71/55
871
+ f 51/58/56 50/57/56 58/71/56 59/64/56
872
+ f 56/69/57 55/68/57 63/72/57 64/73/57
873
+ f 57/70/58 56/69/58 64/73/58 65/74/58
874
+ f 58/71/59 57/70/59 65/74/59 66/75/59
875
+ f 59/64/60 58/71/60 66/75/60 67/76/60
876
+ f 132/77/61 59/64/61 67/76/61
877
+ f 53/66/62 52/65/62 60/78/62 61/79/62
878
+ f 54/67/63 53/66/63 61/79/63 62/80/63
879
+ f 55/68/64 54/67/64 62/80/64 63/72/64
880
+ f 132/81/65 67/76/65 75/82/65
881
+ f 61/79/66 60/78/66 68/83/66 69/84/66
882
+ f 62/80/67 61/79/67 69/84/67 70/85/67
883
+ f 63/72/68 62/80/68 70/85/68 71/86/68
884
+ f 64/73/69 63/72/69 71/86/69 72/87/69
885
+ f 65/74/70 64/73/70 72/87/70 73/88/70
886
+ f 66/75/71 65/74/71 73/88/71 74/89/71
887
+ f 67/76/72 66/75/72 74/89/72 75/82/72
888
+ f 73/88/73 72/87/73 80/90/73 81/91/73
889
+ f 74/89/74 73/88/74 81/91/74 82/92/74
890
+ f 75/82/75 74/89/75 82/92/75 83/93/75
891
+ f 132/94/76 75/82/76 83/93/76
892
+ f 69/84/77 68/83/77 76/95/77 77/96/77
893
+ f 70/85/78 69/84/78 77/96/78 78/97/78
894
+ f 71/86/79 70/85/79 78/97/79 79/98/79
895
+ f 72/87/80 71/86/80 79/98/80 80/90/80
896
+ f 77/96/81 76/95/81 84/99/81 85/100/81
897
+ f 78/97/82 77/96/82 85/100/82 86/101/82
898
+ f 79/98/83 78/97/83 86/101/83 87/102/83
899
+ f 80/90/84 79/98/84 87/102/84 88/103/84
900
+ f 81/91/85 80/90/85 88/103/85 89/104/85
901
+ f 82/92/86 81/91/86 89/104/86 90/105/86
902
+ f 83/93/87 82/92/87 90/105/87 91/106/87
903
+ f 132/107/88 83/93/88 91/106/88
904
+ f 89/104/89 88/103/89 96/108/89 97/109/89
905
+ f 90/105/90 89/104/90 97/109/90 98/110/90
906
+ f 91/106/91 90/105/91 98/110/91 99/111/91
907
+ f 132/112/92 91/106/92 99/111/92
908
+ f 85/100/93 84/99/93 92/113/93 93/114/93
909
+ f 86/101/94 85/100/94 93/114/94 94/115/94
910
+ f 87/102/95 86/101/95 94/115/95 95/116/95
911
+ f 88/103/96 87/102/96 95/116/96 96/108/96
912
+ f 94/115/97 93/114/97 101/117/97 102/118/97
913
+ f 95/116/98 94/115/98 102/118/98 103/119/98
914
+ f 96/108/99 95/116/99 103/119/99 104/120/99
915
+ f 97/109/100 96/108/100 104/120/100 105/121/100
916
+ f 98/110/101 97/109/101 105/121/101 106/122/101
917
+ f 99/111/102 98/110/102 106/122/102 107/123/102
918
+ f 132/124/103 99/111/103 107/123/103
919
+ f 93/114/104 92/113/104 100/125/104 101/117/104
920
+ f 106/122/105 105/121/105 113/126/105 114/127/105
921
+ f 107/123/106 106/122/106 114/127/106 115/128/106
922
+ f 132/129/107 107/123/107 115/128/107
923
+ f 101/117/108 100/125/108 108/130/108 109/131/108
924
+ f 102/118/109 101/117/109 109/131/109 110/132/109
925
+ f 103/119/110 102/118/110 110/132/110 111/133/110
926
+ f 104/120/111 103/119/111 111/133/111 112/134/111
927
+ f 105/121/112 104/120/112 112/134/112 113/126/112
928
+ f 111/133/113 110/132/113 118/135/113 119/136/113
929
+ f 112/134/114 111/133/114 119/136/114 120/137/114
930
+ f 113/126/115 112/134/115 120/137/115 121/138/115
931
+ f 114/127/116 113/126/116 121/138/116 122/139/116
932
+ f 115/128/117 114/127/117 122/139/117 123/140/117
933
+ f 132/141/118 115/128/118 123/140/118
934
+ f 109/131/119 108/130/119 116/142/119 117/143/119
935
+ f 110/132/120 109/131/120 117/143/120 118/135/120
936
+ f 123/140/121 122/139/121 130/144/121 131/145/121
937
+ f 132/146/122 123/140/122 131/145/122
938
+ f 117/143/123 116/142/123 124/147/123 125/148/123
939
+ f 118/135/124 117/143/124 125/148/124 126/149/124
940
+ f 119/136/125 118/135/125 126/149/125 127/150/125
941
+ f 120/137/126 119/136/126 127/150/126 128/151/126
942
+ f 121/138/127 120/137/127 128/151/127 129/152/127
943
+ f 122/139/128 121/138/128 129/152/128 130/144/128
944
+ f 127/150/129 126/149/129 135/153/129 136/154/129
945
+ f 128/151/130 127/150/130 136/154/130 137/155/130
946
+ f 129/152/131 128/151/131 137/155/131 138/156/131
947
+ f 130/144/132 129/152/132 138/156/132 139/157/132
948
+ f 131/145/133 130/144/133 139/157/133 140/158/133
949
+ f 132/159/134 131/145/134 140/158/134
950
+ f 125/148/135 124/147/135 133/160/135 134/161/135
951
+ f 126/149/136 125/148/136 134/161/136 135/153/136
952
+ f 140/158/137 139/157/137 147/162/137 148/163/137
953
+ f 132/164/138 140/158/138 148/163/138
954
+ f 134/161/139 133/160/139 141/165/139 142/166/139
955
+ f 135/153/140 134/161/140 142/166/140 143/167/140
956
+ f 136/154/141 135/153/141 143/167/141 144/168/141
957
+ f 137/155/142 136/154/142 144/168/142 145/169/142
958
+ f 138/156/143 137/155/143 145/169/143 146/170/143
959
+ f 139/157/144 138/156/144 146/170/144 147/162/144
960
+ f 145/169/145 144/168/145 152/171/145 153/172/145
961
+ f 146/170/146 145/169/146 153/172/146 154/173/146
962
+ f 147/162/147 146/170/147 154/173/147 155/174/147
963
+ f 148/163/148 147/162/148 155/174/148 156/175/148
964
+ f 132/176/149 148/163/149 156/175/149
965
+ f 142/166/150 141/165/150 149/177/150 150/178/150
966
+ f 143/167/151 142/166/151 150/178/151 151/179/151
967
+ f 144/168/152 143/167/152 151/179/152 152/171/152
968
+ f 132/180/153 156/175/153 164/181/153
969
+ f 150/178/154 149/177/154 157/182/154 158/183/154
970
+ f 151/179/155 150/178/155 158/183/155 159/184/155
971
+ f 152/171/156 151/179/156 159/184/156 160/185/156
972
+ f 153/172/157 152/171/157 160/185/157 161/186/157
973
+ f 154/173/158 153/172/158 161/186/158 162/187/158
974
+ f 155/174/159 154/173/159 162/187/159 163/188/159
975
+ f 156/175/160 155/174/160 163/188/160 164/181/160
976
+ f 161/186/161 160/185/161 168/189/161 169/190/161
977
+ f 162/187/162 161/186/162 169/190/162 170/191/162
978
+ f 163/188/163 162/187/163 170/191/163 171/192/163
979
+ f 164/181/164 163/188/164 171/192/164 172/193/164
980
+ f 132/194/165 164/181/165 172/193/165
981
+ f 158/183/166 157/182/166 165/195/166 166/196/166
982
+ f 159/184/167 158/183/167 166/196/167 167/197/167
983
+ f 160/185/168 159/184/168 167/197/168 168/189/168
984
+ f 132/198/169 172/193/169 180/199/169
985
+ f 166/196/170 165/195/170 173/200/170 174/201/170
986
+ f 167/197/171 166/196/171 174/201/171 175/202/171
987
+ f 168/189/172 167/197/172 175/202/172 176/203/172
988
+ f 169/190/173 168/189/173 176/203/173 177/204/173
989
+ f 170/191/174 169/190/174 177/204/174 178/205/174
990
+ f 171/192/175 170/191/175 178/205/175 179/206/175
991
+ f 172/193/176 171/192/176 179/206/176 180/199/176
992
+ f 178/205/177 177/204/177 185/207/177 186/208/177
993
+ f 179/206/178 178/205/178 186/208/178 187/209/178
994
+ f 180/199/179 179/206/179 187/209/179 188/210/179
995
+ f 132/211/180 180/199/180 188/210/180
996
+ f 174/201/181 173/200/181 181/212/181 182/213/181
997
+ f 175/202/182 174/201/182 182/213/182 183/214/182
998
+ f 176/203/183 175/202/183 183/214/183 184/215/183
999
+ f 177/204/184 176/203/184 184/215/184 185/207/184
1000
+ f 183/214/185 182/213/185 190/216/185 191/217/185
1001
+ f 184/215/186 183/214/186 191/217/186 192/218/186
1002
+ f 185/207/187 184/215/187 192/218/187 193/219/187
1003
+ f 186/208/188 185/207/188 193/219/188 194/220/188
1004
+ f 187/209/189 186/208/189 194/220/189 195/221/189
1005
+ f 188/210/190 187/209/190 195/221/190 196/222/190
1006
+ f 132/223/191 188/210/191 196/222/191
1007
+ f 182/213/192 181/212/192 189/224/192 190/216/192
1008
+ f 195/225/193 194/226/193 202/227/193 203/228/193
1009
+ f 196/229/194 195/225/194 203/228/194 204/230/194
1010
+ f 132/231/195 196/229/195 204/230/195
1011
+ f 190/232/196 189/233/196 197/234/196 198/235/196
1012
+ f 191/236/197 190/232/197 198/235/197 199/237/197
1013
+ f 192/238/198 191/236/198 199/237/198 200/239/198
1014
+ f 193/240/199 192/238/199 200/239/199 201/241/199
1015
+ f 194/226/200 193/240/200 201/241/200 202/227/200
1016
+ f 199/237/201 198/235/201 206/242/201 207/243/201
1017
+ f 200/239/202 199/237/202 207/243/202 208/244/202
1018
+ f 201/241/203 200/239/203 208/244/203 209/245/203
1019
+ f 202/227/204 201/241/204 209/245/204 210/246/204
1020
+ f 203/228/205 202/227/205 210/246/205 211/247/205
1021
+ f 204/230/206 203/228/206 211/247/206 212/248/206
1022
+ f 132/249/207 204/230/207 212/248/207
1023
+ f 198/235/208 197/234/208 205/250/208 206/242/208
1024
+ f 211/247/209 210/246/209 218/251/209 219/252/209
1025
+ f 212/248/210 211/247/210 219/252/210 220/253/210
1026
+ f 132/254/211 212/248/211 220/253/211
1027
+ f 206/242/212 205/250/212 213/255/212 214/256/212
1028
+ f 207/243/213 206/242/213 214/256/213 215/257/213
1029
+ f 208/244/214 207/243/214 215/257/214 216/258/214
1030
+ f 209/245/215 208/244/215 216/258/215 217/259/215
1031
+ f 210/246/216 209/245/216 217/259/216 218/251/216
1032
+ f 216/258/217 215/257/217 223/260/217 224/261/217
1033
+ f 217/259/218 216/258/218 224/261/218 225/262/218
1034
+ f 218/251/219 217/259/219 225/262/219 226/263/219
1035
+ f 219/252/220 218/251/220 226/263/220 227/264/220
1036
+ f 220/253/221 219/252/221 227/264/221 228/265/221
1037
+ f 132/266/222 220/253/222 228/265/222
1038
+ f 214/256/223 213/255/223 221/267/223 222/268/223
1039
+ f 215/257/224 214/256/224 222/268/224 223/260/224
1040
+ f 228/265/225 227/264/225 235/269/225 236/270/225
1041
+ f 132/271/226 228/265/226 236/270/226
1042
+ f 222/268/227 221/267/227 229/272/227 230/273/227
1043
+ f 223/260/228 222/268/228 230/273/228 231/274/228
1044
+ f 224/261/229 223/260/229 231/274/229 232/275/229
1045
+ f 225/262/230 224/261/230 232/275/230 233/276/230
1046
+ f 226/263/231 225/262/231 233/276/231 234/277/231
1047
+ f 227/264/232 226/263/232 234/277/232 235/269/232
1048
+ f 232/275/233 231/274/233 239/278/233 240/279/233
1049
+ f 233/276/234 232/275/234 240/279/234 241/280/234
1050
+ f 234/277/235 233/276/235 241/280/235 242/281/235
1051
+ f 235/269/236 234/277/236 242/281/236 243/282/236
1052
+ f 236/270/237 235/269/237 243/282/237 244/283/237
1053
+ f 132/284/238 236/270/238 244/283/238
1054
+ f 230/273/239 229/272/239 237/285/239 238/286/239
1055
+ f 231/274/240 230/273/240 238/286/240 239/278/240
1056
+ f 244/283/241 243/282/241 251/287/241 252/288/241
1057
+ f 132/289/242 244/283/242 252/288/242
1058
+ f 238/286/243 237/285/243 245/290/243 246/291/243
1059
+ f 239/278/244 238/286/244 246/291/244 247/292/244
1060
+ f 240/279/245 239/278/245 247/292/245 248/293/245
1061
+ f 241/280/246 240/279/246 248/293/246 249/294/246
1062
+ f 242/281/247 241/280/247 249/294/247 250/295/247
1063
+ f 243/282/248 242/281/248 250/295/248 251/287/248
1064
+ f 249/294/249 248/293/249 2/2/249 255/1/249
1065
+ f 250/295/250 249/294/250 255/1/250 256/5/250
1066
+ f 251/287/251 250/295/251 256/5/251 257/7/251
1067
+ f 252/288/252 251/287/252 257/7/252 3/9/252
1068
+ f 132/296/253 252/288/253 3/9/253
1069
+ f 246/291/254 245/290/254 1/13/254 253/12/254
1070
+ f 247/292/255 246/291/255 253/12/255 254/16/255
1071
+ f 248/293/256 247/292/256 254/16/256 2/2/256
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257.mtl ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl None
5
+ Ns 500
6
+ Ka 0.8 0.8 0.8
7
+ Kd 0.8 0.8 0.8
8
+ Ks 0.8 0.8 0.8
9
+ d 1
10
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257.obj ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257.mtl
4
+ o Sphere
5
+ v 0.000000 0.000000 -1.000000
6
+ v 0.000000 -0.195090 -0.980785
7
+ v 0.000000 -0.831470 -0.555570
8
+ v 0.195090 0.000000 -0.980785
9
+ v 0.191342 -0.195090 -0.961940
10
+ v 0.180240 -0.382683 -0.906127
11
+ v 0.162212 -0.555570 -0.815493
12
+ v 0.137950 -0.707107 -0.693520
13
+ v 0.108386 -0.831470 -0.544895
14
+ v 0.074658 -0.923880 -0.375330
15
+ v 0.038060 -0.980785 -0.191341
16
+ v 0.382684 0.000000 -0.923879
17
+ v 0.375330 -0.195090 -0.906127
18
+ v 0.353554 -0.382683 -0.853553
19
+ v 0.318190 -0.555570 -0.768178
20
+ v 0.270598 -0.707107 -0.653281
21
+ v 0.212608 -0.831470 -0.513280
22
+ v 0.146447 -0.923880 -0.353553
23
+ v 0.074658 -0.980785 -0.180240
24
+ v 0.555570 0.000000 -0.831469
25
+ v 0.544895 -0.195090 -0.815493
26
+ v 0.513280 -0.382683 -0.768178
27
+ v 0.461940 -0.555570 -0.691342
28
+ v 0.392848 -0.707107 -0.587938
29
+ v 0.308658 -0.831470 -0.461940
30
+ v 0.212608 -0.923880 -0.318189
31
+ v 0.108386 -0.980785 -0.162211
32
+ v 0.707107 0.000000 -0.707107
33
+ v 0.693520 -0.195090 -0.693520
34
+ v 0.653282 -0.382683 -0.653281
35
+ v 0.587938 -0.555570 -0.587938
36
+ v 0.500000 -0.707107 -0.500000
37
+ v 0.392848 -0.831470 -0.392847
38
+ v 0.270598 -0.923880 -0.270598
39
+ v 0.137950 -0.980785 -0.137949
40
+ v 0.831470 0.000000 -0.555570
41
+ v 0.815493 -0.195090 -0.544895
42
+ v 0.768178 -0.382683 -0.513280
43
+ v 0.691342 -0.555570 -0.461940
44
+ v 0.587938 -0.707107 -0.392847
45
+ v 0.461940 -0.831470 -0.308658
46
+ v 0.318190 -0.923880 -0.212607
47
+ v 0.162212 -0.980785 -0.108386
48
+ v 0.923880 0.000000 -0.382683
49
+ v 0.906128 -0.195090 -0.375330
50
+ v 0.853554 -0.382683 -0.353553
51
+ v 0.768178 -0.555570 -0.318189
52
+ v 0.653282 -0.707107 -0.270598
53
+ v 0.513280 -0.831470 -0.212607
54
+ v 0.353554 -0.923880 -0.146446
55
+ v 0.180240 -0.980785 -0.074658
56
+ v 0.980785 0.000000 -0.195090
57
+ v 0.961940 -0.195090 -0.191341
58
+ v 0.906128 -0.382683 -0.180240
59
+ v 0.815493 -0.555570 -0.162211
60
+ v 0.693520 -0.707107 -0.137949
61
+ v 0.544895 -0.831470 -0.108386
62
+ v 0.375330 -0.923880 -0.074658
63
+ v 0.191342 -0.980785 -0.038060
64
+ v 1.000000 0.000000 0.000000
65
+ v 0.980785 -0.195090 0.000000
66
+ v 0.923880 -0.382683 0.000000
67
+ v 0.831470 -0.555570 0.000000
68
+ v 0.707107 -0.707107 0.000000
69
+ v 0.555570 -0.831470 0.000000
70
+ v 0.382684 -0.923880 0.000000
71
+ v 0.195090 -0.980785 0.000000
72
+ v 0.980785 0.000000 0.195091
73
+ v 0.961940 -0.195090 0.191342
74
+ v 0.906128 -0.382683 0.180240
75
+ v 0.815493 -0.555570 0.162212
76
+ v 0.693520 -0.707107 0.137950
77
+ v 0.544895 -0.831470 0.108387
78
+ v 0.375330 -0.923880 0.074658
79
+ v 0.191342 -0.980785 0.038061
80
+ v 0.923880 0.000000 0.382684
81
+ v 0.906127 -0.195090 0.375331
82
+ v 0.853554 -0.382683 0.353554
83
+ v 0.768178 -0.555570 0.318190
84
+ v 0.653282 -0.707107 0.270598
85
+ v 0.513280 -0.831470 0.212608
86
+ v 0.353553 -0.923880 0.146447
87
+ v 0.180240 -0.980785 0.074658
88
+ v 0.831470 0.000000 0.555571
89
+ v 0.815493 -0.195090 0.544895
90
+ v 0.768178 -0.382683 0.513280
91
+ v 0.691342 -0.555570 0.461940
92
+ v 0.587938 -0.707107 0.392848
93
+ v 0.461940 -0.831470 0.308659
94
+ v 0.318190 -0.923880 0.212608
95
+ v 0.162212 -0.980785 0.108387
96
+ v 0.707107 0.000000 0.707107
97
+ v 0.693520 -0.195090 0.693520
98
+ v 0.653282 -0.382683 0.653282
99
+ v 0.587938 -0.555570 0.587938
100
+ v 0.500000 -0.707107 0.500000
101
+ v 0.392848 -0.831470 0.392848
102
+ v 0.270598 -0.923880 0.270598
103
+ v 0.137950 -0.980785 0.137950
104
+ v 0.555570 0.000000 0.831470
105
+ v 0.544895 -0.195090 0.815493
106
+ v 0.513280 -0.382683 0.768178
107
+ v 0.461940 -0.555570 0.691342
108
+ v 0.392848 -0.707107 0.587938
109
+ v 0.308658 -0.831470 0.461940
110
+ v 0.212608 -0.923880 0.318190
111
+ v 0.108386 -0.980785 0.162212
112
+ v 0.000000 -1.000000 0.000000
113
+ v 0.382683 0.000000 0.923880
114
+ v 0.375330 -0.195090 0.906128
115
+ v 0.353553 -0.382683 0.853554
116
+ v 0.318190 -0.555570 0.768178
117
+ v 0.270598 -0.707107 0.653282
118
+ v 0.212608 -0.831470 0.513280
119
+ v 0.146447 -0.923880 0.353554
120
+ v 0.074658 -0.980785 0.180240
121
+ v 0.195090 0.000000 0.980786
122
+ v 0.191342 -0.195090 0.961940
123
+ v 0.180240 -0.382683 0.906128
124
+ v 0.162212 -0.555570 0.815493
125
+ v 0.137950 -0.707107 0.693520
126
+ v 0.108386 -0.831470 0.544895
127
+ v 0.074658 -0.923880 0.375331
128
+ v 0.038060 -0.980785 0.191342
129
+ v -0.000000 0.000000 1.000000
130
+ v -0.000000 -0.195090 0.980785
131
+ v 0.000000 -0.382683 0.923880
132
+ v -0.000000 -0.555570 0.831470
133
+ v -0.000000 -0.707107 0.707107
134
+ v -0.000000 -0.831470 0.555570
135
+ v 0.000000 -0.923880 0.382684
136
+ v 0.000000 -0.980785 0.195091
137
+ v -0.195090 0.000000 0.980786
138
+ v -0.191342 -0.195090 0.961940
139
+ v -0.180240 -0.382683 0.906128
140
+ v -0.162212 -0.555570 0.815493
141
+ v -0.137950 -0.707107 0.693520
142
+ v -0.108386 -0.831470 0.544895
143
+ v -0.074658 -0.923880 0.375331
144
+ v -0.038060 -0.980785 0.191342
145
+ v -0.382684 0.000000 0.923880
146
+ v -0.375330 -0.195090 0.906127
147
+ v -0.353553 -0.382683 0.853554
148
+ v -0.318190 -0.555570 0.768178
149
+ v -0.270598 -0.707107 0.653282
150
+ v -0.212608 -0.831470 0.513280
151
+ v -0.146447 -0.923880 0.353554
152
+ v -0.074658 -0.980785 0.180240
153
+ v -0.555570 0.000000 0.831470
154
+ v -0.544895 -0.195090 0.815493
155
+ v -0.513280 -0.382683 0.768178
156
+ v -0.461940 -0.555570 0.691342
157
+ v -0.392847 -0.707107 0.587938
158
+ v -0.308658 -0.831470 0.461940
159
+ v -0.212607 -0.923880 0.318190
160
+ v -0.108386 -0.980785 0.162212
161
+ v -0.707107 0.000000 0.707107
162
+ v -0.693520 -0.195090 0.693520
163
+ v -0.653281 -0.382683 0.653282
164
+ v -0.587938 -0.555570 0.587938
165
+ v -0.500000 -0.707107 0.500000
166
+ v -0.392847 -0.831470 0.392848
167
+ v -0.270598 -0.923880 0.270598
168
+ v -0.137950 -0.980785 0.137950
169
+ v -0.831470 0.000000 0.555570
170
+ v -0.815493 -0.195090 0.544895
171
+ v -0.768178 -0.382683 0.513280
172
+ v -0.691342 -0.555570 0.461940
173
+ v -0.587938 -0.707107 0.392848
174
+ v -0.461940 -0.831470 0.308658
175
+ v -0.318190 -0.923880 0.212608
176
+ v -0.162212 -0.980785 0.108387
177
+ v -0.923880 0.000000 0.382684
178
+ v -0.906127 -0.195090 0.375330
179
+ v -0.853553 -0.382683 0.353554
180
+ v -0.768177 -0.555570 0.318190
181
+ v -0.653281 -0.707107 0.270598
182
+ v -0.513280 -0.831470 0.212608
183
+ v -0.353553 -0.923880 0.146447
184
+ v -0.180240 -0.980785 0.074658
185
+ v -0.980785 0.000000 0.195090
186
+ v -0.961939 -0.195090 0.191342
187
+ v -0.906127 -0.382683 0.180240
188
+ v -0.815493 -0.555570 0.162212
189
+ v -0.693520 -0.707107 0.137950
190
+ v -0.544895 -0.831470 0.108387
191
+ v -0.375330 -0.923880 0.074658
192
+ v -0.191342 -0.980785 0.038061
193
+ v -1.000000 0.000000 0.000000
194
+ v -0.980785 -0.195090 0.000000
195
+ v -0.923879 -0.382683 0.000000
196
+ v -0.831469 -0.555570 0.000000
197
+ v -0.707107 -0.707107 0.000000
198
+ v -0.555570 -0.831470 0.000000
199
+ v -0.382683 -0.923880 0.000000
200
+ v -0.195090 -0.980785 0.000000
201
+ v -0.980785 0.000000 -0.195090
202
+ v -0.961939 -0.195090 -0.191342
203
+ v -0.906127 -0.382683 -0.180240
204
+ v -0.815493 -0.555570 -0.162211
205
+ v -0.693520 -0.707107 -0.137949
206
+ v -0.544895 -0.831470 -0.108386
207
+ v -0.375330 -0.923880 -0.074658
208
+ v -0.191342 -0.980785 -0.038060
209
+ v -0.923879 0.000000 -0.382683
210
+ v -0.906127 -0.195090 -0.375330
211
+ v -0.853553 -0.382683 -0.353553
212
+ v -0.768177 -0.555570 -0.318189
213
+ v -0.653281 -0.707107 -0.270598
214
+ v -0.513280 -0.831470 -0.212607
215
+ v -0.353553 -0.923880 -0.146446
216
+ v -0.180240 -0.980785 -0.074657
217
+ v -0.831469 0.000000 -0.555570
218
+ v -0.815493 -0.195090 -0.544895
219
+ v -0.768178 -0.382683 -0.513280
220
+ v -0.691341 -0.555570 -0.461939
221
+ v -0.587938 -0.707107 -0.392847
222
+ v -0.461940 -0.831470 -0.308658
223
+ v -0.318189 -0.923880 -0.212607
224
+ v -0.162212 -0.980785 -0.108386
225
+ v -0.707106 0.000000 -0.707106
226
+ v -0.693519 -0.195090 -0.693519
227
+ v -0.653281 -0.382683 -0.653281
228
+ v -0.587937 -0.555570 -0.587937
229
+ v -0.500000 -0.707107 -0.500000
230
+ v -0.392847 -0.831470 -0.392847
231
+ v -0.270598 -0.923880 -0.270598
232
+ v -0.137950 -0.980785 -0.137949
233
+ v -0.555570 0.000000 -0.831469
234
+ v -0.544895 -0.195090 -0.815492
235
+ v -0.513280 -0.382683 -0.768177
236
+ v -0.461939 -0.555570 -0.691341
237
+ v -0.392847 -0.707107 -0.587937
238
+ v -0.308658 -0.831470 -0.461939
239
+ v -0.212607 -0.923880 -0.318189
240
+ v -0.108386 -0.980785 -0.162211
241
+ v -0.382683 0.000000 -0.923879
242
+ v -0.375330 -0.195090 -0.906127
243
+ v -0.353553 -0.382683 -0.853553
244
+ v -0.318189 -0.555570 -0.768177
245
+ v -0.270598 -0.707107 -0.653281
246
+ v -0.212607 -0.831470 -0.513279
247
+ v -0.146446 -0.923880 -0.353553
248
+ v -0.074658 -0.980785 -0.180240
249
+ v -0.195090 0.000000 -0.980785
250
+ v -0.191341 -0.195090 -0.961939
251
+ v -0.180240 -0.382683 -0.906127
252
+ v -0.162211 -0.555570 -0.815492
253
+ v -0.137950 -0.707107 -0.693520
254
+ v -0.108386 -0.831470 -0.544895
255
+ v -0.074658 -0.923880 -0.375330
256
+ v -0.038060 -0.980785 -0.191341
257
+ v 0.000000 -0.382683 -0.923879
258
+ v 0.000000 -0.555570 -0.831469
259
+ v 0.000000 -0.707107 -0.707106
260
+ v 0.000000 -0.923880 -0.382683
261
+ v 0.000000 -0.980785 -0.195090
262
+ vt 0.750000 0.125000
263
+ vt 0.750000 0.187500
264
+ vt 0.718750 0.187500
265
+ vt 0.718750 0.125000
266
+ vt 0.750000 0.062500
267
+ vt 0.718750 0.062500
268
+ vt 0.734375 0.000000
269
+ vt 0.750000 0.437500
270
+ vt 0.750000 0.500000
271
+ vt 0.718750 0.500000
272
+ vt 0.718750 0.437500
273
+ vt 0.750000 0.375000
274
+ vt 0.718750 0.375000
275
+ vt 0.750000 0.312500
276
+ vt 0.718750 0.312500
277
+ vt 0.750000 0.250000
278
+ vt 0.718750 0.250000
279
+ vt 0.687500 0.312500
280
+ vt 0.687500 0.250000
281
+ vt 0.687500 0.187500
282
+ vt 0.687500 0.125000
283
+ vt 0.687500 0.062500
284
+ vt 0.703125 0.000000
285
+ vt 0.687500 0.500000
286
+ vt 0.687500 0.437500
287
+ vt 0.687500 0.375000
288
+ vt 0.671875 0.000000
289
+ vt 0.656250 0.062500
290
+ vt 0.656250 0.500000
291
+ vt 0.656250 0.437500
292
+ vt 0.656250 0.375000
293
+ vt 0.656250 0.312500
294
+ vt 0.656250 0.250000
295
+ vt 0.656250 0.187500
296
+ vt 0.656250 0.125000
297
+ vt 0.625000 0.250000
298
+ vt 0.625000 0.187500
299
+ vt 0.625000 0.125000
300
+ vt 0.625000 0.062500
301
+ vt 0.640625 0.000000
302
+ vt 0.625000 0.500000
303
+ vt 0.625000 0.437500
304
+ vt 0.625000 0.375000
305
+ vt 0.625000 0.312500
306
+ vt 0.593750 0.437500
307
+ vt 0.593750 0.375000
308
+ vt 0.593750 0.312500
309
+ vt 0.593750 0.250000
310
+ vt 0.593750 0.187500
311
+ vt 0.593750 0.125000
312
+ vt 0.593750 0.062500
313
+ vt 0.609375 0.000000
314
+ vt 0.593750 0.500000
315
+ vt 0.562500 0.187500
316
+ vt 0.562500 0.125000
317
+ vt 0.562500 0.062500
318
+ vt 0.578125 0.000000
319
+ vt 0.562500 0.500000
320
+ vt 0.562500 0.437500
321
+ vt 0.562500 0.375000
322
+ vt 0.562500 0.312500
323
+ vt 0.562500 0.250000
324
+ vt 0.531250 0.437500
325
+ vt 0.531250 0.375000
326
+ vt 0.531250 0.312500
327
+ vt 0.531250 0.250000
328
+ vt 0.531250 0.187500
329
+ vt 0.531250 0.125000
330
+ vt 0.531250 0.062500
331
+ vt 0.546875 0.000000
332
+ vt 0.531250 0.500000
333
+ vt 0.500000 0.187500
334
+ vt 0.500000 0.125000
335
+ vt 0.500000 0.062500
336
+ vt 0.515625 0.000000
337
+ vt 0.500000 0.500000
338
+ vt 0.500000 0.437500
339
+ vt 0.500000 0.375000
340
+ vt 0.500000 0.312500
341
+ vt 0.500000 0.250000
342
+ vt 0.468750 0.375000
343
+ vt 0.468750 0.312500
344
+ vt 0.468750 0.250000
345
+ vt 0.468750 0.187500
346
+ vt 0.468750 0.125000
347
+ vt 0.468750 0.062500
348
+ vt 0.484375 0.000000
349
+ vt 0.468750 0.500000
350
+ vt 0.468750 0.437500
351
+ vt 0.437500 0.125000
352
+ vt 0.437500 0.062500
353
+ vt 0.453125 0.000000
354
+ vt 0.437500 0.500000
355
+ vt 0.437500 0.437500
356
+ vt 0.437500 0.375000
357
+ vt 0.437500 0.312500
358
+ vt 0.437500 0.250000
359
+ vt 0.437500 0.187500
360
+ vt 0.406250 0.375000
361
+ vt 0.406250 0.312500
362
+ vt 0.406250 0.250000
363
+ vt 0.406250 0.187500
364
+ vt 0.406250 0.125000
365
+ vt 0.406250 0.062500
366
+ vt 0.421875 0.000000
367
+ vt 0.406250 0.500000
368
+ vt 0.406250 0.437500
369
+ vt 0.375000 0.125000
370
+ vt 0.375000 0.062500
371
+ vt 0.390625 0.000000
372
+ vt 0.375000 0.500000
373
+ vt 0.375000 0.437500
374
+ vt 0.375000 0.375000
375
+ vt 0.375000 0.312500
376
+ vt 0.375000 0.250000
377
+ vt 0.375000 0.187500
378
+ vt 0.343750 0.312500
379
+ vt 0.343750 0.250000
380
+ vt 0.343750 0.187500
381
+ vt 0.343750 0.125000
382
+ vt 0.343750 0.062500
383
+ vt 0.359375 0.000000
384
+ vt 0.343750 0.500000
385
+ vt 0.343750 0.437500
386
+ vt 0.343750 0.375000
387
+ vt 0.328125 0.000000
388
+ vt 0.312500 0.062500
389
+ vt 0.312500 0.500000
390
+ vt 0.312500 0.437500
391
+ vt 0.312500 0.375000
392
+ vt 0.312500 0.312500
393
+ vt 0.312500 0.250000
394
+ vt 0.312500 0.187500
395
+ vt 0.312500 0.125000
396
+ vt 0.281250 0.250000
397
+ vt 0.281250 0.187500
398
+ vt 0.281250 0.125000
399
+ vt 0.281250 0.062500
400
+ vt 0.296875 0.000000
401
+ vt 0.281250 0.500000
402
+ vt 0.281250 0.437500
403
+ vt 0.281250 0.375000
404
+ vt 0.281250 0.312500
405
+ vt 0.250000 0.500000
406
+ vt 0.250000 0.437500
407
+ vt 0.250000 0.375000
408
+ vt 0.250000 0.312500
409
+ vt 0.250000 0.250000
410
+ vt 0.250000 0.187500
411
+ vt 0.250000 0.125000
412
+ vt 0.250000 0.062500
413
+ vt 0.265625 0.000000
414
+ vt 0.218750 0.250000
415
+ vt 0.218750 0.187500
416
+ vt 0.218750 0.125000
417
+ vt 0.218750 0.062500
418
+ vt 0.234375 0.000000
419
+ vt 0.218750 0.500000
420
+ vt 0.218750 0.437500
421
+ vt 0.218750 0.375000
422
+ vt 0.218750 0.312500
423
+ vt 0.187500 0.437500
424
+ vt 0.187500 0.375000
425
+ vt 0.187500 0.312500
426
+ vt 0.187500 0.250000
427
+ vt 0.187500 0.187500
428
+ vt 0.187500 0.125000
429
+ vt 0.187500 0.062500
430
+ vt 0.203125 0.000000
431
+ vt 0.187500 0.500000
432
+ vt 0.156250 0.187500
433
+ vt 0.156250 0.125000
434
+ vt 0.156250 0.062500
435
+ vt 0.171875 0.000000
436
+ vt 0.156250 0.500000
437
+ vt 0.156250 0.437500
438
+ vt 0.156250 0.375000
439
+ vt 0.156250 0.312500
440
+ vt 0.156250 0.250000
441
+ vt 0.125000 0.437500
442
+ vt 0.125000 0.375000
443
+ vt 0.125000 0.312500
444
+ vt 0.125000 0.250000
445
+ vt 0.125000 0.187500
446
+ vt 0.125000 0.125000
447
+ vt 0.125000 0.062500
448
+ vt 0.140625 0.000000
449
+ vt 0.125000 0.500000
450
+ vt 0.093750 0.187500
451
+ vt 0.093750 0.125000
452
+ vt 0.093750 0.062500
453
+ vt 0.109375 0.000000
454
+ vt 0.093750 0.500000
455
+ vt 0.093750 0.437500
456
+ vt 0.093750 0.375000
457
+ vt 0.093750 0.312500
458
+ vt 0.093750 0.250000
459
+ vt 0.062500 0.375000
460
+ vt 0.062500 0.312500
461
+ vt 0.062500 0.250000
462
+ vt 0.062500 0.187500
463
+ vt 0.062500 0.125000
464
+ vt 0.062500 0.062500
465
+ vt 0.078125 0.000000
466
+ vt 0.062500 0.500000
467
+ vt 0.062500 0.437500
468
+ vt 0.031250 0.125000
469
+ vt 0.031250 0.062500
470
+ vt 0.046875 0.000000
471
+ vt 0.031250 0.500000
472
+ vt 0.031250 0.437500
473
+ vt 0.031250 0.375000
474
+ vt 0.031250 0.312500
475
+ vt 0.031250 0.250000
476
+ vt 0.031250 0.187500
477
+ vt 0.000000 0.312500
478
+ vt 0.000000 0.250000
479
+ vt 0.000000 0.187500
480
+ vt 0.000000 0.125000
481
+ vt 0.000000 0.062500
482
+ vt 0.015625 0.000000
483
+ vt 0.000000 0.500000
484
+ vt 0.000000 0.437500
485
+ vt 0.000000 0.375000
486
+ vt 0.984375 0.000000
487
+ vt 1.000000 0.062500
488
+ vt 0.968750 0.062500
489
+ vt 1.000000 0.437500
490
+ vt 1.000000 0.500000
491
+ vt 0.968750 0.500000
492
+ vt 0.968750 0.437500
493
+ vt 1.000000 0.375000
494
+ vt 0.968750 0.375000
495
+ vt 1.000000 0.312500
496
+ vt 0.968750 0.312500
497
+ vt 1.000000 0.250000
498
+ vt 0.968750 0.250000
499
+ vt 1.000000 0.187500
500
+ vt 0.968750 0.187500
501
+ vt 1.000000 0.125000
502
+ vt 0.968750 0.125000
503
+ vt 0.937500 0.312500
504
+ vt 0.937500 0.250000
505
+ vt 0.937500 0.187500
506
+ vt 0.937500 0.125000
507
+ vt 0.937500 0.062500
508
+ vt 0.953125 0.000000
509
+ vt 0.937500 0.500000
510
+ vt 0.937500 0.437500
511
+ vt 0.937500 0.375000
512
+ vt 0.921875 0.000000
513
+ vt 0.906250 0.062500
514
+ vt 0.906250 0.500000
515
+ vt 0.906250 0.437500
516
+ vt 0.906250 0.375000
517
+ vt 0.906250 0.312500
518
+ vt 0.906250 0.250000
519
+ vt 0.906250 0.187500
520
+ vt 0.906250 0.125000
521
+ vt 0.875000 0.250000
522
+ vt 0.875000 0.187500
523
+ vt 0.875000 0.125000
524
+ vt 0.875000 0.062500
525
+ vt 0.890625 0.000000
526
+ vt 0.875000 0.500000
527
+ vt 0.875000 0.437500
528
+ vt 0.875000 0.375000
529
+ vt 0.875000 0.312500
530
+ vt 0.843750 0.500000
531
+ vt 0.843750 0.437500
532
+ vt 0.843750 0.375000
533
+ vt 0.843750 0.312500
534
+ vt 0.843750 0.250000
535
+ vt 0.843750 0.187500
536
+ vt 0.843750 0.125000
537
+ vt 0.843750 0.062500
538
+ vt 0.859375 0.000000
539
+ vt 0.812500 0.250000
540
+ vt 0.812500 0.187500
541
+ vt 0.812500 0.125000
542
+ vt 0.812500 0.062500
543
+ vt 0.828125 0.000000
544
+ vt 0.812500 0.500000
545
+ vt 0.812500 0.437500
546
+ vt 0.812500 0.375000
547
+ vt 0.812500 0.312500
548
+ vt 0.781250 0.437500
549
+ vt 0.781250 0.375000
550
+ vt 0.781250 0.312500
551
+ vt 0.781250 0.250000
552
+ vt 0.781250 0.187500
553
+ vt 0.781250 0.125000
554
+ vt 0.781250 0.062500
555
+ vt 0.796875 0.000000
556
+ vt 0.781250 0.500000
557
+ vt 0.765625 0.000000
558
+ vn 0.0464 -0.8810 -0.4709
559
+ vn 0.0286 -0.9565 -0.2902
560
+ vn 0.0097 -0.9951 -0.0980
561
+ vn 0.0976 -0.0975 -0.9904
562
+ vn 0.0938 -0.2890 -0.9527
563
+ vn 0.0865 -0.4696 -0.8786
564
+ vn 0.0759 -0.6326 -0.7708
565
+ vn 0.0624 -0.7715 -0.6332
566
+ vn 0.2248 -0.6326 -0.7412
567
+ vn 0.1847 -0.7715 -0.6088
568
+ vn 0.1374 -0.8810 -0.4528
569
+ vn 0.0846 -0.9565 -0.2790
570
+ vn 0.0286 -0.9951 -0.0942
571
+ vn 0.2889 -0.0975 -0.9524
572
+ vn 0.2779 -0.2890 -0.9161
573
+ vn 0.2563 -0.4696 -0.8448
574
+ vn 0.0464 -0.9951 -0.0869
575
+ vn 0.4691 -0.0975 -0.8777
576
+ vn 0.4513 -0.2890 -0.8443
577
+ vn 0.4162 -0.4696 -0.7786
578
+ vn 0.3651 -0.6326 -0.6831
579
+ vn 0.2999 -0.7715 -0.5611
580
+ vn 0.2230 -0.8810 -0.4173
581
+ vn 0.1374 -0.9565 -0.2571
582
+ vn 0.4036 -0.7715 -0.4918
583
+ vn 0.3002 -0.8810 -0.3658
584
+ vn 0.1850 -0.9565 -0.2254
585
+ vn 0.0625 -0.9951 -0.0761
586
+ vn 0.6314 -0.0976 -0.7693
587
+ vn 0.6073 -0.2890 -0.7400
588
+ vn 0.5601 -0.4696 -0.6825
589
+ vn 0.4913 -0.6326 -0.5987
590
+ vn 0.7400 -0.2890 -0.6073
591
+ vn 0.6825 -0.4696 -0.5601
592
+ vn 0.5987 -0.6326 -0.4913
593
+ vn 0.4918 -0.7715 -0.4036
594
+ vn 0.3658 -0.8810 -0.3002
595
+ vn 0.2254 -0.9565 -0.1850
596
+ vn 0.0761 -0.9951 -0.0625
597
+ vn 0.7693 -0.0975 -0.6314
598
+ vn 0.4173 -0.8810 -0.2231
599
+ vn 0.2571 -0.9565 -0.1374
600
+ vn 0.0869 -0.9951 -0.0464
601
+ vn 0.8777 -0.0976 -0.4691
602
+ vn 0.8443 -0.2890 -0.4513
603
+ vn 0.7786 -0.4696 -0.4162
604
+ vn 0.6831 -0.6326 -0.3651
605
+ vn 0.5611 -0.7715 -0.2999
606
+ vn 0.9161 -0.2890 -0.2779
607
+ vn 0.8448 -0.4696 -0.2563
608
+ vn 0.7412 -0.6326 -0.2248
609
+ vn 0.6088 -0.7715 -0.1847
610
+ vn 0.4528 -0.8810 -0.1374
611
+ vn 0.2790 -0.9565 -0.0846
612
+ vn 0.0942 -0.9951 -0.0286
613
+ vn 0.9524 -0.0976 -0.2889
614
+ vn 0.4709 -0.8810 -0.0464
615
+ vn 0.2902 -0.9565 -0.0286
616
+ vn 0.0980 -0.9951 -0.0097
617
+ vn 0.9904 -0.0976 -0.0975
618
+ vn 0.9527 -0.2890 -0.0938
619
+ vn 0.8786 -0.4696 -0.0865
620
+ vn 0.7708 -0.6326 -0.0759
621
+ vn 0.6332 -0.7715 -0.0624
622
+ vn 0.8786 -0.4696 0.0865
623
+ vn 0.7708 -0.6326 0.0759
624
+ vn 0.6332 -0.7715 0.0624
625
+ vn 0.4709 -0.8810 0.0464
626
+ vn 0.2902 -0.9565 0.0286
627
+ vn 0.0980 -0.9951 0.0097
628
+ vn 0.9904 -0.0976 0.0975
629
+ vn 0.9527 -0.2890 0.0938
630
+ vn 0.2790 -0.9565 0.0846
631
+ vn 0.0942 -0.9951 0.0286
632
+ vn 0.9524 -0.0976 0.2889
633
+ vn 0.9161 -0.2890 0.2779
634
+ vn 0.8448 -0.4696 0.2563
635
+ vn 0.7412 -0.6326 0.2248
636
+ vn 0.6088 -0.7715 0.1847
637
+ vn 0.4528 -0.8810 0.1374
638
+ vn 0.7786 -0.4696 0.4162
639
+ vn 0.6831 -0.6326 0.3651
640
+ vn 0.5611 -0.7715 0.2999
641
+ vn 0.4173 -0.8810 0.2231
642
+ vn 0.2571 -0.9565 0.1374
643
+ vn 0.0869 -0.9951 0.0464
644
+ vn 0.8777 -0.0976 0.4691
645
+ vn 0.8443 -0.2890 0.4513
646
+ vn 0.2254 -0.9565 0.1850
647
+ vn 0.0761 -0.9951 0.0625
648
+ vn 0.7693 -0.0976 0.6314
649
+ vn 0.7400 -0.2890 0.6073
650
+ vn 0.6825 -0.4696 0.5601
651
+ vn 0.5987 -0.6326 0.4913
652
+ vn 0.4918 -0.7715 0.4036
653
+ vn 0.3658 -0.8810 0.3002
654
+ vn 0.4913 -0.6326 0.5987
655
+ vn 0.4036 -0.7715 0.4918
656
+ vn 0.3002 -0.8810 0.3658
657
+ vn 0.1850 -0.9565 0.2254
658
+ vn 0.0625 -0.9951 0.0761
659
+ vn 0.6314 -0.0976 0.7693
660
+ vn 0.6073 -0.2890 0.7400
661
+ vn 0.5601 -0.4696 0.6825
662
+ vn 0.0464 -0.9951 0.0869
663
+ vn 0.4691 -0.0976 0.8777
664
+ vn 0.4513 -0.2890 0.8443
665
+ vn 0.4162 -0.4696 0.7786
666
+ vn 0.3651 -0.6326 0.6831
667
+ vn 0.2999 -0.7715 0.5611
668
+ vn 0.2230 -0.8810 0.4173
669
+ vn 0.1374 -0.9565 0.2571
670
+ vn 0.1847 -0.7715 0.6088
671
+ vn 0.1374 -0.8810 0.4528
672
+ vn 0.0846 -0.9565 0.2790
673
+ vn 0.0286 -0.9951 0.0942
674
+ vn 0.2889 -0.0976 0.9524
675
+ vn 0.2779 -0.2890 0.9161
676
+ vn 0.2563 -0.4696 0.8448
677
+ vn 0.2248 -0.6326 0.7412
678
+ vn 0.0975 -0.0976 0.9904
679
+ vn 0.0938 -0.2890 0.9527
680
+ vn 0.0865 -0.4696 0.8786
681
+ vn 0.0759 -0.6326 0.7708
682
+ vn 0.0624 -0.7715 0.6332
683
+ vn 0.0464 -0.8810 0.4709
684
+ vn 0.0286 -0.9565 0.2902
685
+ vn 0.0097 -0.9951 0.0980
686
+ vn -0.0624 -0.7715 0.6332
687
+ vn -0.0464 -0.8810 0.4709
688
+ vn -0.0286 -0.9565 0.2902
689
+ vn -0.0097 -0.9951 0.0980
690
+ vn -0.0976 -0.0976 0.9904
691
+ vn -0.0938 -0.2890 0.9527
692
+ vn -0.0865 -0.4696 0.8786
693
+ vn -0.0759 -0.6326 0.7708
694
+ vn -0.2779 -0.2890 0.9161
695
+ vn -0.2563 -0.4696 0.8448
696
+ vn -0.2248 -0.6326 0.7412
697
+ vn -0.1847 -0.7715 0.6088
698
+ vn -0.1374 -0.8810 0.4528
699
+ vn -0.0846 -0.9565 0.2790
700
+ vn -0.0286 -0.9951 0.0942
701
+ vn -0.2889 -0.0976 0.9524
702
+ vn -0.2230 -0.8810 0.4173
703
+ vn -0.1374 -0.9565 0.2571
704
+ vn -0.0464 -0.9951 0.0869
705
+ vn -0.4691 -0.0976 0.8777
706
+ vn -0.4513 -0.2890 0.8443
707
+ vn -0.4162 -0.4696 0.7786
708
+ vn -0.3651 -0.6326 0.6831
709
+ vn -0.2999 -0.7715 0.5611
710
+ vn -0.6073 -0.2890 0.7400
711
+ vn -0.5601 -0.4696 0.6825
712
+ vn -0.4913 -0.6326 0.5987
713
+ vn -0.4036 -0.7715 0.4918
714
+ vn -0.3002 -0.8810 0.3658
715
+ vn -0.1850 -0.9565 0.2254
716
+ vn -0.0625 -0.9951 0.0761
717
+ vn -0.6314 -0.0976 0.7693
718
+ vn -0.3658 -0.8810 0.3002
719
+ vn -0.2254 -0.9565 0.1850
720
+ vn -0.0761 -0.9951 0.0625
721
+ vn -0.7693 -0.0976 0.6314
722
+ vn -0.7400 -0.2890 0.6073
723
+ vn -0.6825 -0.4696 0.5601
724
+ vn -0.5987 -0.6326 0.4913
725
+ vn -0.4918 -0.7715 0.4036
726
+ vn -0.7786 -0.4696 0.4162
727
+ vn -0.6831 -0.6326 0.3651
728
+ vn -0.5611 -0.7715 0.2999
729
+ vn -0.4173 -0.8810 0.2231
730
+ vn -0.2571 -0.9565 0.1374
731
+ vn -0.0869 -0.9951 0.0464
732
+ vn -0.8777 -0.0976 0.4691
733
+ vn -0.8443 -0.2890 0.4513
734
+ vn -0.2790 -0.9565 0.0846
735
+ vn -0.0942 -0.9951 0.0286
736
+ vn -0.9524 -0.0976 0.2889
737
+ vn -0.9161 -0.2890 0.2779
738
+ vn -0.8448 -0.4696 0.2563
739
+ vn -0.7412 -0.6326 0.2248
740
+ vn -0.6088 -0.7715 0.1847
741
+ vn -0.4528 -0.8810 0.1374
742
+ vn -0.7708 -0.6326 0.0759
743
+ vn -0.6332 -0.7715 0.0624
744
+ vn -0.4709 -0.8810 0.0464
745
+ vn -0.2902 -0.9565 0.0286
746
+ vn -0.0980 -0.9951 0.0097
747
+ vn -0.9904 -0.0976 0.0975
748
+ vn -0.9527 -0.2890 0.0938
749
+ vn -0.8786 -0.4696 0.0865
750
+ vn -0.0980 -0.9951 -0.0097
751
+ vn -0.9904 -0.0976 -0.0976
752
+ vn -0.9527 -0.2890 -0.0938
753
+ vn -0.8786 -0.4696 -0.0865
754
+ vn -0.7708 -0.6326 -0.0759
755
+ vn -0.6332 -0.7715 -0.0624
756
+ vn -0.4709 -0.8810 -0.0464
757
+ vn -0.2902 -0.9565 -0.0286
758
+ vn -0.7412 -0.6326 -0.2248
759
+ vn -0.6088 -0.7715 -0.1847
760
+ vn -0.4528 -0.8810 -0.1374
761
+ vn -0.2790 -0.9565 -0.0846
762
+ vn -0.0942 -0.9951 -0.0286
763
+ vn -0.9524 -0.0976 -0.2889
764
+ vn -0.9161 -0.2890 -0.2779
765
+ vn -0.8448 -0.4696 -0.2563
766
+ vn -0.0869 -0.9951 -0.0464
767
+ vn -0.8777 -0.0976 -0.4691
768
+ vn -0.8443 -0.2890 -0.4513
769
+ vn -0.7786 -0.4696 -0.4162
770
+ vn -0.6831 -0.6326 -0.3651
771
+ vn -0.5611 -0.7715 -0.2999
772
+ vn -0.4173 -0.8810 -0.2231
773
+ vn -0.2571 -0.9565 -0.1374
774
+ vn -0.4918 -0.7715 -0.4036
775
+ vn -0.3658 -0.8810 -0.3002
776
+ vn -0.2254 -0.9565 -0.1850
777
+ vn -0.0761 -0.9951 -0.0625
778
+ vn -0.7693 -0.0976 -0.6314
779
+ vn -0.7400 -0.2890 -0.6073
780
+ vn -0.6825 -0.4696 -0.5601
781
+ vn -0.5987 -0.6326 -0.4913
782
+ vn -0.6314 -0.0976 -0.7693
783
+ vn -0.6073 -0.2890 -0.7400
784
+ vn -0.5601 -0.4696 -0.6825
785
+ vn -0.4913 -0.6326 -0.5987
786
+ vn -0.4036 -0.7715 -0.4918
787
+ vn -0.3002 -0.8810 -0.3658
788
+ vn -0.1850 -0.9565 -0.2254
789
+ vn -0.0625 -0.9951 -0.0761
790
+ vn -0.2999 -0.7715 -0.5611
791
+ vn -0.2230 -0.8810 -0.4173
792
+ vn -0.1374 -0.9565 -0.2571
793
+ vn -0.0464 -0.9951 -0.0869
794
+ vn -0.4691 -0.0976 -0.8777
795
+ vn -0.4513 -0.2890 -0.8443
796
+ vn -0.4162 -0.4696 -0.7786
797
+ vn -0.3651 -0.6326 -0.6831
798
+ vn -0.2779 -0.2890 -0.9161
799
+ vn -0.2563 -0.4696 -0.8448
800
+ vn -0.2248 -0.6326 -0.7412
801
+ vn -0.1847 -0.7715 -0.6088
802
+ vn -0.1374 -0.8810 -0.4528
803
+ vn -0.0846 -0.9565 -0.2790
804
+ vn -0.0286 -0.9951 -0.0942
805
+ vn -0.2889 -0.0976 -0.9524
806
+ vn -0.0464 -0.8810 -0.4709
807
+ vn -0.0286 -0.9565 -0.2902
808
+ vn -0.0097 -0.9951 -0.0980
809
+ vn -0.0976 -0.0976 -0.9904
810
+ vn -0.0938 -0.2890 -0.9527
811
+ vn -0.0865 -0.4696 -0.8786
812
+ vn -0.0759 -0.6326 -0.7708
813
+ vn -0.0624 -0.7715 -0.6332
814
+ usemtl None
815
+ s off
816
+ f 256/1/1 3/2/1 9/3/1 10/4/1
817
+ f 257/5/2 256/1/2 10/4/2 11/6/2
818
+ f 108/7/3 257/5/3 11/6/3
819
+ f 2/8/4 1/9/4 4/10/4 5/11/4
820
+ f 253/12/5 2/8/5 5/11/5 6/13/5
821
+ f 254/14/6 253/12/6 6/13/6 7/15/6
822
+ f 255/16/7 254/14/7 7/15/7 8/17/7
823
+ f 3/2/8 255/16/8 8/17/8 9/3/8
824
+ f 8/17/9 7/15/9 15/18/9 16/19/9
825
+ f 9/3/10 8/17/10 16/19/10 17/20/10
826
+ f 10/4/11 9/3/11 17/20/11 18/21/11
827
+ f 11/6/12 10/4/12 18/21/12 19/22/12
828
+ f 108/23/13 11/6/13 19/22/13
829
+ f 5/11/14 4/10/14 12/24/14 13/25/14
830
+ f 6/13/15 5/11/15 13/25/15 14/26/15
831
+ f 7/15/16 6/13/16 14/26/16 15/18/16
832
+ f 108/27/17 19/22/17 27/28/17
833
+ f 13/25/18 12/24/18 20/29/18 21/30/18
834
+ f 14/26/19 13/25/19 21/30/19 22/31/19
835
+ f 15/18/20 14/26/20 22/31/20 23/32/20
836
+ f 16/19/21 15/18/21 23/32/21 24/33/21
837
+ f 17/20/22 16/19/22 24/33/22 25/34/22
838
+ f 18/21/23 17/20/23 25/34/23 26/35/23
839
+ f 19/22/24 18/21/24 26/35/24 27/28/24
840
+ f 25/34/25 24/33/25 32/36/25 33/37/25
841
+ f 26/35/26 25/34/26 33/37/26 34/38/26
842
+ f 27/28/27 26/35/27 34/38/27 35/39/27
843
+ f 108/40/28 27/28/28 35/39/28
844
+ f 21/30/29 20/29/29 28/41/29 29/42/29
845
+ f 22/31/30 21/30/30 29/42/30 30/43/30
846
+ f 23/32/31 22/31/31 30/43/31 31/44/31
847
+ f 24/33/32 23/32/32 31/44/32 32/36/32
848
+ f 30/43/33 29/42/33 37/45/33 38/46/33
849
+ f 31/44/34 30/43/34 38/46/34 39/47/34
850
+ f 32/36/35 31/44/35 39/47/35 40/48/35
851
+ f 33/37/36 32/36/36 40/48/36 41/49/36
852
+ f 34/38/37 33/37/37 41/49/37 42/50/37
853
+ f 35/39/38 34/38/38 42/50/38 43/51/38
854
+ f 108/52/39 35/39/39 43/51/39
855
+ f 29/42/40 28/41/40 36/53/40 37/45/40
856
+ f 42/50/41 41/49/41 49/54/41 50/55/41
857
+ f 43/51/42 42/50/42 50/55/42 51/56/42
858
+ f 108/57/43 43/51/43 51/56/43
859
+ f 37/45/44 36/53/44 44/58/44 45/59/44
860
+ f 38/46/45 37/45/45 45/59/45 46/60/45
861
+ f 39/47/46 38/46/46 46/60/46 47/61/46
862
+ f 40/48/47 39/47/47 47/61/47 48/62/47
863
+ f 41/49/48 40/48/48 48/62/48 49/54/48
864
+ f 46/60/49 45/59/49 53/63/49 54/64/49
865
+ f 47/61/50 46/60/50 54/64/50 55/65/50
866
+ f 48/62/51 47/61/51 55/65/51 56/66/51
867
+ f 49/54/52 48/62/52 56/66/52 57/67/52
868
+ f 50/55/53 49/54/53 57/67/53 58/68/53
869
+ f 51/56/54 50/55/54 58/68/54 59/69/54
870
+ f 108/70/55 51/56/55 59/69/55
871
+ f 45/59/56 44/58/56 52/71/56 53/63/56
872
+ f 58/68/57 57/67/57 65/72/57 66/73/57
873
+ f 59/69/58 58/68/58 66/73/58 67/74/58
874
+ f 108/75/59 59/69/59 67/74/59
875
+ f 53/63/60 52/71/60 60/76/60 61/77/60
876
+ f 54/64/61 53/63/61 61/77/61 62/78/61
877
+ f 55/65/62 54/64/62 62/78/62 63/79/62
878
+ f 56/66/63 55/65/63 63/79/63 64/80/63
879
+ f 57/67/64 56/66/64 64/80/64 65/72/64
880
+ f 63/79/65 62/78/65 70/81/65 71/82/65
881
+ f 64/80/66 63/79/66 71/82/66 72/83/66
882
+ f 65/72/67 64/80/67 72/83/67 73/84/67
883
+ f 66/73/68 65/72/68 73/84/68 74/85/68
884
+ f 67/74/69 66/73/69 74/85/69 75/86/69
885
+ f 108/87/70 67/74/70 75/86/70
886
+ f 61/77/71 60/76/71 68/88/71 69/89/71
887
+ f 62/78/72 61/77/72 69/89/72 70/81/72
888
+ f 75/86/73 74/85/73 82/90/73 83/91/73
889
+ f 108/92/74 75/86/74 83/91/74
890
+ f 69/89/75 68/88/75 76/93/75 77/94/75
891
+ f 70/81/76 69/89/76 77/94/76 78/95/76
892
+ f 71/82/77 70/81/77 78/95/77 79/96/77
893
+ f 72/83/78 71/82/78 79/96/78 80/97/78
894
+ f 73/84/79 72/83/79 80/97/79 81/98/79
895
+ f 74/85/80 73/84/80 81/98/80 82/90/80
896
+ f 79/96/81 78/95/81 86/99/81 87/100/81
897
+ f 80/97/82 79/96/82 87/100/82 88/101/82
898
+ f 81/98/83 80/97/83 88/101/83 89/102/83
899
+ f 82/90/84 81/98/84 89/102/84 90/103/84
900
+ f 83/91/85 82/90/85 90/103/85 91/104/85
901
+ f 108/105/86 83/91/86 91/104/86
902
+ f 77/94/87 76/93/87 84/106/87 85/107/87
903
+ f 78/95/88 77/94/88 85/107/88 86/99/88
904
+ f 91/104/89 90/103/89 98/108/89 99/109/89
905
+ f 108/110/90 91/104/90 99/109/90
906
+ f 85/107/91 84/106/91 92/111/91 93/112/91
907
+ f 86/99/92 85/107/92 93/112/92 94/113/92
908
+ f 87/100/93 86/99/93 94/113/93 95/114/93
909
+ f 88/101/94 87/100/94 95/114/94 96/115/94
910
+ f 89/102/95 88/101/95 96/115/95 97/116/95
911
+ f 90/103/96 89/102/96 97/116/96 98/108/96
912
+ f 96/115/97 95/114/97 103/117/97 104/118/97
913
+ f 97/116/98 96/115/98 104/118/98 105/119/98
914
+ f 98/108/99 97/116/99 105/119/99 106/120/99
915
+ f 99/109/100 98/108/100 106/120/100 107/121/100
916
+ f 108/122/101 99/109/101 107/121/101
917
+ f 93/112/102 92/111/102 100/123/102 101/124/102
918
+ f 94/113/103 93/112/103 101/124/103 102/125/103
919
+ f 95/114/104 94/113/104 102/125/104 103/117/104
920
+ f 108/126/105 107/121/105 116/127/105
921
+ f 101/124/106 100/123/106 109/128/106 110/129/106
922
+ f 102/125/107 101/124/107 110/129/107 111/130/107
923
+ f 103/117/108 102/125/108 111/130/108 112/131/108
924
+ f 104/118/109 103/117/109 112/131/109 113/132/109
925
+ f 105/119/110 104/118/110 113/132/110 114/133/110
926
+ f 106/120/111 105/119/111 114/133/111 115/134/111
927
+ f 107/121/112 106/120/112 115/134/112 116/127/112
928
+ f 114/133/113 113/132/113 121/135/113 122/136/113
929
+ f 115/134/114 114/133/114 122/136/114 123/137/114
930
+ f 116/127/115 115/134/115 123/137/115 124/138/115
931
+ f 108/139/116 116/127/116 124/138/116
932
+ f 110/129/117 109/128/117 117/140/117 118/141/117
933
+ f 111/130/118 110/129/118 118/141/118 119/142/118
934
+ f 112/131/119 111/130/119 119/142/119 120/143/119
935
+ f 113/132/120 112/131/120 120/143/120 121/135/120
936
+ f 118/141/121 117/140/121 125/144/121 126/145/121
937
+ f 119/142/122 118/141/122 126/145/122 127/146/122
938
+ f 120/143/123 119/142/123 127/146/123 128/147/123
939
+ f 121/135/124 120/143/124 128/147/124 129/148/124
940
+ f 122/136/125 121/135/125 129/148/125 130/149/125
941
+ f 123/137/126 122/136/126 130/149/126 131/150/126
942
+ f 124/138/127 123/137/127 131/150/127 132/151/127
943
+ f 108/152/128 124/138/128 132/151/128
944
+ f 130/149/129 129/148/129 137/153/129 138/154/129
945
+ f 131/150/130 130/149/130 138/154/130 139/155/130
946
+ f 132/151/131 131/150/131 139/155/131 140/156/131
947
+ f 108/157/132 132/151/132 140/156/132
948
+ f 126/145/133 125/144/133 133/158/133 134/159/133
949
+ f 127/146/134 126/145/134 134/159/134 135/160/134
950
+ f 128/147/135 127/146/135 135/160/135 136/161/135
951
+ f 129/148/136 128/147/136 136/161/136 137/153/136
952
+ f 135/160/137 134/159/137 142/162/137 143/163/137
953
+ f 136/161/138 135/160/138 143/163/138 144/164/138
954
+ f 137/153/139 136/161/139 144/164/139 145/165/139
955
+ f 138/154/140 137/153/140 145/165/140 146/166/140
956
+ f 139/155/141 138/154/141 146/166/141 147/167/141
957
+ f 140/156/142 139/155/142 147/167/142 148/168/142
958
+ f 108/169/143 140/156/143 148/168/143
959
+ f 134/159/144 133/158/144 141/170/144 142/162/144
960
+ f 147/167/145 146/166/145 154/171/145 155/172/145
961
+ f 148/168/146 147/167/146 155/172/146 156/173/146
962
+ f 108/174/147 148/168/147 156/173/147
963
+ f 142/162/148 141/170/148 149/175/148 150/176/148
964
+ f 143/163/149 142/162/149 150/176/149 151/177/149
965
+ f 144/164/150 143/163/150 151/177/150 152/178/150
966
+ f 145/165/151 144/164/151 152/178/151 153/179/151
967
+ f 146/166/152 145/165/152 153/179/152 154/171/152
968
+ f 151/177/153 150/176/153 158/180/153 159/181/153
969
+ f 152/178/154 151/177/154 159/181/154 160/182/154
970
+ f 153/179/155 152/178/155 160/182/155 161/183/155
971
+ f 154/171/156 153/179/156 161/183/156 162/184/156
972
+ f 155/172/157 154/171/157 162/184/157 163/185/157
973
+ f 156/173/158 155/172/158 163/185/158 164/186/158
974
+ f 108/187/159 156/173/159 164/186/159
975
+ f 150/176/160 149/175/160 157/188/160 158/180/160
976
+ f 163/185/161 162/184/161 170/189/161 171/190/161
977
+ f 164/186/162 163/185/162 171/190/162 172/191/162
978
+ f 108/192/163 164/186/163 172/191/163
979
+ f 158/180/164 157/188/164 165/193/164 166/194/164
980
+ f 159/181/165 158/180/165 166/194/165 167/195/165
981
+ f 160/182/166 159/181/166 167/195/166 168/196/166
982
+ f 161/183/167 160/182/167 168/196/167 169/197/167
983
+ f 162/184/168 161/183/168 169/197/168 170/189/168
984
+ f 168/196/169 167/195/169 175/198/169 176/199/169
985
+ f 169/197/170 168/196/170 176/199/170 177/200/170
986
+ f 170/189/171 169/197/171 177/200/171 178/201/171
987
+ f 171/190/172 170/189/172 178/201/172 179/202/172
988
+ f 172/191/173 171/190/173 179/202/173 180/203/173
989
+ f 108/204/174 172/191/174 180/203/174
990
+ f 166/194/175 165/193/175 173/205/175 174/206/175
991
+ f 167/195/176 166/194/176 174/206/176 175/198/176
992
+ f 180/203/177 179/202/177 187/207/177 188/208/177
993
+ f 108/209/178 180/203/178 188/208/178
994
+ f 174/206/179 173/205/179 181/210/179 182/211/179
995
+ f 175/198/180 174/206/180 182/211/180 183/212/180
996
+ f 176/199/181 175/198/181 183/212/181 184/213/181
997
+ f 177/200/182 176/199/182 184/213/182 185/214/182
998
+ f 178/201/183 177/200/183 185/214/183 186/215/183
999
+ f 179/202/184 178/201/184 186/215/184 187/207/184
1000
+ f 185/214/185 184/213/185 192/216/185 193/217/185
1001
+ f 186/215/186 185/214/186 193/217/186 194/218/186
1002
+ f 187/207/187 186/215/187 194/218/187 195/219/187
1003
+ f 188/208/188 187/207/188 195/219/188 196/220/188
1004
+ f 108/221/189 188/208/189 196/220/189
1005
+ f 182/211/190 181/210/190 189/222/190 190/223/190
1006
+ f 183/212/191 182/211/191 190/223/191 191/224/191
1007
+ f 184/213/192 183/212/192 191/224/192 192/216/192
1008
+ f 108/225/193 196/226/193 204/227/193
1009
+ f 190/228/194 189/229/194 197/230/194 198/231/194
1010
+ f 191/232/195 190/228/195 198/231/195 199/233/195
1011
+ f 192/234/196 191/232/196 199/233/196 200/235/196
1012
+ f 193/236/197 192/234/197 200/235/197 201/237/197
1013
+ f 194/238/198 193/236/198 201/237/198 202/239/198
1014
+ f 195/240/199 194/238/199 202/239/199 203/241/199
1015
+ f 196/226/200 195/240/200 203/241/200 204/227/200
1016
+ f 201/237/201 200/235/201 208/242/201 209/243/201
1017
+ f 202/239/202 201/237/202 209/243/202 210/244/202
1018
+ f 203/241/203 202/239/203 210/244/203 211/245/203
1019
+ f 204/227/204 203/241/204 211/245/204 212/246/204
1020
+ f 108/247/205 204/227/205 212/246/205
1021
+ f 198/231/206 197/230/206 205/248/206 206/249/206
1022
+ f 199/233/207 198/231/207 206/249/207 207/250/207
1023
+ f 200/235/208 199/233/208 207/250/208 208/242/208
1024
+ f 108/251/209 212/246/209 220/252/209
1025
+ f 206/249/210 205/248/210 213/253/210 214/254/210
1026
+ f 207/250/211 206/249/211 214/254/211 215/255/211
1027
+ f 208/242/212 207/250/212 215/255/212 216/256/212
1028
+ f 209/243/213 208/242/213 216/256/213 217/257/213
1029
+ f 210/244/214 209/243/214 217/257/214 218/258/214
1030
+ f 211/245/215 210/244/215 218/258/215 219/259/215
1031
+ f 212/246/216 211/245/216 219/259/216 220/252/216
1032
+ f 218/258/217 217/257/217 225/260/217 226/261/217
1033
+ f 219/259/218 218/258/218 226/261/218 227/262/218
1034
+ f 220/252/219 219/259/219 227/262/219 228/263/219
1035
+ f 108/264/220 220/252/220 228/263/220
1036
+ f 214/254/221 213/253/221 221/265/221 222/266/221
1037
+ f 215/255/222 214/254/222 222/266/222 223/267/222
1038
+ f 216/256/223 215/255/223 223/267/223 224/268/223
1039
+ f 217/257/224 216/256/224 224/268/224 225/260/224
1040
+ f 222/266/225 221/265/225 229/269/225 230/270/225
1041
+ f 223/267/226 222/266/226 230/270/226 231/271/226
1042
+ f 224/268/227 223/267/227 231/271/227 232/272/227
1043
+ f 225/260/228 224/268/228 232/272/228 233/273/228
1044
+ f 226/261/229 225/260/229 233/273/229 234/274/229
1045
+ f 227/262/230 226/261/230 234/274/230 235/275/230
1046
+ f 228/263/231 227/262/231 235/275/231 236/276/231
1047
+ f 108/277/232 228/263/232 236/276/232
1048
+ f 234/274/233 233/273/233 241/278/233 242/279/233
1049
+ f 235/275/234 234/274/234 242/279/234 243/280/234
1050
+ f 236/276/235 235/275/235 243/280/235 244/281/235
1051
+ f 108/282/236 236/276/236 244/281/236
1052
+ f 230/270/237 229/269/237 237/283/237 238/284/237
1053
+ f 231/271/238 230/270/238 238/284/238 239/285/238
1054
+ f 232/272/239 231/271/239 239/285/239 240/286/239
1055
+ f 233/273/240 232/272/240 240/286/240 241/278/240
1056
+ f 239/285/241 238/284/241 246/287/241 247/288/241
1057
+ f 240/286/242 239/285/242 247/288/242 248/289/242
1058
+ f 241/278/243 240/286/243 248/289/243 249/290/243
1059
+ f 242/279/244 241/278/244 249/290/244 250/291/244
1060
+ f 243/280/245 242/279/245 250/291/245 251/292/245
1061
+ f 244/281/246 243/280/246 251/292/246 252/293/246
1062
+ f 108/294/247 244/281/247 252/293/247
1063
+ f 238/284/248 237/283/248 245/295/248 246/287/248
1064
+ f 251/292/249 250/291/249 3/2/249 256/1/249
1065
+ f 252/293/250 251/292/250 256/1/250 257/5/250
1066
+ f 108/296/251 252/293/251 257/5/251
1067
+ f 246/287/252 245/295/252 1/9/252 2/8/252
1068
+ f 247/288/253 246/287/253 2/8/253 253/12/253
1069
+ f 248/289/254 247/288/254 253/12/254 254/14/254
1070
+ f 249/290/255 248/289/255 254/14/255 255/16/255
1071
+ f 250/291/256 249/290/256 255/16/256 3/2/256
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.1_numV_257_top_ring.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0 0.00000 1.00000 0.00000
2
+ 3 0.19509 0.98079 0.00000
3
+ 11 0.38268 0.92388 0.00000
4
+ 19 0.55557 0.83147 0.00000
5
+ 27 0.70711 0.70711 0.00000
6
+ 35 0.83147 0.55557 0.00000
7
+ 43 0.92388 0.38268 0.00000
8
+ 51 0.98079 0.19509 0.00000
9
+ 59 1.00000 -0.00000 0.00000
10
+ 67 0.98079 -0.19509 0.00000
11
+ 75 0.92388 -0.38268 0.00000
12
+ 83 0.83147 -0.55557 0.00000
13
+ 91 0.70711 -0.70711 0.00000
14
+ 99 0.55557 -0.83147 0.00000
15
+ 108 0.38268 -0.92388 0.00000
16
+ 116 0.19509 -0.98079 0.00000
17
+ 124 -0.00000 -1.00000 0.00000
18
+ 132 -0.19509 -0.98079 0.00000
19
+ 140 -0.38268 -0.92388 0.00000
20
+ 148 -0.55557 -0.83147 0.00000
21
+ 156 -0.70711 -0.70711 0.00000
22
+ 164 -0.83147 -0.55557 0.00000
23
+ 172 -0.92388 -0.38268 0.00000
24
+ 180 -0.98079 -0.19509 0.00000
25
+ 188 -1.00000 -0.00000 0.00000
26
+ 196 -0.98079 0.19509 0.00000
27
+ 204 -0.92388 0.38268 0.00000
28
+ 212 -0.83147 0.55557 0.00000
29
+ 220 -0.70711 0.70711 0.00000
30
+ 228 -0.55557 0.83147 0.00000
31
+ 236 -0.38268 0.92388 0.00000
32
+ 244 -0.19509 0.98078 0.00000
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289.mtl ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl None
5
+ Ns 500
6
+ Ka 0.8 0.8 0.8
7
+ Kd 0.8 0.8 0.8
8
+ Ks 0.8 0.8 0.8
9
+ d 1
10
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289.obj ADDED
@@ -0,0 +1,1200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289.mtl
4
+ o Sphere
5
+ v 0.000000 0.195090 -0.980785
6
+ v 0.000000 0.000000 -1.000000
7
+ v 0.000000 -0.195090 -0.980785
8
+ v 0.000000 -0.831470 -0.555570
9
+ v 0.191342 0.195090 -0.961940
10
+ v 0.195090 0.000000 -0.980785
11
+ v 0.191342 -0.195090 -0.961940
12
+ v 0.180240 -0.382683 -0.906127
13
+ v 0.162212 -0.555570 -0.815493
14
+ v 0.137950 -0.707107 -0.693520
15
+ v 0.108386 -0.831470 -0.544895
16
+ v 0.074658 -0.923880 -0.375330
17
+ v 0.038060 -0.980785 -0.191341
18
+ v 0.375330 0.195090 -0.906127
19
+ v 0.382684 0.000000 -0.923879
20
+ v 0.375330 -0.195090 -0.906127
21
+ v 0.353554 -0.382683 -0.853553
22
+ v 0.318190 -0.555570 -0.768178
23
+ v 0.270598 -0.707107 -0.653281
24
+ v 0.212608 -0.831470 -0.513280
25
+ v 0.146447 -0.923880 -0.353553
26
+ v 0.074658 -0.980785 -0.180240
27
+ v 0.544895 0.195090 -0.815493
28
+ v 0.555570 0.000000 -0.831469
29
+ v 0.544895 -0.195090 -0.815493
30
+ v 0.513280 -0.382683 -0.768178
31
+ v 0.461940 -0.555570 -0.691342
32
+ v 0.392848 -0.707107 -0.587938
33
+ v 0.308658 -0.831470 -0.461940
34
+ v 0.212608 -0.923880 -0.318189
35
+ v 0.108386 -0.980785 -0.162211
36
+ v 0.693520 0.195090 -0.693520
37
+ v 0.707107 0.000000 -0.707107
38
+ v 0.693520 -0.195090 -0.693520
39
+ v 0.653282 -0.382683 -0.653281
40
+ v 0.587938 -0.555570 -0.587938
41
+ v 0.500000 -0.707107 -0.500000
42
+ v 0.392848 -0.831470 -0.392847
43
+ v 0.270598 -0.923880 -0.270598
44
+ v 0.137950 -0.980785 -0.137949
45
+ v 0.815493 0.195090 -0.544895
46
+ v 0.831470 0.000000 -0.555570
47
+ v 0.815493 -0.195090 -0.544895
48
+ v 0.768178 -0.382683 -0.513280
49
+ v 0.691342 -0.555570 -0.461940
50
+ v 0.587938 -0.707107 -0.392847
51
+ v 0.461940 -0.831470 -0.308658
52
+ v 0.318190 -0.923880 -0.212607
53
+ v 0.162212 -0.980785 -0.108386
54
+ v 0.906128 0.195090 -0.375330
55
+ v 0.923880 0.000000 -0.382683
56
+ v 0.906128 -0.195090 -0.375330
57
+ v 0.853554 -0.382683 -0.353553
58
+ v 0.768178 -0.555570 -0.318189
59
+ v 0.653282 -0.707107 -0.270598
60
+ v 0.513280 -0.831470 -0.212607
61
+ v 0.353554 -0.923880 -0.146446
62
+ v 0.180240 -0.980785 -0.074658
63
+ v 0.961940 0.195090 -0.191341
64
+ v 0.980785 0.000000 -0.195090
65
+ v 0.961940 -0.195090 -0.191341
66
+ v 0.906128 -0.382683 -0.180240
67
+ v 0.815493 -0.555570 -0.162211
68
+ v 0.693520 -0.707107 -0.137949
69
+ v 0.544895 -0.831470 -0.108386
70
+ v 0.375330 -0.923880 -0.074658
71
+ v 0.191342 -0.980785 -0.038060
72
+ v 0.980785 0.195090 0.000000
73
+ v 1.000000 0.000000 0.000000
74
+ v 0.980785 -0.195090 0.000000
75
+ v 0.923880 -0.382683 0.000000
76
+ v 0.831470 -0.555570 0.000000
77
+ v 0.707107 -0.707107 0.000000
78
+ v 0.555570 -0.831470 0.000000
79
+ v 0.382684 -0.923880 0.000000
80
+ v 0.195090 -0.980785 0.000000
81
+ v 0.961940 0.195090 0.191342
82
+ v 0.980785 0.000000 0.195091
83
+ v 0.961940 -0.195090 0.191342
84
+ v 0.906128 -0.382683 0.180240
85
+ v 0.815493 -0.555570 0.162212
86
+ v 0.693520 -0.707107 0.137950
87
+ v 0.544895 -0.831470 0.108387
88
+ v 0.375330 -0.923880 0.074658
89
+ v 0.191342 -0.980785 0.038061
90
+ v 0.906127 0.195090 0.375331
91
+ v 0.923880 0.000000 0.382684
92
+ v 0.906127 -0.195090 0.375331
93
+ v 0.853554 -0.382683 0.353554
94
+ v 0.768178 -0.555570 0.318190
95
+ v 0.653282 -0.707107 0.270598
96
+ v 0.513280 -0.831470 0.212608
97
+ v 0.353553 -0.923880 0.146447
98
+ v 0.180240 -0.980785 0.074658
99
+ v 0.815493 0.195090 0.544895
100
+ v 0.831470 0.000000 0.555571
101
+ v 0.815493 -0.195090 0.544895
102
+ v 0.768178 -0.382683 0.513280
103
+ v 0.691342 -0.555570 0.461940
104
+ v 0.587938 -0.707107 0.392848
105
+ v 0.461940 -0.831470 0.308659
106
+ v 0.318190 -0.923880 0.212608
107
+ v 0.162212 -0.980785 0.108387
108
+ v 0.693520 0.195090 0.693520
109
+ v 0.707107 0.000000 0.707107
110
+ v 0.693520 -0.195090 0.693520
111
+ v 0.653282 -0.382683 0.653282
112
+ v 0.587938 -0.555570 0.587938
113
+ v 0.500000 -0.707107 0.500000
114
+ v 0.392848 -0.831470 0.392848
115
+ v 0.270598 -0.923880 0.270598
116
+ v 0.137950 -0.980785 0.137950
117
+ v 0.544895 0.195090 0.815493
118
+ v 0.555570 0.000000 0.831470
119
+ v 0.544895 -0.195090 0.815493
120
+ v 0.513280 -0.382683 0.768178
121
+ v 0.461940 -0.555570 0.691342
122
+ v 0.392848 -0.707107 0.587938
123
+ v 0.308658 -0.831470 0.461940
124
+ v 0.212608 -0.923880 0.318190
125
+ v 0.108386 -0.980785 0.162212
126
+ v 0.000000 -1.000000 0.000000
127
+ v 0.375330 0.195090 0.906128
128
+ v 0.382683 0.000000 0.923880
129
+ v 0.375330 -0.195090 0.906128
130
+ v 0.353553 -0.382683 0.853554
131
+ v 0.318190 -0.555570 0.768178
132
+ v 0.270598 -0.707107 0.653282
133
+ v 0.212608 -0.831470 0.513280
134
+ v 0.146447 -0.923880 0.353554
135
+ v 0.074658 -0.980785 0.180240
136
+ v 0.191342 0.195090 0.961940
137
+ v 0.195090 0.000000 0.980786
138
+ v 0.191342 -0.195090 0.961940
139
+ v 0.180240 -0.382683 0.906128
140
+ v 0.162212 -0.555570 0.815493
141
+ v 0.137950 -0.707107 0.693520
142
+ v 0.108386 -0.831470 0.544895
143
+ v 0.074658 -0.923880 0.375331
144
+ v 0.038060 -0.980785 0.191342
145
+ v -0.000000 0.195090 0.980785
146
+ v -0.000000 0.000000 1.000000
147
+ v -0.000000 -0.195090 0.980785
148
+ v 0.000000 -0.382683 0.923880
149
+ v -0.000000 -0.555570 0.831470
150
+ v -0.000000 -0.707107 0.707107
151
+ v -0.000000 -0.831470 0.555570
152
+ v 0.000000 -0.923880 0.382684
153
+ v 0.000000 -0.980785 0.195091
154
+ v -0.191342 0.195090 0.961940
155
+ v -0.195090 0.000000 0.980786
156
+ v -0.191342 -0.195090 0.961940
157
+ v -0.180240 -0.382683 0.906128
158
+ v -0.162212 -0.555570 0.815493
159
+ v -0.137950 -0.707107 0.693520
160
+ v -0.108386 -0.831470 0.544895
161
+ v -0.074658 -0.923880 0.375331
162
+ v -0.038060 -0.980785 0.191342
163
+ v -0.375330 0.195090 0.906127
164
+ v -0.382684 0.000000 0.923880
165
+ v -0.375330 -0.195090 0.906127
166
+ v -0.353553 -0.382683 0.853554
167
+ v -0.318190 -0.555570 0.768178
168
+ v -0.270598 -0.707107 0.653282
169
+ v -0.212608 -0.831470 0.513280
170
+ v -0.146447 -0.923880 0.353554
171
+ v -0.074658 -0.980785 0.180240
172
+ v -0.544895 0.195090 0.815493
173
+ v -0.555570 0.000000 0.831470
174
+ v -0.544895 -0.195090 0.815493
175
+ v -0.513280 -0.382683 0.768178
176
+ v -0.461940 -0.555570 0.691342
177
+ v -0.392847 -0.707107 0.587938
178
+ v -0.308658 -0.831470 0.461940
179
+ v -0.212607 -0.923880 0.318190
180
+ v -0.108386 -0.980785 0.162212
181
+ v -0.693520 0.195090 0.693520
182
+ v -0.707107 0.000000 0.707107
183
+ v -0.693520 -0.195090 0.693520
184
+ v -0.653281 -0.382683 0.653282
185
+ v -0.587938 -0.555570 0.587938
186
+ v -0.500000 -0.707107 0.500000
187
+ v -0.392847 -0.831470 0.392848
188
+ v -0.270598 -0.923880 0.270598
189
+ v -0.137950 -0.980785 0.137950
190
+ v -0.815493 0.195090 0.544895
191
+ v -0.831470 0.000000 0.555570
192
+ v -0.815493 -0.195090 0.544895
193
+ v -0.768178 -0.382683 0.513280
194
+ v -0.691342 -0.555570 0.461940
195
+ v -0.587938 -0.707107 0.392848
196
+ v -0.461940 -0.831470 0.308658
197
+ v -0.318190 -0.923880 0.212608
198
+ v -0.162212 -0.980785 0.108387
199
+ v -0.906127 0.195090 0.375330
200
+ v -0.923880 0.000000 0.382684
201
+ v -0.906127 -0.195090 0.375330
202
+ v -0.853553 -0.382683 0.353554
203
+ v -0.768177 -0.555570 0.318190
204
+ v -0.653281 -0.707107 0.270598
205
+ v -0.513280 -0.831470 0.212608
206
+ v -0.353553 -0.923880 0.146447
207
+ v -0.180240 -0.980785 0.074658
208
+ v -0.961939 0.195090 0.191342
209
+ v -0.980785 0.000000 0.195090
210
+ v -0.961939 -0.195090 0.191342
211
+ v -0.906127 -0.382683 0.180240
212
+ v -0.815493 -0.555570 0.162212
213
+ v -0.693520 -0.707107 0.137950
214
+ v -0.544895 -0.831470 0.108387
215
+ v -0.375330 -0.923880 0.074658
216
+ v -0.191342 -0.980785 0.038061
217
+ v -0.980785 0.195090 0.000000
218
+ v -1.000000 0.000000 0.000000
219
+ v -0.980785 -0.195090 0.000000
220
+ v -0.923879 -0.382683 0.000000
221
+ v -0.831469 -0.555570 0.000000
222
+ v -0.707107 -0.707107 0.000000
223
+ v -0.555570 -0.831470 0.000000
224
+ v -0.382683 -0.923880 0.000000
225
+ v -0.195090 -0.980785 0.000000
226
+ v -0.961939 0.195090 -0.191342
227
+ v -0.980785 0.000000 -0.195090
228
+ v -0.961939 -0.195090 -0.191342
229
+ v -0.906127 -0.382683 -0.180240
230
+ v -0.815493 -0.555570 -0.162211
231
+ v -0.693520 -0.707107 -0.137949
232
+ v -0.544895 -0.831470 -0.108386
233
+ v -0.375330 -0.923880 -0.074658
234
+ v -0.191342 -0.980785 -0.038060
235
+ v -0.906127 0.195090 -0.375330
236
+ v -0.923879 0.000000 -0.382683
237
+ v -0.906127 -0.195090 -0.375330
238
+ v -0.853553 -0.382683 -0.353553
239
+ v -0.768177 -0.555570 -0.318189
240
+ v -0.653281 -0.707107 -0.270598
241
+ v -0.513280 -0.831470 -0.212607
242
+ v -0.353553 -0.923880 -0.146446
243
+ v -0.180240 -0.980785 -0.074657
244
+ v -0.815493 0.195090 -0.544895
245
+ v -0.831469 0.000000 -0.555570
246
+ v -0.815493 -0.195090 -0.544895
247
+ v -0.768178 -0.382683 -0.513280
248
+ v -0.691341 -0.555570 -0.461939
249
+ v -0.587938 -0.707107 -0.392847
250
+ v -0.461940 -0.831470 -0.308658
251
+ v -0.318189 -0.923880 -0.212607
252
+ v -0.162212 -0.980785 -0.108386
253
+ v -0.693519 0.195090 -0.693519
254
+ v -0.707106 0.000000 -0.707106
255
+ v -0.693519 -0.195090 -0.693519
256
+ v -0.653281 -0.382683 -0.653281
257
+ v -0.587937 -0.555570 -0.587937
258
+ v -0.500000 -0.707107 -0.500000
259
+ v -0.392847 -0.831470 -0.392847
260
+ v -0.270598 -0.923880 -0.270598
261
+ v -0.137950 -0.980785 -0.137949
262
+ v -0.544895 0.195090 -0.815492
263
+ v -0.555570 0.000000 -0.831469
264
+ v -0.544895 -0.195090 -0.815492
265
+ v -0.513280 -0.382683 -0.768177
266
+ v -0.461939 -0.555570 -0.691341
267
+ v -0.392847 -0.707107 -0.587937
268
+ v -0.308658 -0.831470 -0.461939
269
+ v -0.212607 -0.923880 -0.318189
270
+ v -0.108386 -0.980785 -0.162211
271
+ v -0.375330 0.195090 -0.906127
272
+ v -0.382683 0.000000 -0.923879
273
+ v -0.375330 -0.195090 -0.906127
274
+ v -0.353553 -0.382683 -0.853553
275
+ v -0.318189 -0.555570 -0.768177
276
+ v -0.270598 -0.707107 -0.653281
277
+ v -0.212607 -0.831470 -0.513279
278
+ v -0.146446 -0.923880 -0.353553
279
+ v -0.074658 -0.980785 -0.180240
280
+ v -0.191341 0.195090 -0.961939
281
+ v -0.195090 0.000000 -0.980785
282
+ v -0.191341 -0.195090 -0.961939
283
+ v -0.180240 -0.382683 -0.906127
284
+ v -0.162211 -0.555570 -0.815492
285
+ v -0.137950 -0.707107 -0.693520
286
+ v -0.108386 -0.831470 -0.544895
287
+ v -0.074658 -0.923880 -0.375330
288
+ v -0.038060 -0.980785 -0.191341
289
+ v 0.000000 -0.382683 -0.923879
290
+ v 0.000000 -0.555570 -0.831469
291
+ v 0.000000 -0.707107 -0.707106
292
+ v 0.000000 -0.923880 -0.382683
293
+ v 0.000000 -0.980785 -0.195090
294
+ vt 0.750000 0.375000
295
+ vt 0.750000 0.437500
296
+ vt 0.718750 0.437500
297
+ vt 0.718750 0.375000
298
+ vt 0.750000 0.312500
299
+ vt 0.718750 0.312500
300
+ vt 0.750000 0.250000
301
+ vt 0.718750 0.250000
302
+ vt 0.750000 0.187500
303
+ vt 0.718750 0.187500
304
+ vt 0.750000 0.125000
305
+ vt 0.718750 0.125000
306
+ vt 0.750000 0.062500
307
+ vt 0.718750 0.062500
308
+ vt 0.750000 0.500000
309
+ vt 0.750000 0.562500
310
+ vt 0.718750 0.562500
311
+ vt 0.718750 0.500000
312
+ vt 0.734375 0.000000
313
+ vt 0.703125 0.000000
314
+ vt 0.687500 0.062500
315
+ vt 0.687500 0.500000
316
+ vt 0.687500 0.437500
317
+ vt 0.687500 0.375000
318
+ vt 0.687500 0.312500
319
+ vt 0.687500 0.250000
320
+ vt 0.687500 0.187500
321
+ vt 0.687500 0.125000
322
+ vt 0.687500 0.562500
323
+ vt 0.656250 0.250000
324
+ vt 0.656250 0.187500
325
+ vt 0.656250 0.125000
326
+ vt 0.656250 0.062500
327
+ vt 0.656250 0.562500
328
+ vt 0.656250 0.500000
329
+ vt 0.671875 0.000000
330
+ vt 0.656250 0.437500
331
+ vt 0.656250 0.375000
332
+ vt 0.656250 0.312500
333
+ vt 0.625000 0.437500
334
+ vt 0.625000 0.375000
335
+ vt 0.625000 0.312500
336
+ vt 0.625000 0.250000
337
+ vt 0.625000 0.187500
338
+ vt 0.625000 0.125000
339
+ vt 0.625000 0.062500
340
+ vt 0.625000 0.562500
341
+ vt 0.625000 0.500000
342
+ vt 0.640625 0.000000
343
+ vt 0.593750 0.187500
344
+ vt 0.593750 0.125000
345
+ vt 0.593750 0.062500
346
+ vt 0.593750 0.562500
347
+ vt 0.593750 0.500000
348
+ vt 0.609375 0.000000
349
+ vt 0.593750 0.437500
350
+ vt 0.593750 0.375000
351
+ vt 0.593750 0.312500
352
+ vt 0.593750 0.250000
353
+ vt 0.562500 0.437500
354
+ vt 0.562500 0.375000
355
+ vt 0.562500 0.312500
356
+ vt 0.562500 0.250000
357
+ vt 0.562500 0.187500
358
+ vt 0.562500 0.125000
359
+ vt 0.562500 0.062500
360
+ vt 0.562500 0.562500
361
+ vt 0.562500 0.500000
362
+ vt 0.578125 0.000000
363
+ vt 0.531250 0.187500
364
+ vt 0.531250 0.125000
365
+ vt 0.531250 0.062500
366
+ vt 0.531250 0.562500
367
+ vt 0.531250 0.500000
368
+ vt 0.546875 0.000000
369
+ vt 0.531250 0.437500
370
+ vt 0.531250 0.375000
371
+ vt 0.531250 0.312500
372
+ vt 0.531250 0.250000
373
+ vt 0.500000 0.375000
374
+ vt 0.500000 0.312500
375
+ vt 0.500000 0.250000
376
+ vt 0.500000 0.187500
377
+ vt 0.500000 0.125000
378
+ vt 0.500000 0.062500
379
+ vt 0.500000 0.562500
380
+ vt 0.500000 0.500000
381
+ vt 0.515625 0.000000
382
+ vt 0.500000 0.437500
383
+ vt 0.468750 0.125000
384
+ vt 0.468750 0.062500
385
+ vt 0.468750 0.562500
386
+ vt 0.468750 0.500000
387
+ vt 0.484375 0.000000
388
+ vt 0.468750 0.437500
389
+ vt 0.468750 0.375000
390
+ vt 0.468750 0.312500
391
+ vt 0.468750 0.250000
392
+ vt 0.468750 0.187500
393
+ vt 0.437500 0.375000
394
+ vt 0.437500 0.312500
395
+ vt 0.437500 0.250000
396
+ vt 0.437500 0.187500
397
+ vt 0.437500 0.125000
398
+ vt 0.437500 0.062500
399
+ vt 0.437500 0.562500
400
+ vt 0.437500 0.500000
401
+ vt 0.453125 0.000000
402
+ vt 0.437500 0.437500
403
+ vt 0.406250 0.125000
404
+ vt 0.406250 0.062500
405
+ vt 0.406250 0.562500
406
+ vt 0.406250 0.500000
407
+ vt 0.421875 0.000000
408
+ vt 0.406250 0.437500
409
+ vt 0.406250 0.375000
410
+ vt 0.406250 0.312500
411
+ vt 0.406250 0.250000
412
+ vt 0.406250 0.187500
413
+ vt 0.375000 0.312500
414
+ vt 0.375000 0.250000
415
+ vt 0.375000 0.187500
416
+ vt 0.375000 0.125000
417
+ vt 0.375000 0.062500
418
+ vt 0.375000 0.562500
419
+ vt 0.375000 0.500000
420
+ vt 0.390625 0.000000
421
+ vt 0.375000 0.437500
422
+ vt 0.375000 0.375000
423
+ vt 0.359375 0.000000
424
+ vt 0.343750 0.062500
425
+ vt 0.343750 0.500000
426
+ vt 0.343750 0.437500
427
+ vt 0.343750 0.375000
428
+ vt 0.343750 0.312500
429
+ vt 0.343750 0.250000
430
+ vt 0.343750 0.187500
431
+ vt 0.343750 0.125000
432
+ vt 0.343750 0.562500
433
+ vt 0.312500 0.250000
434
+ vt 0.312500 0.187500
435
+ vt 0.312500 0.125000
436
+ vt 0.312500 0.062500
437
+ vt 0.312500 0.562500
438
+ vt 0.312500 0.500000
439
+ vt 0.328125 0.000000
440
+ vt 0.312500 0.437500
441
+ vt 0.312500 0.375000
442
+ vt 0.312500 0.312500
443
+ vt 0.281250 0.500000
444
+ vt 0.281250 0.437500
445
+ vt 0.281250 0.375000
446
+ vt 0.281250 0.312500
447
+ vt 0.281250 0.250000
448
+ vt 0.281250 0.187500
449
+ vt 0.281250 0.125000
450
+ vt 0.281250 0.062500
451
+ vt 0.281250 0.562500
452
+ vt 0.296875 0.000000
453
+ vt 0.250000 0.250000
454
+ vt 0.250000 0.187500
455
+ vt 0.250000 0.125000
456
+ vt 0.250000 0.062500
457
+ vt 0.250000 0.562500
458
+ vt 0.250000 0.500000
459
+ vt 0.265625 0.000000
460
+ vt 0.250000 0.437500
461
+ vt 0.250000 0.375000
462
+ vt 0.250000 0.312500
463
+ vt 0.218750 0.437500
464
+ vt 0.218750 0.375000
465
+ vt 0.218750 0.312500
466
+ vt 0.218750 0.250000
467
+ vt 0.218750 0.187500
468
+ vt 0.218750 0.125000
469
+ vt 0.218750 0.062500
470
+ vt 0.218750 0.562500
471
+ vt 0.218750 0.500000
472
+ vt 0.234375 0.000000
473
+ vt 0.187500 0.187500
474
+ vt 0.187500 0.125000
475
+ vt 0.187500 0.062500
476
+ vt 0.187500 0.562500
477
+ vt 0.187500 0.500000
478
+ vt 0.203125 0.000000
479
+ vt 0.187500 0.437500
480
+ vt 0.187500 0.375000
481
+ vt 0.187500 0.312500
482
+ vt 0.187500 0.250000
483
+ vt 0.156250 0.437500
484
+ vt 0.156250 0.375000
485
+ vt 0.156250 0.312500
486
+ vt 0.156250 0.250000
487
+ vt 0.156250 0.187500
488
+ vt 0.156250 0.125000
489
+ vt 0.156250 0.062500
490
+ vt 0.156250 0.562500
491
+ vt 0.156250 0.500000
492
+ vt 0.171875 0.000000
493
+ vt 0.125000 0.187500
494
+ vt 0.125000 0.125000
495
+ vt 0.125000 0.062500
496
+ vt 0.125000 0.562500
497
+ vt 0.125000 0.500000
498
+ vt 0.140625 0.000000
499
+ vt 0.125000 0.437500
500
+ vt 0.125000 0.375000
501
+ vt 0.125000 0.312500
502
+ vt 0.125000 0.250000
503
+ vt 0.093750 0.375000
504
+ vt 0.093750 0.312500
505
+ vt 0.093750 0.250000
506
+ vt 0.093750 0.187500
507
+ vt 0.093750 0.125000
508
+ vt 0.093750 0.062500
509
+ vt 0.093750 0.562500
510
+ vt 0.093750 0.500000
511
+ vt 0.109375 0.000000
512
+ vt 0.093750 0.437500
513
+ vt 0.062500 0.125000
514
+ vt 0.062500 0.062500
515
+ vt 0.062500 0.562500
516
+ vt 0.062500 0.500000
517
+ vt 0.078125 0.000000
518
+ vt 0.062500 0.437500
519
+ vt 0.062500 0.375000
520
+ vt 0.062500 0.312500
521
+ vt 0.062500 0.250000
522
+ vt 0.062500 0.187500
523
+ vt 0.031250 0.312500
524
+ vt 0.031250 0.250000
525
+ vt 0.031250 0.187500
526
+ vt 0.031250 0.125000
527
+ vt 0.031250 0.062500
528
+ vt 0.031250 0.562500
529
+ vt 0.031250 0.500000
530
+ vt 0.046875 0.000000
531
+ vt 0.031250 0.437500
532
+ vt 0.031250 0.375000
533
+ vt 0.000000 0.562500
534
+ vt 0.000000 0.500000
535
+ vt 0.015625 0.000000
536
+ vt 0.000000 0.062500
537
+ vt 0.000000 0.437500
538
+ vt 0.000000 0.375000
539
+ vt 0.000000 0.312500
540
+ vt 0.000000 0.250000
541
+ vt 0.000000 0.187500
542
+ vt 0.000000 0.125000
543
+ vt 1.000000 0.250000
544
+ vt 1.000000 0.312500
545
+ vt 0.968750 0.312500
546
+ vt 0.968750 0.250000
547
+ vt 1.000000 0.187500
548
+ vt 0.968750 0.187500
549
+ vt 1.000000 0.125000
550
+ vt 0.968750 0.125000
551
+ vt 1.000000 0.062500
552
+ vt 0.968750 0.062500
553
+ vt 1.000000 0.500000
554
+ vt 1.000000 0.562500
555
+ vt 0.968750 0.562500
556
+ vt 0.968750 0.500000
557
+ vt 0.984375 0.000000
558
+ vt 1.000000 0.437500
559
+ vt 0.968750 0.437500
560
+ vt 1.000000 0.375000
561
+ vt 0.968750 0.375000
562
+ vt 0.953125 0.000000
563
+ vt 0.937500 0.062500
564
+ vt 0.937500 0.500000
565
+ vt 0.937500 0.437500
566
+ vt 0.937500 0.375000
567
+ vt 0.937500 0.312500
568
+ vt 0.937500 0.250000
569
+ vt 0.937500 0.187500
570
+ vt 0.937500 0.125000
571
+ vt 0.937500 0.562500
572
+ vt 0.906250 0.250000
573
+ vt 0.906250 0.187500
574
+ vt 0.906250 0.125000
575
+ vt 0.906250 0.062500
576
+ vt 0.906250 0.562500
577
+ vt 0.906250 0.500000
578
+ vt 0.921875 0.000000
579
+ vt 0.906250 0.437500
580
+ vt 0.906250 0.375000
581
+ vt 0.906250 0.312500
582
+ vt 0.875000 0.500000
583
+ vt 0.875000 0.437500
584
+ vt 0.875000 0.375000
585
+ vt 0.875000 0.312500
586
+ vt 0.875000 0.250000
587
+ vt 0.875000 0.187500
588
+ vt 0.875000 0.125000
589
+ vt 0.875000 0.062500
590
+ vt 0.875000 0.562500
591
+ vt 0.890625 0.000000
592
+ vt 0.843750 0.250000
593
+ vt 0.843750 0.187500
594
+ vt 0.843750 0.125000
595
+ vt 0.843750 0.062500
596
+ vt 0.843750 0.562500
597
+ vt 0.843750 0.500000
598
+ vt 0.859375 0.000000
599
+ vt 0.843750 0.437500
600
+ vt 0.843750 0.375000
601
+ vt 0.843750 0.312500
602
+ vt 0.812500 0.437500
603
+ vt 0.812500 0.375000
604
+ vt 0.812500 0.312500
605
+ vt 0.812500 0.250000
606
+ vt 0.812500 0.187500
607
+ vt 0.812500 0.125000
608
+ vt 0.812500 0.062500
609
+ vt 0.812500 0.562500
610
+ vt 0.812500 0.500000
611
+ vt 0.828125 0.000000
612
+ vt 0.781250 0.187500
613
+ vt 0.781250 0.125000
614
+ vt 0.781250 0.062500
615
+ vt 0.781250 0.562500
616
+ vt 0.781250 0.500000
617
+ vt 0.796875 0.000000
618
+ vt 0.781250 0.437500
619
+ vt 0.781250 0.375000
620
+ vt 0.781250 0.312500
621
+ vt 0.781250 0.250000
622
+ vt 0.765625 0.000000
623
+ vn 0.0938 -0.2890 -0.9527
624
+ vn 0.0865 -0.4696 -0.8786
625
+ vn 0.0759 -0.6326 -0.7708
626
+ vn 0.0624 -0.7715 -0.6332
627
+ vn 0.0464 -0.8810 -0.4709
628
+ vn 0.0286 -0.9565 -0.2902
629
+ vn 0.0975 0.0975 -0.9904
630
+ vn 0.0097 -0.9951 -0.0980
631
+ vn 0.0976 -0.0975 -0.9904
632
+ vn 0.0286 -0.9951 -0.0942
633
+ vn 0.2889 -0.0975 -0.9524
634
+ vn 0.2779 -0.2890 -0.9161
635
+ vn 0.2563 -0.4696 -0.8448
636
+ vn 0.2248 -0.6326 -0.7412
637
+ vn 0.1847 -0.7715 -0.6088
638
+ vn 0.1374 -0.8810 -0.4528
639
+ vn 0.0846 -0.9565 -0.2790
640
+ vn 0.2889 0.0975 -0.9524
641
+ vn 0.2999 -0.7715 -0.5611
642
+ vn 0.2230 -0.8810 -0.4173
643
+ vn 0.1374 -0.9565 -0.2571
644
+ vn 0.4691 0.0975 -0.8777
645
+ vn 0.0464 -0.9951 -0.0869
646
+ vn 0.4691 -0.0975 -0.8777
647
+ vn 0.4513 -0.2890 -0.8443
648
+ vn 0.4162 -0.4696 -0.7786
649
+ vn 0.3651 -0.6326 -0.6831
650
+ vn 0.6073 -0.2890 -0.7400
651
+ vn 0.5601 -0.4696 -0.6825
652
+ vn 0.4913 -0.6326 -0.5987
653
+ vn 0.4036 -0.7715 -0.4918
654
+ vn 0.3002 -0.8810 -0.3658
655
+ vn 0.1850 -0.9565 -0.2254
656
+ vn 0.6314 0.0976 -0.7693
657
+ vn 0.0625 -0.9951 -0.0761
658
+ vn 0.6314 -0.0976 -0.7693
659
+ vn 0.3658 -0.8810 -0.3002
660
+ vn 0.2254 -0.9565 -0.1850
661
+ vn 0.7693 0.0975 -0.6314
662
+ vn 0.0761 -0.9951 -0.0625
663
+ vn 0.7693 -0.0975 -0.6314
664
+ vn 0.7400 -0.2890 -0.6073
665
+ vn 0.6825 -0.4696 -0.5601
666
+ vn 0.5987 -0.6326 -0.4913
667
+ vn 0.4918 -0.7715 -0.4036
668
+ vn 0.8443 -0.2890 -0.4513
669
+ vn 0.7786 -0.4696 -0.4162
670
+ vn 0.6831 -0.6326 -0.3651
671
+ vn 0.5611 -0.7715 -0.2999
672
+ vn 0.4173 -0.8810 -0.2231
673
+ vn 0.2571 -0.9565 -0.1374
674
+ vn 0.8777 0.0976 -0.4691
675
+ vn 0.0869 -0.9951 -0.0464
676
+ vn 0.8777 -0.0976 -0.4691
677
+ vn 0.4528 -0.8810 -0.1374
678
+ vn 0.2790 -0.9565 -0.0846
679
+ vn 0.9524 0.0976 -0.2889
680
+ vn 0.0942 -0.9951 -0.0286
681
+ vn 0.9524 -0.0976 -0.2889
682
+ vn 0.9161 -0.2890 -0.2779
683
+ vn 0.8448 -0.4696 -0.2563
684
+ vn 0.7412 -0.6326 -0.2248
685
+ vn 0.6088 -0.7715 -0.1847
686
+ vn 0.8786 -0.4696 -0.0865
687
+ vn 0.7708 -0.6326 -0.0759
688
+ vn 0.6332 -0.7715 -0.0624
689
+ vn 0.4709 -0.8810 -0.0464
690
+ vn 0.2902 -0.9565 -0.0286
691
+ vn 0.9904 0.0976 -0.0975
692
+ vn 0.0980 -0.9951 -0.0097
693
+ vn 0.9904 -0.0976 -0.0975
694
+ vn 0.9527 -0.2890 -0.0938
695
+ vn 0.2902 -0.9565 0.0286
696
+ vn 0.9904 0.0976 0.0975
697
+ vn 0.0980 -0.9951 0.0097
698
+ vn 0.9904 -0.0976 0.0975
699
+ vn 0.9527 -0.2890 0.0938
700
+ vn 0.8786 -0.4696 0.0865
701
+ vn 0.7708 -0.6326 0.0759
702
+ vn 0.6332 -0.7715 0.0624
703
+ vn 0.4709 -0.8810 0.0464
704
+ vn 0.8448 -0.4696 0.2563
705
+ vn 0.7412 -0.6326 0.2248
706
+ vn 0.6088 -0.7715 0.1847
707
+ vn 0.4528 -0.8810 0.1374
708
+ vn 0.2790 -0.9565 0.0846
709
+ vn 0.9524 0.0976 0.2889
710
+ vn 0.0942 -0.9951 0.0286
711
+ vn 0.9524 -0.0976 0.2889
712
+ vn 0.9161 -0.2890 0.2779
713
+ vn 0.2571 -0.9565 0.1374
714
+ vn 0.8777 0.0976 0.4691
715
+ vn 0.0869 -0.9951 0.0464
716
+ vn 0.8777 -0.0976 0.4691
717
+ vn 0.8443 -0.2890 0.4513
718
+ vn 0.7786 -0.4696 0.4162
719
+ vn 0.6831 -0.6326 0.3651
720
+ vn 0.5611 -0.7715 0.2999
721
+ vn 0.4173 -0.8810 0.2231
722
+ vn 0.5987 -0.6326 0.4913
723
+ vn 0.4918 -0.7715 0.4036
724
+ vn 0.3658 -0.8810 0.3002
725
+ vn 0.2254 -0.9565 0.1850
726
+ vn 0.7693 0.0976 0.6314
727
+ vn 0.0761 -0.9951 0.0625
728
+ vn 0.7693 -0.0976 0.6314
729
+ vn 0.7400 -0.2890 0.6073
730
+ vn 0.6825 -0.4696 0.5601
731
+ vn 0.0625 -0.9951 0.0761
732
+ vn 0.6314 -0.0976 0.7693
733
+ vn 0.6073 -0.2890 0.7400
734
+ vn 0.5601 -0.4696 0.6825
735
+ vn 0.4913 -0.6326 0.5987
736
+ vn 0.4036 -0.7715 0.4918
737
+ vn 0.3002 -0.8810 0.3658
738
+ vn 0.1850 -0.9565 0.2254
739
+ vn 0.6314 0.0976 0.7693
740
+ vn 0.2999 -0.7715 0.5611
741
+ vn 0.2230 -0.8810 0.4173
742
+ vn 0.1374 -0.9565 0.2571
743
+ vn 0.4691 0.0976 0.8777
744
+ vn 0.0464 -0.9951 0.0869
745
+ vn 0.4691 -0.0976 0.8777
746
+ vn 0.4513 -0.2890 0.8443
747
+ vn 0.4162 -0.4696 0.7786
748
+ vn 0.3651 -0.6326 0.6831
749
+ vn 0.2889 -0.0976 0.9524
750
+ vn 0.2779 -0.2890 0.9161
751
+ vn 0.2563 -0.4696 0.8448
752
+ vn 0.2248 -0.6326 0.7412
753
+ vn 0.1847 -0.7715 0.6088
754
+ vn 0.1374 -0.8810 0.4528
755
+ vn 0.0846 -0.9565 0.2790
756
+ vn 0.2889 0.0976 0.9524
757
+ vn 0.0286 -0.9951 0.0942
758
+ vn 0.0624 -0.7715 0.6332
759
+ vn 0.0464 -0.8810 0.4709
760
+ vn 0.0286 -0.9565 0.2902
761
+ vn 0.0975 0.0976 0.9904
762
+ vn 0.0097 -0.9951 0.0980
763
+ vn 0.0975 -0.0976 0.9904
764
+ vn 0.0938 -0.2890 0.9527
765
+ vn 0.0865 -0.4696 0.8786
766
+ vn 0.0759 -0.6326 0.7708
767
+ vn -0.0938 -0.2890 0.9527
768
+ vn -0.0865 -0.4696 0.8786
769
+ vn -0.0759 -0.6326 0.7708
770
+ vn -0.0624 -0.7715 0.6332
771
+ vn -0.0464 -0.8810 0.4709
772
+ vn -0.0286 -0.9565 0.2902
773
+ vn -0.0976 0.0976 0.9904
774
+ vn -0.0097 -0.9951 0.0980
775
+ vn -0.0976 -0.0976 0.9904
776
+ vn -0.1374 -0.8810 0.4528
777
+ vn -0.0846 -0.9565 0.2790
778
+ vn -0.2889 0.0976 0.9524
779
+ vn -0.0286 -0.9951 0.0942
780
+ vn -0.2889 -0.0976 0.9524
781
+ vn -0.2779 -0.2890 0.9161
782
+ vn -0.2563 -0.4696 0.8448
783
+ vn -0.2248 -0.6326 0.7412
784
+ vn -0.1847 -0.7715 0.6088
785
+ vn -0.4513 -0.2890 0.8443
786
+ vn -0.4162 -0.4696 0.7786
787
+ vn -0.3651 -0.6326 0.6831
788
+ vn -0.2999 -0.7715 0.5611
789
+ vn -0.2230 -0.8810 0.4173
790
+ vn -0.1374 -0.9565 0.2571
791
+ vn -0.4691 0.0976 0.8777
792
+ vn -0.0464 -0.9951 0.0869
793
+ vn -0.4691 -0.0976 0.8777
794
+ vn -0.3002 -0.8810 0.3658
795
+ vn -0.1850 -0.9565 0.2254
796
+ vn -0.6314 0.0976 0.7693
797
+ vn -0.0625 -0.9951 0.0761
798
+ vn -0.6314 -0.0976 0.7693
799
+ vn -0.6073 -0.2890 0.7400
800
+ vn -0.5601 -0.4696 0.6825
801
+ vn -0.4913 -0.6326 0.5987
802
+ vn -0.4036 -0.7715 0.4918
803
+ vn -0.6825 -0.4696 0.5601
804
+ vn -0.5987 -0.6326 0.4913
805
+ vn -0.4918 -0.7715 0.4036
806
+ vn -0.3658 -0.8810 0.3002
807
+ vn -0.2254 -0.9565 0.1850
808
+ vn -0.7693 0.0976 0.6314
809
+ vn -0.0761 -0.9951 0.0625
810
+ vn -0.7693 -0.0976 0.6314
811
+ vn -0.7400 -0.2890 0.6073
812
+ vn -0.2571 -0.9565 0.1374
813
+ vn -0.8777 0.0976 0.4691
814
+ vn -0.0869 -0.9951 0.0464
815
+ vn -0.8777 -0.0976 0.4691
816
+ vn -0.8443 -0.2890 0.4513
817
+ vn -0.7786 -0.4696 0.4162
818
+ vn -0.6831 -0.6326 0.3651
819
+ vn -0.5611 -0.7715 0.2999
820
+ vn -0.4173 -0.8810 0.2231
821
+ vn -0.7412 -0.6326 0.2248
822
+ vn -0.6088 -0.7715 0.1847
823
+ vn -0.4528 -0.8810 0.1374
824
+ vn -0.2790 -0.9565 0.0846
825
+ vn -0.9524 0.0976 0.2889
826
+ vn -0.0942 -0.9951 0.0286
827
+ vn -0.9524 -0.0976 0.2889
828
+ vn -0.9161 -0.2890 0.2779
829
+ vn -0.8448 -0.4696 0.2563
830
+ vn -0.9904 0.0976 0.0975
831
+ vn -0.0980 -0.9951 0.0097
832
+ vn -0.9904 -0.0976 0.0975
833
+ vn -0.9527 -0.2890 0.0938
834
+ vn -0.8786 -0.4696 0.0865
835
+ vn -0.7708 -0.6326 0.0759
836
+ vn -0.6332 -0.7715 0.0624
837
+ vn -0.4709 -0.8810 0.0464
838
+ vn -0.2902 -0.9565 0.0286
839
+ vn -0.7708 -0.6326 -0.0759
840
+ vn -0.6332 -0.7715 -0.0624
841
+ vn -0.4709 -0.8810 -0.0464
842
+ vn -0.2902 -0.9565 -0.0286
843
+ vn -0.9904 0.0976 -0.0976
844
+ vn -0.0980 -0.9951 -0.0097
845
+ vn -0.9904 -0.0976 -0.0976
846
+ vn -0.9527 -0.2890 -0.0938
847
+ vn -0.8786 -0.4696 -0.0865
848
+ vn -0.0942 -0.9951 -0.0286
849
+ vn -0.9524 -0.0976 -0.2889
850
+ vn -0.9161 -0.2890 -0.2779
851
+ vn -0.8448 -0.4696 -0.2563
852
+ vn -0.7412 -0.6326 -0.2248
853
+ vn -0.6088 -0.7715 -0.1847
854
+ vn -0.4528 -0.8810 -0.1374
855
+ vn -0.2790 -0.9565 -0.0846
856
+ vn -0.9524 0.0976 -0.2889
857
+ vn -0.5611 -0.7715 -0.2999
858
+ vn -0.4173 -0.8810 -0.2231
859
+ vn -0.2571 -0.9565 -0.1374
860
+ vn -0.8777 0.0976 -0.4691
861
+ vn -0.0869 -0.9951 -0.0464
862
+ vn -0.8777 -0.0976 -0.4691
863
+ vn -0.8443 -0.2890 -0.4513
864
+ vn -0.7786 -0.4696 -0.4162
865
+ vn -0.6831 -0.6326 -0.3651
866
+ vn -0.7693 -0.0976 -0.6314
867
+ vn -0.7400 -0.2890 -0.6073
868
+ vn -0.6825 -0.4696 -0.5601
869
+ vn -0.5987 -0.6326 -0.4913
870
+ vn -0.4918 -0.7715 -0.4036
871
+ vn -0.3658 -0.8810 -0.3002
872
+ vn -0.2254 -0.9565 -0.1850
873
+ vn -0.7693 0.0976 -0.6314
874
+ vn -0.0761 -0.9951 -0.0625
875
+ vn -0.4036 -0.7715 -0.4918
876
+ vn -0.3002 -0.8810 -0.3658
877
+ vn -0.1850 -0.9565 -0.2254
878
+ vn -0.6314 0.0976 -0.7693
879
+ vn -0.0625 -0.9951 -0.0761
880
+ vn -0.6314 -0.0976 -0.7693
881
+ vn -0.6073 -0.2890 -0.7400
882
+ vn -0.5601 -0.4696 -0.6825
883
+ vn -0.4913 -0.6326 -0.5987
884
+ vn -0.4513 -0.2890 -0.8443
885
+ vn -0.4162 -0.4696 -0.7786
886
+ vn -0.3651 -0.6326 -0.6831
887
+ vn -0.2999 -0.7715 -0.5611
888
+ vn -0.2230 -0.8810 -0.4173
889
+ vn -0.1374 -0.9565 -0.2571
890
+ vn -0.4691 0.0976 -0.8777
891
+ vn -0.0464 -0.9951 -0.0869
892
+ vn -0.4691 -0.0976 -0.8777
893
+ vn -0.1374 -0.8810 -0.4528
894
+ vn -0.0846 -0.9565 -0.2790
895
+ vn -0.2889 0.0976 -0.9524
896
+ vn -0.0286 -0.9951 -0.0942
897
+ vn -0.2889 -0.0976 -0.9524
898
+ vn -0.2779 -0.2890 -0.9161
899
+ vn -0.2563 -0.4696 -0.8448
900
+ vn -0.2248 -0.6326 -0.7412
901
+ vn -0.1847 -0.7715 -0.6088
902
+ vn -0.0865 -0.4696 -0.8786
903
+ vn -0.0759 -0.6326 -0.7708
904
+ vn -0.0624 -0.7715 -0.6332
905
+ vn -0.0464 -0.8810 -0.4709
906
+ vn -0.0286 -0.9565 -0.2902
907
+ vn -0.0976 0.0976 -0.9904
908
+ vn -0.0097 -0.9951 -0.0980
909
+ vn -0.0976 -0.0976 -0.9904
910
+ vn -0.0938 -0.2890 -0.9527
911
+ usemtl None
912
+ s off
913
+ f 285/1/1 3/2/1 7/3/1 8/4/1
914
+ f 286/5/2 285/1/2 8/4/2 9/6/2
915
+ f 287/7/3 286/5/3 9/6/3 10/8/3
916
+ f 4/9/4 287/7/4 10/8/4 11/10/4
917
+ f 288/11/5 4/9/5 11/10/5 12/12/5
918
+ f 289/13/6 288/11/6 12/12/6 13/14/6
919
+ f 2/15/7 1/16/7 5/17/7 6/18/7
920
+ f 122/19/8 289/13/8 13/14/8
921
+ f 3/2/9 2/15/9 6/18/9 7/3/9
922
+ f 122/20/10 13/14/10 22/21/10
923
+ f 7/3/11 6/18/11 15/22/11 16/23/11
924
+ f 8/4/12 7/3/12 16/23/12 17/24/12
925
+ f 9/6/13 8/4/13 17/24/13 18/25/13
926
+ f 10/8/14 9/6/14 18/25/14 19/26/14
927
+ f 11/10/15 10/8/15 19/26/15 20/27/15
928
+ f 12/12/16 11/10/16 20/27/16 21/28/16
929
+ f 13/14/17 12/12/17 21/28/17 22/21/17
930
+ f 6/18/18 5/17/18 14/29/18 15/22/18
931
+ f 20/27/19 19/26/19 28/30/19 29/31/19
932
+ f 21/28/20 20/27/20 29/31/20 30/32/20
933
+ f 22/21/21 21/28/21 30/32/21 31/33/21
934
+ f 15/22/22 14/29/22 23/34/22 24/35/22
935
+ f 122/36/23 22/21/23 31/33/23
936
+ f 16/23/24 15/22/24 24/35/24 25/37/24
937
+ f 17/24/25 16/23/25 25/37/25 26/38/25
938
+ f 18/25/26 17/24/26 26/38/26 27/39/26
939
+ f 19/26/27 18/25/27 27/39/27 28/30/27
940
+ f 26/38/28 25/37/28 34/40/28 35/41/28
941
+ f 27/39/29 26/38/29 35/41/29 36/42/29
942
+ f 28/30/30 27/39/30 36/42/30 37/43/30
943
+ f 29/31/31 28/30/31 37/43/31 38/44/31
944
+ f 30/32/32 29/31/32 38/44/32 39/45/32
945
+ f 31/33/33 30/32/33 39/45/33 40/46/33
946
+ f 24/35/34 23/34/34 32/47/34 33/48/34
947
+ f 122/49/35 31/33/35 40/46/35
948
+ f 25/37/36 24/35/36 33/48/36 34/40/36
949
+ f 39/45/37 38/44/37 47/50/37 48/51/37
950
+ f 40/46/38 39/45/38 48/51/38 49/52/38
951
+ f 33/48/39 32/47/39 41/53/39 42/54/39
952
+ f 122/55/40 40/46/40 49/52/40
953
+ f 34/40/41 33/48/41 42/54/41 43/56/41
954
+ f 35/41/42 34/40/42 43/56/42 44/57/42
955
+ f 36/42/43 35/41/43 44/57/43 45/58/43
956
+ f 37/43/44 36/42/44 45/58/44 46/59/44
957
+ f 38/44/45 37/43/45 46/59/45 47/50/45
958
+ f 44/57/46 43/56/46 52/60/46 53/61/46
959
+ f 45/58/47 44/57/47 53/61/47 54/62/47
960
+ f 46/59/48 45/58/48 54/62/48 55/63/48
961
+ f 47/50/49 46/59/49 55/63/49 56/64/49
962
+ f 48/51/50 47/50/50 56/64/50 57/65/50
963
+ f 49/52/51 48/51/51 57/65/51 58/66/51
964
+ f 42/54/52 41/53/52 50/67/52 51/68/52
965
+ f 122/69/53 49/52/53 58/66/53
966
+ f 43/56/54 42/54/54 51/68/54 52/60/54
967
+ f 57/65/55 56/64/55 65/70/55 66/71/55
968
+ f 58/66/56 57/65/56 66/71/56 67/72/56
969
+ f 51/68/57 50/67/57 59/73/57 60/74/57
970
+ f 122/75/58 58/66/58 67/72/58
971
+ f 52/60/59 51/68/59 60/74/59 61/76/59
972
+ f 53/61/60 52/60/60 61/76/60 62/77/60
973
+ f 54/62/61 53/61/61 62/77/61 63/78/61
974
+ f 55/63/62 54/62/62 63/78/62 64/79/62
975
+ f 56/64/63 55/63/63 64/79/63 65/70/63
976
+ f 63/78/64 62/77/64 71/80/64 72/81/64
977
+ f 64/79/65 63/78/65 72/81/65 73/82/65
978
+ f 65/70/66 64/79/66 73/82/66 74/83/66
979
+ f 66/71/67 65/70/67 74/83/67 75/84/67
980
+ f 67/72/68 66/71/68 75/84/68 76/85/68
981
+ f 60/74/69 59/73/69 68/86/69 69/87/69
982
+ f 122/88/70 67/72/70 76/85/70
983
+ f 61/76/71 60/74/71 69/87/71 70/89/71
984
+ f 62/77/72 61/76/72 70/89/72 71/80/72
985
+ f 76/85/73 75/84/73 84/90/73 85/91/73
986
+ f 69/87/74 68/86/74 77/92/74 78/93/74
987
+ f 122/94/75 76/85/75 85/91/75
988
+ f 70/89/76 69/87/76 78/93/76 79/95/76
989
+ f 71/80/77 70/89/77 79/95/77 80/96/77
990
+ f 72/81/78 71/80/78 80/96/78 81/97/78
991
+ f 73/82/79 72/81/79 81/97/79 82/98/79
992
+ f 74/83/80 73/82/80 82/98/80 83/99/80
993
+ f 75/84/81 74/83/81 83/99/81 84/90/81
994
+ f 81/97/82 80/96/82 89/100/82 90/101/82
995
+ f 82/98/83 81/97/83 90/101/83 91/102/83
996
+ f 83/99/84 82/98/84 91/102/84 92/103/84
997
+ f 84/90/85 83/99/85 92/103/85 93/104/85
998
+ f 85/91/86 84/90/86 93/104/86 94/105/86
999
+ f 78/93/87 77/92/87 86/106/87 87/107/87
1000
+ f 122/108/88 85/91/88 94/105/88
1001
+ f 79/95/89 78/93/89 87/107/89 88/109/89
1002
+ f 80/96/90 79/95/90 88/109/90 89/100/90
1003
+ f 94/105/91 93/104/91 102/110/91 103/111/91
1004
+ f 87/107/92 86/106/92 95/112/92 96/113/92
1005
+ f 122/114/93 94/105/93 103/111/93
1006
+ f 88/109/94 87/107/94 96/113/94 97/115/94
1007
+ f 89/100/95 88/109/95 97/115/95 98/116/95
1008
+ f 90/101/96 89/100/96 98/116/96 99/117/96
1009
+ f 91/102/97 90/101/97 99/117/97 100/118/97
1010
+ f 92/103/98 91/102/98 100/118/98 101/119/98
1011
+ f 93/104/99 92/103/99 101/119/99 102/110/99
1012
+ f 100/118/100 99/117/100 108/120/100 109/121/100
1013
+ f 101/119/101 100/118/101 109/121/101 110/122/101
1014
+ f 102/110/102 101/119/102 110/122/102 111/123/102
1015
+ f 103/111/103 102/110/103 111/123/103 112/124/103
1016
+ f 96/113/104 95/112/104 104/125/104 105/126/104
1017
+ f 122/127/105 103/111/105 112/124/105
1018
+ f 97/115/106 96/113/106 105/126/106 106/128/106
1019
+ f 98/116/107 97/115/107 106/128/107 107/129/107
1020
+ f 99/117/108 98/116/108 107/129/108 108/120/108
1021
+ f 122/130/109 112/124/109 121/131/109
1022
+ f 106/128/110 105/126/110 114/132/110 115/133/110
1023
+ f 107/129/111 106/128/111 115/133/111 116/134/111
1024
+ f 108/120/112 107/129/112 116/134/112 117/135/112
1025
+ f 109/121/113 108/120/113 117/135/113 118/136/113
1026
+ f 110/122/114 109/121/114 118/136/114 119/137/114
1027
+ f 111/123/115 110/122/115 119/137/115 120/138/115
1028
+ f 112/124/116 111/123/116 120/138/116 121/131/116
1029
+ f 105/126/117 104/125/117 113/139/117 114/132/117
1030
+ f 119/137/118 118/136/118 128/140/118 129/141/118
1031
+ f 120/138/119 119/137/119 129/141/119 130/142/119
1032
+ f 121/131/120 120/138/120 130/142/120 131/143/120
1033
+ f 114/132/121 113/139/121 123/144/121 124/145/121
1034
+ f 122/146/122 121/131/122 131/143/122
1035
+ f 115/133/123 114/132/123 124/145/123 125/147/123
1036
+ f 116/134/124 115/133/124 125/147/124 126/148/124
1037
+ f 117/135/125 116/134/125 126/148/125 127/149/125
1038
+ f 118/136/126 117/135/126 127/149/126 128/140/126
1039
+ f 125/147/127 124/145/127 133/150/127 134/151/127
1040
+ f 126/148/128 125/147/128 134/151/128 135/152/128
1041
+ f 127/149/129 126/148/129 135/152/129 136/153/129
1042
+ f 128/140/130 127/149/130 136/153/130 137/154/130
1043
+ f 129/141/131 128/140/131 137/154/131 138/155/131
1044
+ f 130/142/132 129/141/132 138/155/132 139/156/132
1045
+ f 131/143/133 130/142/133 139/156/133 140/157/133
1046
+ f 124/145/134 123/144/134 132/158/134 133/150/134
1047
+ f 122/159/135 131/143/135 140/157/135
1048
+ f 138/155/136 137/154/136 146/160/136 147/161/136
1049
+ f 139/156/137 138/155/137 147/161/137 148/162/137
1050
+ f 140/157/138 139/156/138 148/162/138 149/163/138
1051
+ f 133/150/139 132/158/139 141/164/139 142/165/139
1052
+ f 122/166/140 140/157/140 149/163/140
1053
+ f 134/151/141 133/150/141 142/165/141 143/167/141
1054
+ f 135/152/142 134/151/142 143/167/142 144/168/142
1055
+ f 136/153/143 135/152/143 144/168/143 145/169/143
1056
+ f 137/154/144 136/153/144 145/169/144 146/160/144
1057
+ f 144/168/145 143/167/145 152/170/145 153/171/145
1058
+ f 145/169/146 144/168/146 153/171/146 154/172/146
1059
+ f 146/160/147 145/169/147 154/172/147 155/173/147
1060
+ f 147/161/148 146/160/148 155/173/148 156/174/148
1061
+ f 148/162/149 147/161/149 156/174/149 157/175/149
1062
+ f 149/163/150 148/162/150 157/175/150 158/176/150
1063
+ f 142/165/151 141/164/151 150/177/151 151/178/151
1064
+ f 122/179/152 149/163/152 158/176/152
1065
+ f 143/167/153 142/165/153 151/178/153 152/170/153
1066
+ f 157/175/154 156/174/154 165/180/154 166/181/154
1067
+ f 158/176/155 157/175/155 166/181/155 167/182/155
1068
+ f 151/178/156 150/177/156 159/183/156 160/184/156
1069
+ f 122/185/157 158/176/157 167/182/157
1070
+ f 152/170/158 151/178/158 160/184/158 161/186/158
1071
+ f 153/171/159 152/170/159 161/186/159 162/187/159
1072
+ f 154/172/160 153/171/160 162/187/160 163/188/160
1073
+ f 155/173/161 154/172/161 163/188/161 164/189/161
1074
+ f 156/174/162 155/173/162 164/189/162 165/180/162
1075
+ f 162/187/163 161/186/163 170/190/163 171/191/163
1076
+ f 163/188/164 162/187/164 171/191/164 172/192/164
1077
+ f 164/189/165 163/188/165 172/192/165 173/193/165
1078
+ f 165/180/166 164/189/166 173/193/166 174/194/166
1079
+ f 166/181/167 165/180/167 174/194/167 175/195/167
1080
+ f 167/182/168 166/181/168 175/195/168 176/196/168
1081
+ f 160/184/169 159/183/169 168/197/169 169/198/169
1082
+ f 122/199/170 167/182/170 176/196/170
1083
+ f 161/186/171 160/184/171 169/198/171 170/190/171
1084
+ f 175/195/172 174/194/172 183/200/172 184/201/172
1085
+ f 176/196/173 175/195/173 184/201/173 185/202/173
1086
+ f 169/198/174 168/197/174 177/203/174 178/204/174
1087
+ f 122/205/175 176/196/175 185/202/175
1088
+ f 170/190/176 169/198/176 178/204/176 179/206/176
1089
+ f 171/191/177 170/190/177 179/206/177 180/207/177
1090
+ f 172/192/178 171/191/178 180/207/178 181/208/178
1091
+ f 173/193/179 172/192/179 181/208/179 182/209/179
1092
+ f 174/194/180 173/193/180 182/209/180 183/200/180
1093
+ f 181/208/181 180/207/181 189/210/181 190/211/181
1094
+ f 182/209/182 181/208/182 190/211/182 191/212/182
1095
+ f 183/200/183 182/209/183 191/212/183 192/213/183
1096
+ f 184/201/184 183/200/184 192/213/184 193/214/184
1097
+ f 185/202/185 184/201/185 193/214/185 194/215/185
1098
+ f 178/204/186 177/203/186 186/216/186 187/217/186
1099
+ f 122/218/187 185/202/187 194/215/187
1100
+ f 179/206/188 178/204/188 187/217/188 188/219/188
1101
+ f 180/207/189 179/206/189 188/219/189 189/210/189
1102
+ f 194/215/190 193/214/190 202/220/190 203/221/190
1103
+ f 187/217/191 186/216/191 195/222/191 196/223/191
1104
+ f 122/224/192 194/215/192 203/221/192
1105
+ f 188/219/193 187/217/193 196/223/193 197/225/193
1106
+ f 189/210/194 188/219/194 197/225/194 198/226/194
1107
+ f 190/211/195 189/210/195 198/226/195 199/227/195
1108
+ f 191/212/196 190/211/196 199/227/196 200/228/196
1109
+ f 192/213/197 191/212/197 200/228/197 201/229/197
1110
+ f 193/214/198 192/213/198 201/229/198 202/220/198
1111
+ f 200/228/199 199/227/199 208/230/199 209/231/199
1112
+ f 201/229/200 200/228/200 209/231/200 210/232/200
1113
+ f 202/220/201 201/229/201 210/232/201 211/233/201
1114
+ f 203/221/202 202/220/202 211/233/202 212/234/202
1115
+ f 196/223/203 195/222/203 204/235/203 205/236/203
1116
+ f 122/237/204 203/221/204 212/234/204
1117
+ f 197/225/205 196/223/205 205/236/205 206/238/205
1118
+ f 198/226/206 197/225/206 206/238/206 207/239/206
1119
+ f 199/227/207 198/226/207 207/239/207 208/230/207
1120
+ f 205/236/208 204/235/208 213/240/208 214/241/208
1121
+ f 122/242/209 212/234/209 221/243/209
1122
+ f 206/238/210 205/236/210 214/241/210 215/244/210
1123
+ f 207/239/211 206/238/211 215/244/211 216/245/211
1124
+ f 208/230/212 207/239/212 216/245/212 217/246/212
1125
+ f 209/231/213 208/230/213 217/246/213 218/247/213
1126
+ f 210/232/214 209/231/214 218/247/214 219/248/214
1127
+ f 211/233/215 210/232/215 219/248/215 220/249/215
1128
+ f 212/234/216 211/233/216 220/249/216 221/243/216
1129
+ f 218/250/217 217/251/217 226/252/217 227/253/217
1130
+ f 219/254/218 218/250/218 227/253/218 228/255/218
1131
+ f 220/256/219 219/254/219 228/255/219 229/257/219
1132
+ f 221/258/220 220/256/220 229/257/220 230/259/220
1133
+ f 214/260/221 213/261/221 222/262/221 223/263/221
1134
+ f 122/264/222 221/258/222 230/259/222
1135
+ f 215/265/223 214/260/223 223/263/223 224/266/223
1136
+ f 216/267/224 215/265/224 224/266/224 225/268/224
1137
+ f 217/251/225 216/267/225 225/268/225 226/252/225
1138
+ f 122/269/226 230/259/226 239/270/226
1139
+ f 224/266/227 223/263/227 232/271/227 233/272/227
1140
+ f 225/268/228 224/266/228 233/272/228 234/273/228
1141
+ f 226/252/229 225/268/229 234/273/229 235/274/229
1142
+ f 227/253/230 226/252/230 235/274/230 236/275/230
1143
+ f 228/255/231 227/253/231 236/275/231 237/276/231
1144
+ f 229/257/232 228/255/232 237/276/232 238/277/232
1145
+ f 230/259/233 229/257/233 238/277/233 239/270/233
1146
+ f 223/263/234 222/262/234 231/278/234 232/271/234
1147
+ f 237/276/235 236/275/235 245/279/235 246/280/235
1148
+ f 238/277/236 237/276/236 246/280/236 247/281/236
1149
+ f 239/270/237 238/277/237 247/281/237 248/282/237
1150
+ f 232/271/238 231/278/238 240/283/238 241/284/238
1151
+ f 122/285/239 239/270/239 248/282/239
1152
+ f 233/272/240 232/271/240 241/284/240 242/286/240
1153
+ f 234/273/241 233/272/241 242/286/241 243/287/241
1154
+ f 235/274/242 234/273/242 243/287/242 244/288/242
1155
+ f 236/275/243 235/274/243 244/288/243 245/279/243
1156
+ f 242/286/244 241/284/244 250/289/244 251/290/244
1157
+ f 243/287/245 242/286/245 251/290/245 252/291/245
1158
+ f 244/288/246 243/287/246 252/291/246 253/292/246
1159
+ f 245/279/247 244/288/247 253/292/247 254/293/247
1160
+ f 246/280/248 245/279/248 254/293/248 255/294/248
1161
+ f 247/281/249 246/280/249 255/294/249 256/295/249
1162
+ f 248/282/250 247/281/250 256/295/250 257/296/250
1163
+ f 241/284/251 240/283/251 249/297/251 250/289/251
1164
+ f 122/298/252 248/282/252 257/296/252
1165
+ f 255/294/253 254/293/253 263/299/253 264/300/253
1166
+ f 256/295/254 255/294/254 264/300/254 265/301/254
1167
+ f 257/296/255 256/295/255 265/301/255 266/302/255
1168
+ f 250/289/256 249/297/256 258/303/256 259/304/256
1169
+ f 122/305/257 257/296/257 266/302/257
1170
+ f 251/290/258 250/289/258 259/304/258 260/306/258
1171
+ f 252/291/259 251/290/259 260/306/259 261/307/259
1172
+ f 253/292/260 252/291/260 261/307/260 262/308/260
1173
+ f 254/293/261 253/292/261 262/308/261 263/299/261
1174
+ f 261/307/262 260/306/262 269/309/262 270/310/262
1175
+ f 262/308/263 261/307/263 270/310/263 271/311/263
1176
+ f 263/299/264 262/308/264 271/311/264 272/312/264
1177
+ f 264/300/265 263/299/265 272/312/265 273/313/265
1178
+ f 265/301/266 264/300/266 273/313/266 274/314/266
1179
+ f 266/302/267 265/301/267 274/314/267 275/315/267
1180
+ f 259/304/268 258/303/268 267/316/268 268/317/268
1181
+ f 122/318/269 266/302/269 275/315/269
1182
+ f 260/306/270 259/304/270 268/317/270 269/309/270
1183
+ f 274/314/271 273/313/271 282/319/271 283/320/271
1184
+ f 275/315/272 274/314/272 283/320/272 284/321/272
1185
+ f 268/317/273 267/316/273 276/322/273 277/323/273
1186
+ f 122/324/274 275/315/274 284/321/274
1187
+ f 269/309/275 268/317/275 277/323/275 278/325/275
1188
+ f 270/310/276 269/309/276 278/325/276 279/326/276
1189
+ f 271/311/277 270/310/277 279/326/277 280/327/277
1190
+ f 272/312/278 271/311/278 280/327/278 281/328/278
1191
+ f 273/313/279 272/312/279 281/328/279 282/319/279
1192
+ f 280/327/280 279/326/280 285/1/280 286/5/280
1193
+ f 281/328/281 280/327/281 286/5/281 287/7/281
1194
+ f 282/319/282 281/328/282 287/7/282 4/9/282
1195
+ f 283/320/283 282/319/283 4/9/283 288/11/283
1196
+ f 284/321/284 283/320/284 288/11/284 289/13/284
1197
+ f 277/323/285 276/322/285 1/16/285 2/15/285
1198
+ f 122/329/286 284/321/286 289/13/286
1199
+ f 278/325/287 277/323/287 2/15/287 3/2/287
1200
+ f 279/326/288 278/325/288 3/2/288 285/1/288
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.3_numV_289_top_ring.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0 0.00000 0.98079 0.19509
2
+ 4 0.19134 0.96194 0.19509
3
+ 13 0.37533 0.90613 0.19509
4
+ 22 0.54490 0.81549 0.19509
5
+ 31 0.69352 0.69352 0.19509
6
+ 40 0.81549 0.54489 0.19509
7
+ 49 0.90613 0.37533 0.19509
8
+ 58 0.96194 0.19134 0.19509
9
+ 67 0.98079 -0.00000 0.19509
10
+ 76 0.96194 -0.19134 0.19509
11
+ 85 0.90613 -0.37533 0.19509
12
+ 94 0.81549 -0.54490 0.19509
13
+ 103 0.69352 -0.69352 0.19509
14
+ 112 0.54489 -0.81549 0.19509
15
+ 122 0.37533 -0.90613 0.19509
16
+ 131 0.19134 -0.96194 0.19509
17
+ 140 -0.00000 -0.98079 0.19509
18
+ 149 -0.19134 -0.96194 0.19509
19
+ 158 -0.37533 -0.90613 0.19509
20
+ 167 -0.54490 -0.81549 0.19509
21
+ 176 -0.69352 -0.69352 0.19509
22
+ 185 -0.81549 -0.54490 0.19509
23
+ 194 -0.90613 -0.37533 0.19509
24
+ 203 -0.96194 -0.19134 0.19509
25
+ 212 -0.98078 -0.00000 0.19509
26
+ 221 -0.96194 0.19134 0.19509
27
+ 230 -0.90613 0.37533 0.19509
28
+ 239 -0.81549 0.54489 0.19509
29
+ 248 -0.69352 0.69352 0.19509
30
+ 257 -0.54489 0.81549 0.19509
31
+ 266 -0.37533 0.90613 0.19509
32
+ 275 -0.19134 0.96194 0.19509
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321.mtl ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl None
5
+ Ns 500
6
+ Ka 0.8 0.8 0.8
7
+ Kd 0.8 0.8 0.8
8
+ Ks 0.8 0.8 0.8
9
+ d 1
10
+ illum 2
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321.obj ADDED
@@ -0,0 +1,1329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender v2.82 (sub 7) OBJ File: ''
2
+ # www.blender.org
3
+ mtllib bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321.mtl
4
+ o Sphere
5
+ v 0.000000 0.382683 -0.923880
6
+ v 0.000000 0.195090 -0.980785
7
+ v 0.000000 0.000000 -1.000000
8
+ v 0.000000 -0.195090 -0.980785
9
+ v 0.000000 -0.831470 -0.555570
10
+ v 0.180240 0.382683 -0.906127
11
+ v 0.191342 0.195090 -0.961940
12
+ v 0.195090 0.000000 -0.980785
13
+ v 0.191342 -0.195090 -0.961940
14
+ v 0.180240 -0.382683 -0.906127
15
+ v 0.162212 -0.555570 -0.815493
16
+ v 0.137950 -0.707107 -0.693520
17
+ v 0.108386 -0.831470 -0.544895
18
+ v 0.074658 -0.923880 -0.375330
19
+ v 0.038060 -0.980785 -0.191341
20
+ v 0.353553 0.382683 -0.853553
21
+ v 0.375330 0.195090 -0.906127
22
+ v 0.382684 0.000000 -0.923879
23
+ v 0.375330 -0.195090 -0.906127
24
+ v 0.353554 -0.382683 -0.853553
25
+ v 0.318190 -0.555570 -0.768178
26
+ v 0.270598 -0.707107 -0.653281
27
+ v 0.212608 -0.831470 -0.513280
28
+ v 0.146447 -0.923880 -0.353553
29
+ v 0.074658 -0.980785 -0.180240
30
+ v 0.513280 0.382683 -0.768178
31
+ v 0.544895 0.195090 -0.815493
32
+ v 0.555570 0.000000 -0.831469
33
+ v 0.544895 -0.195090 -0.815493
34
+ v 0.513280 -0.382683 -0.768178
35
+ v 0.461940 -0.555570 -0.691342
36
+ v 0.392848 -0.707107 -0.587938
37
+ v 0.308658 -0.831470 -0.461940
38
+ v 0.212608 -0.923880 -0.318189
39
+ v 0.108386 -0.980785 -0.162211
40
+ v 0.653282 0.382683 -0.653281
41
+ v 0.693520 0.195090 -0.693520
42
+ v 0.707107 0.000000 -0.707107
43
+ v 0.693520 -0.195090 -0.693520
44
+ v 0.653282 -0.382683 -0.653281
45
+ v 0.587938 -0.555570 -0.587938
46
+ v 0.500000 -0.707107 -0.500000
47
+ v 0.392848 -0.831470 -0.392847
48
+ v 0.270598 -0.923880 -0.270598
49
+ v 0.137950 -0.980785 -0.137949
50
+ v 0.768178 0.382683 -0.513280
51
+ v 0.815493 0.195090 -0.544895
52
+ v 0.831470 0.000000 -0.555570
53
+ v 0.815493 -0.195090 -0.544895
54
+ v 0.768178 -0.382683 -0.513280
55
+ v 0.691342 -0.555570 -0.461940
56
+ v 0.587938 -0.707107 -0.392847
57
+ v 0.461940 -0.831470 -0.308658
58
+ v 0.318190 -0.923880 -0.212607
59
+ v 0.162212 -0.980785 -0.108386
60
+ v 0.853554 0.382683 -0.353553
61
+ v 0.906128 0.195090 -0.375330
62
+ v 0.923880 0.000000 -0.382683
63
+ v 0.906128 -0.195090 -0.375330
64
+ v 0.853554 -0.382683 -0.353553
65
+ v 0.768178 -0.555570 -0.318189
66
+ v 0.653282 -0.707107 -0.270598
67
+ v 0.513280 -0.831470 -0.212607
68
+ v 0.353554 -0.923880 -0.146446
69
+ v 0.180240 -0.980785 -0.074658
70
+ v 0.906128 0.382683 -0.180240
71
+ v 0.961940 0.195090 -0.191341
72
+ v 0.980785 0.000000 -0.195090
73
+ v 0.961940 -0.195090 -0.191341
74
+ v 0.906128 -0.382683 -0.180240
75
+ v 0.815493 -0.555570 -0.162211
76
+ v 0.693520 -0.707107 -0.137949
77
+ v 0.544895 -0.831470 -0.108386
78
+ v 0.375330 -0.923880 -0.074658
79
+ v 0.191342 -0.980785 -0.038060
80
+ v 0.923880 0.382683 0.000000
81
+ v 0.980785 0.195090 0.000000
82
+ v 1.000000 0.000000 0.000000
83
+ v 0.980785 -0.195090 0.000000
84
+ v 0.923880 -0.382683 0.000000
85
+ v 0.831470 -0.555570 0.000000
86
+ v 0.707107 -0.707107 0.000000
87
+ v 0.555570 -0.831470 0.000000
88
+ v 0.382684 -0.923880 0.000000
89
+ v 0.195090 -0.980785 0.000000
90
+ v 0.906128 0.382683 0.180240
91
+ v 0.961940 0.195090 0.191342
92
+ v 0.980785 0.000000 0.195091
93
+ v 0.961940 -0.195090 0.191342
94
+ v 0.906128 -0.382683 0.180240
95
+ v 0.815493 -0.555570 0.162212
96
+ v 0.693520 -0.707107 0.137950
97
+ v 0.544895 -0.831470 0.108387
98
+ v 0.375330 -0.923880 0.074658
99
+ v 0.191342 -0.980785 0.038061
100
+ v 0.853554 0.382683 0.353554
101
+ v 0.906127 0.195090 0.375331
102
+ v 0.923880 0.000000 0.382684
103
+ v 0.906127 -0.195090 0.375331
104
+ v 0.853554 -0.382683 0.353554
105
+ v 0.768178 -0.555570 0.318190
106
+ v 0.653282 -0.707107 0.270598
107
+ v 0.513280 -0.831470 0.212608
108
+ v 0.353553 -0.923880 0.146447
109
+ v 0.180240 -0.980785 0.074658
110
+ v 0.768178 0.382683 0.513280
111
+ v 0.815493 0.195090 0.544895
112
+ v 0.831470 0.000000 0.555571
113
+ v 0.815493 -0.195090 0.544895
114
+ v 0.768178 -0.382683 0.513280
115
+ v 0.691342 -0.555570 0.461940
116
+ v 0.587938 -0.707107 0.392848
117
+ v 0.461940 -0.831470 0.308659
118
+ v 0.318190 -0.923880 0.212608
119
+ v 0.162212 -0.980785 0.108387
120
+ v 0.653282 0.382683 0.653282
121
+ v 0.693520 0.195090 0.693520
122
+ v 0.707107 0.000000 0.707107
123
+ v 0.693520 -0.195090 0.693520
124
+ v 0.653282 -0.382683 0.653282
125
+ v 0.587938 -0.555570 0.587938
126
+ v 0.500000 -0.707107 0.500000
127
+ v 0.392848 -0.831470 0.392848
128
+ v 0.270598 -0.923880 0.270598
129
+ v 0.137950 -0.980785 0.137950
130
+ v 0.513280 0.382683 0.768178
131
+ v 0.544895 0.195090 0.815493
132
+ v 0.555570 0.000000 0.831470
133
+ v 0.544895 -0.195090 0.815493
134
+ v 0.513280 -0.382683 0.768178
135
+ v 0.461940 -0.555570 0.691342
136
+ v 0.392848 -0.707107 0.587938
137
+ v 0.308658 -0.831470 0.461940
138
+ v 0.212608 -0.923880 0.318190
139
+ v 0.108386 -0.980785 0.162212
140
+ v 0.000000 -1.000000 0.000000
141
+ v 0.353553 0.382683 0.853554
142
+ v 0.375330 0.195090 0.906128
143
+ v 0.382683 0.000000 0.923880
144
+ v 0.375330 -0.195090 0.906128
145
+ v 0.353553 -0.382683 0.853554
146
+ v 0.318190 -0.555570 0.768178
147
+ v 0.270598 -0.707107 0.653282
148
+ v 0.212608 -0.831470 0.513280
149
+ v 0.146447 -0.923880 0.353554
150
+ v 0.074658 -0.980785 0.180240
151
+ v 0.180240 0.382683 0.906128
152
+ v 0.191342 0.195090 0.961940
153
+ v 0.195090 0.000000 0.980786
154
+ v 0.191342 -0.195090 0.961940
155
+ v 0.180240 -0.382683 0.906128
156
+ v 0.162212 -0.555570 0.815493
157
+ v 0.137950 -0.707107 0.693520
158
+ v 0.108386 -0.831470 0.544895
159
+ v 0.074658 -0.923880 0.375331
160
+ v 0.038060 -0.980785 0.191342
161
+ v 0.000000 0.382683 0.923880
162
+ v -0.000000 0.195090 0.980785
163
+ v -0.000000 0.000000 1.000000
164
+ v -0.000000 -0.195090 0.980785
165
+ v 0.000000 -0.382683 0.923880
166
+ v -0.000000 -0.555570 0.831470
167
+ v -0.000000 -0.707107 0.707107
168
+ v -0.000000 -0.831470 0.555570
169
+ v 0.000000 -0.923880 0.382684
170
+ v 0.000000 -0.980785 0.195091
171
+ v -0.180240 0.382683 0.906128
172
+ v -0.191342 0.195090 0.961940
173
+ v -0.195090 0.000000 0.980786
174
+ v -0.191342 -0.195090 0.961940
175
+ v -0.180240 -0.382683 0.906128
176
+ v -0.162212 -0.555570 0.815493
177
+ v -0.137950 -0.707107 0.693520
178
+ v -0.108386 -0.831470 0.544895
179
+ v -0.074658 -0.923880 0.375331
180
+ v -0.038060 -0.980785 0.191342
181
+ v -0.353553 0.382683 0.853554
182
+ v -0.375330 0.195090 0.906127
183
+ v -0.382684 0.000000 0.923880
184
+ v -0.375330 -0.195090 0.906127
185
+ v -0.353553 -0.382683 0.853554
186
+ v -0.318190 -0.555570 0.768178
187
+ v -0.270598 -0.707107 0.653282
188
+ v -0.212608 -0.831470 0.513280
189
+ v -0.146447 -0.923880 0.353554
190
+ v -0.074658 -0.980785 0.180240
191
+ v -0.513280 0.382683 0.768178
192
+ v -0.544895 0.195090 0.815493
193
+ v -0.555570 0.000000 0.831470
194
+ v -0.544895 -0.195090 0.815493
195
+ v -0.513280 -0.382683 0.768178
196
+ v -0.461940 -0.555570 0.691342
197
+ v -0.392847 -0.707107 0.587938
198
+ v -0.308658 -0.831470 0.461940
199
+ v -0.212607 -0.923880 0.318190
200
+ v -0.108386 -0.980785 0.162212
201
+ v -0.653281 0.382683 0.653282
202
+ v -0.693520 0.195090 0.693520
203
+ v -0.707107 0.000000 0.707107
204
+ v -0.693520 -0.195090 0.693520
205
+ v -0.653281 -0.382683 0.653282
206
+ v -0.587938 -0.555570 0.587938
207
+ v -0.500000 -0.707107 0.500000
208
+ v -0.392847 -0.831470 0.392848
209
+ v -0.270598 -0.923880 0.270598
210
+ v -0.137950 -0.980785 0.137950
211
+ v -0.768178 0.382683 0.513280
212
+ v -0.815493 0.195090 0.544895
213
+ v -0.831470 0.000000 0.555570
214
+ v -0.815493 -0.195090 0.544895
215
+ v -0.768178 -0.382683 0.513280
216
+ v -0.691342 -0.555570 0.461940
217
+ v -0.587938 -0.707107 0.392848
218
+ v -0.461940 -0.831470 0.308658
219
+ v -0.318190 -0.923880 0.212608
220
+ v -0.162212 -0.980785 0.108387
221
+ v -0.853553 0.382683 0.353554
222
+ v -0.906127 0.195090 0.375330
223
+ v -0.923880 0.000000 0.382684
224
+ v -0.906127 -0.195090 0.375330
225
+ v -0.853553 -0.382683 0.353554
226
+ v -0.768177 -0.555570 0.318190
227
+ v -0.653281 -0.707107 0.270598
228
+ v -0.513280 -0.831470 0.212608
229
+ v -0.353553 -0.923880 0.146447
230
+ v -0.180240 -0.980785 0.074658
231
+ v -0.906127 0.382683 0.180240
232
+ v -0.961939 0.195090 0.191342
233
+ v -0.980785 0.000000 0.195090
234
+ v -0.961939 -0.195090 0.191342
235
+ v -0.906127 -0.382683 0.180240
236
+ v -0.815493 -0.555570 0.162212
237
+ v -0.693520 -0.707107 0.137950
238
+ v -0.544895 -0.831470 0.108387
239
+ v -0.375330 -0.923880 0.074658
240
+ v -0.191342 -0.980785 0.038061
241
+ v -0.923879 0.382683 0.000000
242
+ v -0.980785 0.195090 0.000000
243
+ v -1.000000 0.000000 0.000000
244
+ v -0.980785 -0.195090 0.000000
245
+ v -0.923879 -0.382683 0.000000
246
+ v -0.831469 -0.555570 0.000000
247
+ v -0.707107 -0.707107 0.000000
248
+ v -0.555570 -0.831470 0.000000
249
+ v -0.382683 -0.923880 0.000000
250
+ v -0.195090 -0.980785 0.000000
251
+ v -0.906127 0.382683 -0.180240
252
+ v -0.961939 0.195090 -0.191342
253
+ v -0.980785 0.000000 -0.195090
254
+ v -0.961939 -0.195090 -0.191342
255
+ v -0.906127 -0.382683 -0.180240
256
+ v -0.815493 -0.555570 -0.162211
257
+ v -0.693520 -0.707107 -0.137949
258
+ v -0.544895 -0.831470 -0.108386
259
+ v -0.375330 -0.923880 -0.074658
260
+ v -0.191342 -0.980785 -0.038060
261
+ v -0.853553 0.382683 -0.353553
262
+ v -0.906127 0.195090 -0.375330
263
+ v -0.923879 0.000000 -0.382683
264
+ v -0.906127 -0.195090 -0.375330
265
+ v -0.853553 -0.382683 -0.353553
266
+ v -0.768177 -0.555570 -0.318189
267
+ v -0.653281 -0.707107 -0.270598
268
+ v -0.513280 -0.831470 -0.212607
269
+ v -0.353553 -0.923880 -0.146446
270
+ v -0.180240 -0.980785 -0.074657
271
+ v -0.768178 0.382683 -0.513280
272
+ v -0.815493 0.195090 -0.544895
273
+ v -0.831469 0.000000 -0.555570
274
+ v -0.815493 -0.195090 -0.544895
275
+ v -0.768178 -0.382683 -0.513280
276
+ v -0.691341 -0.555570 -0.461939
277
+ v -0.587938 -0.707107 -0.392847
278
+ v -0.461940 -0.831470 -0.308658
279
+ v -0.318189 -0.923880 -0.212607
280
+ v -0.162212 -0.980785 -0.108386
281
+ v -0.653281 0.382683 -0.653281
282
+ v -0.693519 0.195090 -0.693519
283
+ v -0.707106 0.000000 -0.707106
284
+ v -0.693519 -0.195090 -0.693519
285
+ v -0.653281 -0.382683 -0.653281
286
+ v -0.587937 -0.555570 -0.587937
287
+ v -0.500000 -0.707107 -0.500000
288
+ v -0.392847 -0.831470 -0.392847
289
+ v -0.270598 -0.923880 -0.270598
290
+ v -0.137950 -0.980785 -0.137949
291
+ v -0.513280 0.382683 -0.768177
292
+ v -0.544895 0.195090 -0.815492
293
+ v -0.555570 0.000000 -0.831469
294
+ v -0.544895 -0.195090 -0.815492
295
+ v -0.513280 -0.382683 -0.768177
296
+ v -0.461939 -0.555570 -0.691341
297
+ v -0.392847 -0.707107 -0.587937
298
+ v -0.308658 -0.831470 -0.461939
299
+ v -0.212607 -0.923880 -0.318189
300
+ v -0.108386 -0.980785 -0.162211
301
+ v -0.353553 0.382683 -0.853553
302
+ v -0.375330 0.195090 -0.906127
303
+ v -0.382683 0.000000 -0.923879
304
+ v -0.375330 -0.195090 -0.906127
305
+ v -0.353553 -0.382683 -0.853553
306
+ v -0.318189 -0.555570 -0.768177
307
+ v -0.270598 -0.707107 -0.653281
308
+ v -0.212607 -0.831470 -0.513279
309
+ v -0.146446 -0.923880 -0.353553
310
+ v -0.074658 -0.980785 -0.180240
311
+ v -0.180240 0.382683 -0.906127
312
+ v -0.191341 0.195090 -0.961939
313
+ v -0.195090 0.000000 -0.980785
314
+ v -0.191341 -0.195090 -0.961939
315
+ v -0.180240 -0.382683 -0.906127
316
+ v -0.162211 -0.555570 -0.815492
317
+ v -0.137950 -0.707107 -0.693520
318
+ v -0.108386 -0.831470 -0.544895
319
+ v -0.074658 -0.923880 -0.375330
320
+ v -0.038060 -0.980785 -0.191341
321
+ v 0.000000 -0.382683 -0.923879
322
+ v 0.000000 -0.555570 -0.831469
323
+ v 0.000000 -0.707107 -0.707106
324
+ v 0.000000 -0.923880 -0.382683
325
+ v 0.000000 -0.980785 -0.195090
326
+ vt 0.750000 0.562500
327
+ vt 0.750000 0.625000
328
+ vt 0.718750 0.625000
329
+ vt 0.718750 0.562500
330
+ vt 0.750000 0.062500
331
+ vt 0.750000 0.125000
332
+ vt 0.718750 0.125000
333
+ vt 0.718750 0.062500
334
+ vt 0.750000 0.500000
335
+ vt 0.718750 0.500000
336
+ vt 0.734375 0.000000
337
+ vt 0.750000 0.437500
338
+ vt 0.718750 0.437500
339
+ vt 0.750000 0.375000
340
+ vt 0.718750 0.375000
341
+ vt 0.750000 0.312500
342
+ vt 0.718750 0.312500
343
+ vt 0.750000 0.250000
344
+ vt 0.718750 0.250000
345
+ vt 0.750000 0.187500
346
+ vt 0.718750 0.187500
347
+ vt 0.687500 0.187500
348
+ vt 0.687500 0.125000
349
+ vt 0.687500 0.625000
350
+ vt 0.687500 0.562500
351
+ vt 0.687500 0.062500
352
+ vt 0.687500 0.500000
353
+ vt 0.703125 0.000000
354
+ vt 0.687500 0.437500
355
+ vt 0.687500 0.375000
356
+ vt 0.687500 0.312500
357
+ vt 0.687500 0.250000
358
+ vt 0.656250 0.437500
359
+ vt 0.656250 0.375000
360
+ vt 0.656250 0.312500
361
+ vt 0.656250 0.250000
362
+ vt 0.656250 0.187500
363
+ vt 0.656250 0.125000
364
+ vt 0.656250 0.625000
365
+ vt 0.656250 0.562500
366
+ vt 0.656250 0.062500
367
+ vt 0.656250 0.500000
368
+ vt 0.671875 0.000000
369
+ vt 0.625000 0.187500
370
+ vt 0.625000 0.125000
371
+ vt 0.625000 0.625000
372
+ vt 0.625000 0.562500
373
+ vt 0.625000 0.062500
374
+ vt 0.625000 0.500000
375
+ vt 0.640625 0.000000
376
+ vt 0.625000 0.437500
377
+ vt 0.625000 0.375000
378
+ vt 0.625000 0.312500
379
+ vt 0.625000 0.250000
380
+ vt 0.593750 0.375000
381
+ vt 0.593750 0.312500
382
+ vt 0.593750 0.250000
383
+ vt 0.593750 0.187500
384
+ vt 0.593750 0.125000
385
+ vt 0.593750 0.625000
386
+ vt 0.593750 0.562500
387
+ vt 0.593750 0.062500
388
+ vt 0.593750 0.500000
389
+ vt 0.609375 0.000000
390
+ vt 0.593750 0.437500
391
+ vt 0.562500 0.625000
392
+ vt 0.562500 0.562500
393
+ vt 0.562500 0.125000
394
+ vt 0.562500 0.062500
395
+ vt 0.562500 0.500000
396
+ vt 0.578125 0.000000
397
+ vt 0.562500 0.437500
398
+ vt 0.562500 0.375000
399
+ vt 0.562500 0.312500
400
+ vt 0.562500 0.250000
401
+ vt 0.562500 0.187500
402
+ vt 0.531250 0.375000
403
+ vt 0.531250 0.312500
404
+ vt 0.531250 0.250000
405
+ vt 0.531250 0.187500
406
+ vt 0.531250 0.125000
407
+ vt 0.531250 0.625000
408
+ vt 0.531250 0.562500
409
+ vt 0.531250 0.062500
410
+ vt 0.531250 0.500000
411
+ vt 0.546875 0.000000
412
+ vt 0.531250 0.437500
413
+ vt 0.500000 0.125000
414
+ vt 0.500000 0.062500
415
+ vt 0.500000 0.562500
416
+ vt 0.500000 0.500000
417
+ vt 0.515625 0.000000
418
+ vt 0.500000 0.437500
419
+ vt 0.500000 0.375000
420
+ vt 0.500000 0.312500
421
+ vt 0.500000 0.250000
422
+ vt 0.500000 0.187500
423
+ vt 0.500000 0.625000
424
+ vt 0.468750 0.312500
425
+ vt 0.468750 0.250000
426
+ vt 0.468750 0.187500
427
+ vt 0.468750 0.125000
428
+ vt 0.468750 0.625000
429
+ vt 0.468750 0.562500
430
+ vt 0.468750 0.062500
431
+ vt 0.468750 0.500000
432
+ vt 0.484375 0.000000
433
+ vt 0.468750 0.437500
434
+ vt 0.468750 0.375000
435
+ vt 0.453125 0.000000
436
+ vt 0.437500 0.062500
437
+ vt 0.437500 0.500000
438
+ vt 0.437500 0.437500
439
+ vt 0.437500 0.375000
440
+ vt 0.437500 0.312500
441
+ vt 0.437500 0.250000
442
+ vt 0.437500 0.187500
443
+ vt 0.437500 0.125000
444
+ vt 0.437500 0.625000
445
+ vt 0.437500 0.562500
446
+ vt 0.406250 0.250000
447
+ vt 0.406250 0.187500
448
+ vt 0.406250 0.125000
449
+ vt 0.406250 0.625000
450
+ vt 0.406250 0.562500
451
+ vt 0.406250 0.062500
452
+ vt 0.406250 0.500000
453
+ vt 0.421875 0.000000
454
+ vt 0.406250 0.437500
455
+ vt 0.406250 0.375000
456
+ vt 0.406250 0.312500
457
+ vt 0.375000 0.500000
458
+ vt 0.375000 0.437500
459
+ vt 0.375000 0.375000
460
+ vt 0.375000 0.312500
461
+ vt 0.375000 0.250000
462
+ vt 0.375000 0.187500
463
+ vt 0.375000 0.125000
464
+ vt 0.375000 0.625000
465
+ vt 0.375000 0.562500
466
+ vt 0.375000 0.062500
467
+ vt 0.390625 0.000000
468
+ vt 0.343750 0.250000
469
+ vt 0.343750 0.187500
470
+ vt 0.343750 0.125000
471
+ vt 0.343750 0.625000
472
+ vt 0.343750 0.562500
473
+ vt 0.343750 0.062500
474
+ vt 0.343750 0.500000
475
+ vt 0.359375 0.000000
476
+ vt 0.343750 0.437500
477
+ vt 0.343750 0.375000
478
+ vt 0.343750 0.312500
479
+ vt 0.312500 0.437500
480
+ vt 0.312500 0.375000
481
+ vt 0.312500 0.312500
482
+ vt 0.312500 0.250000
483
+ vt 0.312500 0.187500
484
+ vt 0.312500 0.125000
485
+ vt 0.312500 0.625000
486
+ vt 0.312500 0.562500
487
+ vt 0.312500 0.062500
488
+ vt 0.312500 0.500000
489
+ vt 0.328125 0.000000
490
+ vt 0.281250 0.187500
491
+ vt 0.281250 0.125000
492
+ vt 0.281250 0.625000
493
+ vt 0.281250 0.562500
494
+ vt 0.281250 0.062500
495
+ vt 0.281250 0.500000
496
+ vt 0.296875 0.000000
497
+ vt 0.281250 0.437500
498
+ vt 0.281250 0.375000
499
+ vt 0.281250 0.312500
500
+ vt 0.281250 0.250000
501
+ vt 0.250000 0.437500
502
+ vt 0.250000 0.375000
503
+ vt 0.250000 0.312500
504
+ vt 0.250000 0.250000
505
+ vt 0.250000 0.187500
506
+ vt 0.250000 0.125000
507
+ vt 0.250000 0.625000
508
+ vt 0.250000 0.562500
509
+ vt 0.250000 0.062500
510
+ vt 0.250000 0.500000
511
+ vt 0.265625 0.000000
512
+ vt 0.218750 0.187500
513
+ vt 0.218750 0.125000
514
+ vt 0.218750 0.625000
515
+ vt 0.218750 0.562500
516
+ vt 0.218750 0.062500
517
+ vt 0.218750 0.500000
518
+ vt 0.234375 0.000000
519
+ vt 0.218750 0.437500
520
+ vt 0.218750 0.375000
521
+ vt 0.218750 0.312500
522
+ vt 0.218750 0.250000
523
+ vt 0.187500 0.375000
524
+ vt 0.187500 0.312500
525
+ vt 0.187500 0.250000
526
+ vt 0.187500 0.187500
527
+ vt 0.187500 0.125000
528
+ vt 0.187500 0.625000
529
+ vt 0.187500 0.562500
530
+ vt 0.187500 0.062500
531
+ vt 0.187500 0.500000
532
+ vt 0.203125 0.000000
533
+ vt 0.187500 0.437500
534
+ vt 0.156250 0.125000
535
+ vt 0.156250 0.062500
536
+ vt 0.156250 0.562500
537
+ vt 0.156250 0.500000
538
+ vt 0.171875 0.000000
539
+ vt 0.156250 0.437500
540
+ vt 0.156250 0.375000
541
+ vt 0.156250 0.312500
542
+ vt 0.156250 0.250000
543
+ vt 0.156250 0.187500
544
+ vt 0.156250 0.625000
545
+ vt 0.125000 0.312500
546
+ vt 0.125000 0.250000
547
+ vt 0.125000 0.187500
548
+ vt 0.125000 0.125000
549
+ vt 0.125000 0.625000
550
+ vt 0.125000 0.562500
551
+ vt 0.125000 0.062500
552
+ vt 0.125000 0.500000
553
+ vt 0.140625 0.000000
554
+ vt 0.125000 0.437500
555
+ vt 0.125000 0.375000
556
+ vt 0.093750 0.562500
557
+ vt 0.093750 0.500000
558
+ vt 0.109375 0.000000
559
+ vt 0.093750 0.062500
560
+ vt 0.093750 0.437500
561
+ vt 0.093750 0.375000
562
+ vt 0.093750 0.312500
563
+ vt 0.093750 0.250000
564
+ vt 0.093750 0.187500
565
+ vt 0.093750 0.125000
566
+ vt 0.093750 0.625000
567
+ vt 0.062500 0.312500
568
+ vt 0.062500 0.250000
569
+ vt 0.062500 0.187500
570
+ vt 0.062500 0.125000
571
+ vt 0.062500 0.625000
572
+ vt 0.062500 0.562500
573
+ vt 0.062500 0.062500
574
+ vt 0.062500 0.500000
575
+ vt 0.078125 0.000000
576
+ vt 0.062500 0.437500
577
+ vt 0.062500 0.375000
578
+ vt 0.046875 0.000000
579
+ vt 0.031250 0.062500
580
+ vt 0.031250 0.500000
581
+ vt 0.031250 0.437500
582
+ vt 0.031250 0.375000
583
+ vt 0.031250 0.312500
584
+ vt 0.031250 0.250000
585
+ vt 0.031250 0.187500
586
+ vt 0.031250 0.125000
587
+ vt 0.031250 0.625000
588
+ vt 0.031250 0.562500
589
+ vt 0.000000 0.250000
590
+ vt 0.000000 0.187500
591
+ vt 0.000000 0.125000
592
+ vt 0.000000 0.625000
593
+ vt 0.000000 0.562500
594
+ vt 0.000000 0.062500
595
+ vt 0.000000 0.500000
596
+ vt 0.015625 0.000000
597
+ vt 0.000000 0.437500
598
+ vt 0.000000 0.375000
599
+ vt 0.000000 0.312500
600
+ vt 1.000000 0.437500
601
+ vt 1.000000 0.500000
602
+ vt 0.968750 0.500000
603
+ vt 0.968750 0.437500
604
+ vt 1.000000 0.375000
605
+ vt 0.968750 0.375000
606
+ vt 1.000000 0.312500
607
+ vt 0.968750 0.312500
608
+ vt 1.000000 0.250000
609
+ vt 0.968750 0.250000
610
+ vt 1.000000 0.187500
611
+ vt 0.968750 0.187500
612
+ vt 1.000000 0.125000
613
+ vt 0.968750 0.125000
614
+ vt 1.000000 0.562500
615
+ vt 1.000000 0.625000
616
+ vt 0.968750 0.625000
617
+ vt 0.968750 0.562500
618
+ vt 1.000000 0.062500
619
+ vt 0.968750 0.062500
620
+ vt 0.984375 0.000000
621
+ vt 0.937500 0.250000
622
+ vt 0.937500 0.187500
623
+ vt 0.937500 0.125000
624
+ vt 0.937500 0.625000
625
+ vt 0.937500 0.562500
626
+ vt 0.937500 0.062500
627
+ vt 0.937500 0.500000
628
+ vt 0.953125 0.000000
629
+ vt 0.937500 0.437500
630
+ vt 0.937500 0.375000
631
+ vt 0.937500 0.312500
632
+ vt 0.906250 0.437500
633
+ vt 0.906250 0.375000
634
+ vt 0.906250 0.312500
635
+ vt 0.906250 0.250000
636
+ vt 0.906250 0.187500
637
+ vt 0.906250 0.125000
638
+ vt 0.906250 0.625000
639
+ vt 0.906250 0.562500
640
+ vt 0.906250 0.062500
641
+ vt 0.906250 0.500000
642
+ vt 0.921875 0.000000
643
+ vt 0.875000 0.187500
644
+ vt 0.875000 0.125000
645
+ vt 0.875000 0.625000
646
+ vt 0.875000 0.562500
647
+ vt 0.875000 0.062500
648
+ vt 0.875000 0.500000
649
+ vt 0.890625 0.000000
650
+ vt 0.875000 0.437500
651
+ vt 0.875000 0.375000
652
+ vt 0.875000 0.312500
653
+ vt 0.875000 0.250000
654
+ vt 0.843750 0.375000
655
+ vt 0.843750 0.312500
656
+ vt 0.843750 0.250000
657
+ vt 0.843750 0.187500
658
+ vt 0.843750 0.125000
659
+ vt 0.843750 0.625000
660
+ vt 0.843750 0.562500
661
+ vt 0.843750 0.062500
662
+ vt 0.843750 0.500000
663
+ vt 0.859375 0.000000
664
+ vt 0.843750 0.437500
665
+ vt 0.812500 0.625000
666
+ vt 0.812500 0.562500
667
+ vt 0.812500 0.125000
668
+ vt 0.812500 0.062500
669
+ vt 0.812500 0.500000
670
+ vt 0.828125 0.000000
671
+ vt 0.812500 0.437500
672
+ vt 0.812500 0.375000
673
+ vt 0.812500 0.312500
674
+ vt 0.812500 0.250000
675
+ vt 0.812500 0.187500
676
+ vt 0.781250 0.375000
677
+ vt 0.781250 0.312500
678
+ vt 0.781250 0.250000
679
+ vt 0.781250 0.187500
680
+ vt 0.781250 0.125000
681
+ vt 0.781250 0.625000
682
+ vt 0.781250 0.562500
683
+ vt 0.781250 0.062500
684
+ vt 0.781250 0.500000
685
+ vt 0.796875 0.000000
686
+ vt 0.781250 0.437500
687
+ vt 0.765625 0.000000
688
+ vn 0.0938 0.2890 -0.9527
689
+ vn 0.0286 -0.9565 -0.2902
690
+ vn 0.0975 0.0975 -0.9904
691
+ vn 0.0097 -0.9951 -0.0980
692
+ vn 0.0976 -0.0975 -0.9904
693
+ vn 0.0938 -0.2890 -0.9527
694
+ vn 0.0865 -0.4696 -0.8786
695
+ vn 0.0759 -0.6326 -0.7708
696
+ vn 0.0624 -0.7715 -0.6332
697
+ vn 0.0464 -0.8810 -0.4709
698
+ vn 0.1374 -0.8810 -0.4528
699
+ vn 0.2779 0.2890 -0.9161
700
+ vn 0.0846 -0.9565 -0.2790
701
+ vn 0.2889 0.0975 -0.9524
702
+ vn 0.0286 -0.9951 -0.0942
703
+ vn 0.2889 -0.0975 -0.9524
704
+ vn 0.2779 -0.2890 -0.9161
705
+ vn 0.2563 -0.4696 -0.8448
706
+ vn 0.2248 -0.6326 -0.7412
707
+ vn 0.1847 -0.7715 -0.6088
708
+ vn 0.4513 -0.2890 -0.8443
709
+ vn 0.4162 -0.4696 -0.7786
710
+ vn 0.3651 -0.6326 -0.6831
711
+ vn 0.2999 -0.7715 -0.5611
712
+ vn 0.2230 -0.8810 -0.4173
713
+ vn 0.4513 0.2890 -0.8443
714
+ vn 0.1374 -0.9565 -0.2571
715
+ vn 0.4691 0.0975 -0.8777
716
+ vn 0.0464 -0.9951 -0.0869
717
+ vn 0.4691 -0.0975 -0.8777
718
+ vn 0.3002 -0.8810 -0.3658
719
+ vn 0.6073 0.2890 -0.7400
720
+ vn 0.1850 -0.9565 -0.2254
721
+ vn 0.6314 0.0976 -0.7693
722
+ vn 0.0625 -0.9951 -0.0761
723
+ vn 0.6314 -0.0976 -0.7693
724
+ vn 0.6073 -0.2890 -0.7400
725
+ vn 0.5601 -0.4696 -0.6825
726
+ vn 0.4913 -0.6326 -0.5987
727
+ vn 0.4036 -0.7715 -0.4918
728
+ vn 0.6825 -0.4696 -0.5601
729
+ vn 0.5987 -0.6326 -0.4913
730
+ vn 0.4918 -0.7715 -0.4036
731
+ vn 0.3658 -0.8810 -0.3002
732
+ vn 0.7400 0.2890 -0.6073
733
+ vn 0.2254 -0.9565 -0.1850
734
+ vn 0.7693 0.0975 -0.6314
735
+ vn 0.0761 -0.9951 -0.0625
736
+ vn 0.7693 -0.0975 -0.6314
737
+ vn 0.7400 -0.2890 -0.6073
738
+ vn 0.8443 0.2890 -0.4513
739
+ vn 0.2571 -0.9565 -0.1374
740
+ vn 0.8777 0.0976 -0.4691
741
+ vn 0.0869 -0.9951 -0.0464
742
+ vn 0.8777 -0.0976 -0.4691
743
+ vn 0.8443 -0.2890 -0.4513
744
+ vn 0.7786 -0.4696 -0.4162
745
+ vn 0.6831 -0.6326 -0.3651
746
+ vn 0.5611 -0.7715 -0.2999
747
+ vn 0.4173 -0.8810 -0.2231
748
+ vn 0.8448 -0.4696 -0.2563
749
+ vn 0.7412 -0.6326 -0.2248
750
+ vn 0.6088 -0.7715 -0.1847
751
+ vn 0.4528 -0.8810 -0.1374
752
+ vn 0.9161 0.2890 -0.2779
753
+ vn 0.2790 -0.9565 -0.0846
754
+ vn 0.9524 0.0976 -0.2889
755
+ vn 0.0942 -0.9951 -0.0286
756
+ vn 0.9524 -0.0976 -0.2889
757
+ vn 0.9161 -0.2890 -0.2779
758
+ vn 0.2902 -0.9565 -0.0286
759
+ vn 0.9904 0.0976 -0.0975
760
+ vn 0.0980 -0.9951 -0.0097
761
+ vn 0.9904 -0.0976 -0.0975
762
+ vn 0.9527 -0.2890 -0.0938
763
+ vn 0.8786 -0.4696 -0.0865
764
+ vn 0.7708 -0.6326 -0.0759
765
+ vn 0.6332 -0.7715 -0.0624
766
+ vn 0.4709 -0.8810 -0.0464
767
+ vn 0.9527 0.2890 -0.0938
768
+ vn 0.7708 -0.6326 0.0759
769
+ vn 0.6332 -0.7715 0.0624
770
+ vn 0.4709 -0.8810 0.0464
771
+ vn 0.9527 0.2890 0.0938
772
+ vn 0.2902 -0.9565 0.0286
773
+ vn 0.9904 0.0976 0.0975
774
+ vn 0.0980 -0.9951 0.0097
775
+ vn 0.9904 -0.0976 0.0975
776
+ vn 0.9527 -0.2890 0.0938
777
+ vn 0.8786 -0.4696 0.0865
778
+ vn 0.0942 -0.9951 0.0286
779
+ vn 0.9524 -0.0976 0.2889
780
+ vn 0.9161 -0.2890 0.2779
781
+ vn 0.8448 -0.4696 0.2563
782
+ vn 0.7412 -0.6326 0.2248
783
+ vn 0.6088 -0.7715 0.1847
784
+ vn 0.4528 -0.8810 0.1374
785
+ vn 0.9161 0.2890 0.2779
786
+ vn 0.2790 -0.9565 0.0846
787
+ vn 0.9524 0.0976 0.2889
788
+ vn 0.5611 -0.7715 0.2999
789
+ vn 0.4173 -0.8810 0.2231
790
+ vn 0.8443 0.2890 0.4513
791
+ vn 0.2571 -0.9565 0.1374
792
+ vn 0.8777 0.0976 0.4691
793
+ vn 0.0869 -0.9951 0.0464
794
+ vn 0.8777 -0.0976 0.4691
795
+ vn 0.8443 -0.2890 0.4513
796
+ vn 0.7786 -0.4696 0.4162
797
+ vn 0.6831 -0.6326 0.3651
798
+ vn 0.7693 -0.0976 0.6314
799
+ vn 0.7400 -0.2890 0.6073
800
+ vn 0.6825 -0.4696 0.5601
801
+ vn 0.5987 -0.6326 0.4913
802
+ vn 0.4918 -0.7715 0.4036
803
+ vn 0.3658 -0.8810 0.3002
804
+ vn 0.7400 0.2890 0.6073
805
+ vn 0.2254 -0.9565 0.1850
806
+ vn 0.7693 0.0976 0.6314
807
+ vn 0.0761 -0.9951 0.0625
808
+ vn 0.4036 -0.7715 0.4918
809
+ vn 0.3002 -0.8810 0.3658
810
+ vn 0.6073 0.2890 0.7400
811
+ vn 0.1850 -0.9565 0.2254
812
+ vn 0.6314 0.0976 0.7693
813
+ vn 0.0625 -0.9951 0.0761
814
+ vn 0.6314 -0.0976 0.7693
815
+ vn 0.6073 -0.2890 0.7400
816
+ vn 0.5601 -0.4696 0.6825
817
+ vn 0.4913 -0.6326 0.5987
818
+ vn 0.4513 -0.2890 0.8443
819
+ vn 0.4162 -0.4696 0.7786
820
+ vn 0.3651 -0.6326 0.6831
821
+ vn 0.2999 -0.7715 0.5611
822
+ vn 0.2230 -0.8810 0.4173
823
+ vn 0.4513 0.2890 0.8443
824
+ vn 0.1374 -0.9565 0.2571
825
+ vn 0.4691 0.0976 0.8777
826
+ vn 0.0464 -0.9951 0.0869
827
+ vn 0.4691 -0.0976 0.8777
828
+ vn 0.1374 -0.8810 0.4528
829
+ vn 0.2779 0.2890 0.9161
830
+ vn 0.0846 -0.9565 0.2790
831
+ vn 0.2889 0.0976 0.9524
832
+ vn 0.0286 -0.9951 0.0942
833
+ vn 0.2889 -0.0976 0.9524
834
+ vn 0.2779 -0.2890 0.9161
835
+ vn 0.2563 -0.4696 0.8448
836
+ vn 0.2248 -0.6326 0.7412
837
+ vn 0.1847 -0.7715 0.6088
838
+ vn 0.0938 -0.2890 0.9527
839
+ vn 0.0865 -0.4696 0.8786
840
+ vn 0.0759 -0.6326 0.7708
841
+ vn 0.0624 -0.7715 0.6332
842
+ vn 0.0464 -0.8810 0.4709
843
+ vn 0.0938 0.2890 0.9527
844
+ vn 0.0286 -0.9565 0.2902
845
+ vn 0.0975 0.0976 0.9904
846
+ vn 0.0097 -0.9951 0.0980
847
+ vn 0.0975 -0.0976 0.9904
848
+ vn -0.0464 -0.8810 0.4709
849
+ vn -0.0938 0.2890 0.9527
850
+ vn -0.0286 -0.9565 0.2902
851
+ vn -0.0976 0.0976 0.9904
852
+ vn -0.0097 -0.9951 0.0980
853
+ vn -0.0976 -0.0976 0.9904
854
+ vn -0.0938 -0.2890 0.9527
855
+ vn -0.0865 -0.4696 0.8786
856
+ vn -0.0759 -0.6326 0.7708
857
+ vn -0.0624 -0.7715 0.6332
858
+ vn -0.2563 -0.4696 0.8448
859
+ vn -0.2248 -0.6326 0.7412
860
+ vn -0.1847 -0.7715 0.6088
861
+ vn -0.1374 -0.8810 0.4528
862
+ vn -0.2779 0.2890 0.9161
863
+ vn -0.0846 -0.9565 0.2790
864
+ vn -0.2889 0.0976 0.9524
865
+ vn -0.0286 -0.9951 0.0942
866
+ vn -0.2889 -0.0976 0.9524
867
+ vn -0.2779 -0.2890 0.9161
868
+ vn -0.1374 -0.9565 0.2571
869
+ vn -0.4691 0.0976 0.8777
870
+ vn -0.0464 -0.9951 0.0869
871
+ vn -0.4691 -0.0976 0.8777
872
+ vn -0.4513 -0.2890 0.8443
873
+ vn -0.4162 -0.4696 0.7786
874
+ vn -0.3651 -0.6326 0.6831
875
+ vn -0.2999 -0.7715 0.5611
876
+ vn -0.2230 -0.8810 0.4173
877
+ vn -0.4513 0.2890 0.8443
878
+ vn -0.4913 -0.6326 0.5987
879
+ vn -0.4036 -0.7715 0.4918
880
+ vn -0.3002 -0.8810 0.3658
881
+ vn -0.6073 0.2890 0.7400
882
+ vn -0.1850 -0.9565 0.2254
883
+ vn -0.6314 0.0976 0.7693
884
+ vn -0.0625 -0.9951 0.0761
885
+ vn -0.6314 -0.0976 0.7693
886
+ vn -0.6073 -0.2890 0.7400
887
+ vn -0.5601 -0.4696 0.6825
888
+ vn -0.7693 0.0976 0.6314
889
+ vn -0.0761 -0.9951 0.0625
890
+ vn -0.7693 -0.0976 0.6314
891
+ vn -0.7400 -0.2890 0.6073
892
+ vn -0.6825 -0.4696 0.5601
893
+ vn -0.5987 -0.6326 0.4913
894
+ vn -0.4918 -0.7715 0.4036
895
+ vn -0.3658 -0.8810 0.3002
896
+ vn -0.7400 0.2890 0.6073
897
+ vn -0.2254 -0.9565 0.1850
898
+ vn -0.6831 -0.6326 0.3651
899
+ vn -0.5611 -0.7715 0.2999
900
+ vn -0.4173 -0.8810 0.2231
901
+ vn -0.8443 0.2890 0.4513
902
+ vn -0.2571 -0.9565 0.1374
903
+ vn -0.8777 0.0976 0.4691
904
+ vn -0.0869 -0.9951 0.0464
905
+ vn -0.8777 -0.0976 0.4691
906
+ vn -0.8443 -0.2890 0.4513
907
+ vn -0.7786 -0.4696 0.4162
908
+ vn -0.0942 -0.9951 0.0286
909
+ vn -0.9524 -0.0976 0.2889
910
+ vn -0.9161 -0.2890 0.2779
911
+ vn -0.8448 -0.4696 0.2563
912
+ vn -0.7412 -0.6326 0.2248
913
+ vn -0.6088 -0.7715 0.1847
914
+ vn -0.4528 -0.8810 0.1374
915
+ vn -0.9161 0.2890 0.2779
916
+ vn -0.2790 -0.9565 0.0846
917
+ vn -0.9524 0.0976 0.2889
918
+ vn -0.6332 -0.7715 0.0624
919
+ vn -0.4709 -0.8810 0.0464
920
+ vn -0.9527 0.2890 0.0938
921
+ vn -0.2902 -0.9565 0.0286
922
+ vn -0.9904 0.0976 0.0975
923
+ vn -0.0980 -0.9951 0.0097
924
+ vn -0.9904 -0.0976 0.0975
925
+ vn -0.9527 -0.2890 0.0938
926
+ vn -0.8786 -0.4696 0.0865
927
+ vn -0.7708 -0.6326 0.0759
928
+ vn -0.9904 -0.0976 -0.0976
929
+ vn -0.9527 -0.2890 -0.0938
930
+ vn -0.8786 -0.4696 -0.0865
931
+ vn -0.7708 -0.6326 -0.0759
932
+ vn -0.6332 -0.7715 -0.0624
933
+ vn -0.4709 -0.8810 -0.0464
934
+ vn -0.9527 0.2890 -0.0938
935
+ vn -0.2902 -0.9565 -0.0286
936
+ vn -0.9904 0.0976 -0.0976
937
+ vn -0.0980 -0.9951 -0.0097
938
+ vn -0.6088 -0.7715 -0.1847
939
+ vn -0.4528 -0.8810 -0.1374
940
+ vn -0.9161 0.2890 -0.2779
941
+ vn -0.2790 -0.9565 -0.0846
942
+ vn -0.9524 0.0976 -0.2889
943
+ vn -0.0942 -0.9951 -0.0286
944
+ vn -0.9524 -0.0976 -0.2889
945
+ vn -0.9161 -0.2890 -0.2779
946
+ vn -0.8448 -0.4696 -0.2563
947
+ vn -0.7412 -0.6326 -0.2248
948
+ vn -0.8443 -0.2890 -0.4513
949
+ vn -0.7786 -0.4696 -0.4162
950
+ vn -0.6831 -0.6326 -0.3651
951
+ vn -0.5611 -0.7715 -0.2999
952
+ vn -0.4173 -0.8810 -0.2231
953
+ vn -0.8443 0.2890 -0.4513
954
+ vn -0.2571 -0.9565 -0.1374
955
+ vn -0.8777 0.0976 -0.4691
956
+ vn -0.0869 -0.9951 -0.0464
957
+ vn -0.8777 -0.0976 -0.4691
958
+ vn -0.3658 -0.8810 -0.3002
959
+ vn -0.7400 0.2890 -0.6073
960
+ vn -0.2254 -0.9565 -0.1850
961
+ vn -0.7693 0.0976 -0.6314
962
+ vn -0.0761 -0.9951 -0.0625
963
+ vn -0.7693 -0.0976 -0.6314
964
+ vn -0.7400 -0.2890 -0.6073
965
+ vn -0.6825 -0.4696 -0.5601
966
+ vn -0.5987 -0.6326 -0.4913
967
+ vn -0.4918 -0.7715 -0.4036
968
+ vn -0.5601 -0.4696 -0.6825
969
+ vn -0.4913 -0.6326 -0.5987
970
+ vn -0.4036 -0.7715 -0.4918
971
+ vn -0.3002 -0.8810 -0.3658
972
+ vn -0.6073 0.2890 -0.7400
973
+ vn -0.1850 -0.9565 -0.2254
974
+ vn -0.6314 0.0976 -0.7693
975
+ vn -0.0625 -0.9951 -0.0761
976
+ vn -0.6314 -0.0976 -0.7693
977
+ vn -0.6073 -0.2890 -0.7400
978
+ vn -0.4513 0.2890 -0.8443
979
+ vn -0.1374 -0.9565 -0.2571
980
+ vn -0.4691 0.0976 -0.8777
981
+ vn -0.0464 -0.9951 -0.0869
982
+ vn -0.4691 -0.0976 -0.8777
983
+ vn -0.4513 -0.2890 -0.8443
984
+ vn -0.4162 -0.4696 -0.7786
985
+ vn -0.3651 -0.6326 -0.6831
986
+ vn -0.2999 -0.7715 -0.5611
987
+ vn -0.2230 -0.8810 -0.4173
988
+ vn -0.2563 -0.4696 -0.8448
989
+ vn -0.2248 -0.6326 -0.7412
990
+ vn -0.1847 -0.7715 -0.6088
991
+ vn -0.1374 -0.8810 -0.4528
992
+ vn -0.2779 0.2890 -0.9161
993
+ vn -0.0846 -0.9565 -0.2790
994
+ vn -0.2889 0.0976 -0.9524
995
+ vn -0.0286 -0.9951 -0.0942
996
+ vn -0.2889 -0.0976 -0.9524
997
+ vn -0.2779 -0.2890 -0.9161
998
+ vn -0.0286 -0.9565 -0.2902
999
+ vn -0.0976 0.0976 -0.9904
1000
+ vn -0.0097 -0.9951 -0.0980
1001
+ vn -0.0976 -0.0976 -0.9904
1002
+ vn -0.0938 -0.2890 -0.9527
1003
+ vn -0.0865 -0.4696 -0.8786
1004
+ vn -0.0759 -0.6326 -0.7708
1005
+ vn -0.0624 -0.7715 -0.6332
1006
+ vn -0.0464 -0.8810 -0.4709
1007
+ vn -0.0938 0.2890 -0.9527
1008
+ usemtl None
1009
+ s off
1010
+ f 2/1/1 1/2/1 6/3/1 7/4/1
1011
+ f 321/5/2 320/6/2 14/7/2 15/8/2
1012
+ f 3/9/3 2/1/3 7/4/3 8/10/3
1013
+ f 136/11/4 321/5/4 15/8/4
1014
+ f 4/12/5 3/9/5 8/10/5 9/13/5
1015
+ f 317/14/6 4/12/6 9/13/6 10/15/6
1016
+ f 318/16/7 317/14/7 10/15/7 11/17/7
1017
+ f 319/18/8 318/16/8 11/17/8 12/19/8
1018
+ f 5/20/9 319/18/9 12/19/9 13/21/9
1019
+ f 320/6/10 5/20/10 13/21/10 14/7/10
1020
+ f 14/7/11 13/21/11 23/22/11 24/23/11
1021
+ f 7/4/12 6/3/12 16/24/12 17/25/12
1022
+ f 15/8/13 14/7/13 24/23/13 25/26/13
1023
+ f 8/10/14 7/4/14 17/25/14 18/27/14
1024
+ f 136/28/15 15/8/15 25/26/15
1025
+ f 9/13/16 8/10/16 18/27/16 19/29/16
1026
+ f 10/15/17 9/13/17 19/29/17 20/30/17
1027
+ f 11/17/18 10/15/18 20/30/18 21/31/18
1028
+ f 12/19/19 11/17/19 21/31/19 22/32/19
1029
+ f 13/21/20 12/19/20 22/32/20 23/22/20
1030
+ f 20/30/21 19/29/21 29/33/21 30/34/21
1031
+ f 21/31/22 20/30/22 30/34/22 31/35/22
1032
+ f 22/32/23 21/31/23 31/35/23 32/36/23
1033
+ f 23/22/24 22/32/24 32/36/24 33/37/24
1034
+ f 24/23/25 23/22/25 33/37/25 34/38/25
1035
+ f 17/25/26 16/24/26 26/39/26 27/40/26
1036
+ f 25/26/27 24/23/27 34/38/27 35/41/27
1037
+ f 18/27/28 17/25/28 27/40/28 28/42/28
1038
+ f 136/43/29 25/26/29 35/41/29
1039
+ f 19/29/30 18/27/30 28/42/30 29/33/30
1040
+ f 34/38/31 33/37/31 43/44/31 44/45/31
1041
+ f 27/40/32 26/39/32 36/46/32 37/47/32
1042
+ f 35/41/33 34/38/33 44/45/33 45/48/33
1043
+ f 28/42/34 27/40/34 37/47/34 38/49/34
1044
+ f 136/50/35 35/41/35 45/48/35
1045
+ f 29/33/36 28/42/36 38/49/36 39/51/36
1046
+ f 30/34/37 29/33/37 39/51/37 40/52/37
1047
+ f 31/35/38 30/34/38 40/52/38 41/53/38
1048
+ f 32/36/39 31/35/39 41/53/39 42/54/39
1049
+ f 33/37/40 32/36/40 42/54/40 43/44/40
1050
+ f 41/53/41 40/52/41 50/55/41 51/56/41
1051
+ f 42/54/42 41/53/42 51/56/42 52/57/42
1052
+ f 43/44/43 42/54/43 52/57/43 53/58/43
1053
+ f 44/45/44 43/44/44 53/58/44 54/59/44
1054
+ f 37/47/45 36/46/45 46/60/45 47/61/45
1055
+ f 45/48/46 44/45/46 54/59/46 55/62/46
1056
+ f 38/49/47 37/47/47 47/61/47 48/63/47
1057
+ f 136/64/48 45/48/48 55/62/48
1058
+ f 39/51/49 38/49/49 48/63/49 49/65/49
1059
+ f 40/52/50 39/51/50 49/65/50 50/55/50
1060
+ f 47/61/51 46/60/51 56/66/51 57/67/51
1061
+ f 55/62/52 54/59/52 64/68/52 65/69/52
1062
+ f 48/63/53 47/61/53 57/67/53 58/70/53
1063
+ f 136/71/54 55/62/54 65/69/54
1064
+ f 49/65/55 48/63/55 58/70/55 59/72/55
1065
+ f 50/55/56 49/65/56 59/72/56 60/73/56
1066
+ f 51/56/57 50/55/57 60/73/57 61/74/57
1067
+ f 52/57/58 51/56/58 61/74/58 62/75/58
1068
+ f 53/58/59 52/57/59 62/75/59 63/76/59
1069
+ f 54/59/60 53/58/60 63/76/60 64/68/60
1070
+ f 61/74/61 60/73/61 70/77/61 71/78/61
1071
+ f 62/75/62 61/74/62 71/78/62 72/79/62
1072
+ f 63/76/63 62/75/63 72/79/63 73/80/63
1073
+ f 64/68/64 63/76/64 73/80/64 74/81/64
1074
+ f 57/67/65 56/66/65 66/82/65 67/83/65
1075
+ f 65/69/66 64/68/66 74/81/66 75/84/66
1076
+ f 58/70/67 57/67/67 67/83/67 68/85/67
1077
+ f 136/86/68 65/69/68 75/84/68
1078
+ f 59/72/69 58/70/69 68/85/69 69/87/69
1079
+ f 60/73/70 59/72/70 69/87/70 70/77/70
1080
+ f 75/84/71 74/81/71 84/88/71 85/89/71
1081
+ f 68/85/72 67/83/72 77/90/72 78/91/72
1082
+ f 136/92/73 75/84/73 85/89/73
1083
+ f 69/87/74 68/85/74 78/91/74 79/93/74
1084
+ f 70/77/75 69/87/75 79/93/75 80/94/75
1085
+ f 71/78/76 70/77/76 80/94/76 81/95/76
1086
+ f 72/79/77 71/78/77 81/95/77 82/96/77
1087
+ f 73/80/78 72/79/78 82/96/78 83/97/78
1088
+ f 74/81/79 73/80/79 83/97/79 84/88/79
1089
+ f 67/83/80 66/82/80 76/98/80 77/90/80
1090
+ f 82/96/81 81/95/81 91/99/81 92/100/81
1091
+ f 83/97/82 82/96/82 92/100/82 93/101/82
1092
+ f 84/88/83 83/97/83 93/101/83 94/102/83
1093
+ f 77/90/84 76/98/84 86/103/84 87/104/84
1094
+ f 85/89/85 84/88/85 94/102/85 95/105/85
1095
+ f 78/91/86 77/90/86 87/104/86 88/106/86
1096
+ f 136/107/87 85/89/87 95/105/87
1097
+ f 79/93/88 78/91/88 88/106/88 89/108/88
1098
+ f 80/94/89 79/93/89 89/108/89 90/109/89
1099
+ f 81/95/90 80/94/90 90/109/90 91/99/90
1100
+ f 136/110/91 95/105/91 105/111/91
1101
+ f 89/108/92 88/106/92 98/112/92 99/113/92
1102
+ f 90/109/93 89/108/93 99/113/93 100/114/93
1103
+ f 91/99/94 90/109/94 100/114/94 101/115/94
1104
+ f 92/100/95 91/99/95 101/115/95 102/116/95
1105
+ f 93/101/96 92/100/96 102/116/96 103/117/96
1106
+ f 94/102/97 93/101/97 103/117/97 104/118/97
1107
+ f 87/104/98 86/103/98 96/119/98 97/120/98
1108
+ f 95/105/99 94/102/99 104/118/99 105/111/99
1109
+ f 88/106/100 87/104/100 97/120/100 98/112/100
1110
+ f 103/117/101 102/116/101 112/121/101 113/122/101
1111
+ f 104/118/102 103/117/102 113/122/102 114/123/102
1112
+ f 97/120/103 96/119/103 106/124/103 107/125/103
1113
+ f 105/111/104 104/118/104 114/123/104 115/126/104
1114
+ f 98/112/105 97/120/105 107/125/105 108/127/105
1115
+ f 136/128/106 105/111/106 115/126/106
1116
+ f 99/113/107 98/112/107 108/127/107 109/129/107
1117
+ f 100/114/108 99/113/108 109/129/108 110/130/108
1118
+ f 101/115/109 100/114/109 110/130/109 111/131/109
1119
+ f 102/116/110 101/115/110 111/131/110 112/121/110
1120
+ f 109/129/111 108/127/111 118/132/111 119/133/111
1121
+ f 110/130/112 109/129/112 119/133/112 120/134/112
1122
+ f 111/131/113 110/130/113 120/134/113 121/135/113
1123
+ f 112/121/114 111/131/114 121/135/114 122/136/114
1124
+ f 113/122/115 112/121/115 122/136/115 123/137/115
1125
+ f 114/123/116 113/122/116 123/137/116 124/138/116
1126
+ f 107/125/117 106/124/117 116/139/117 117/140/117
1127
+ f 115/126/118 114/123/118 124/138/118 125/141/118
1128
+ f 108/127/119 107/125/119 117/140/119 118/132/119
1129
+ f 136/142/120 115/126/120 125/141/120
1130
+ f 123/137/121 122/136/121 132/143/121 133/144/121
1131
+ f 124/138/122 123/137/122 133/144/122 134/145/122
1132
+ f 117/140/123 116/139/123 126/146/123 127/147/123
1133
+ f 125/141/124 124/138/124 134/145/124 135/148/124
1134
+ f 118/132/125 117/140/125 127/147/125 128/149/125
1135
+ f 136/150/126 125/141/126 135/148/126
1136
+ f 119/133/127 118/132/127 128/149/127 129/151/127
1137
+ f 120/134/128 119/133/128 129/151/128 130/152/128
1138
+ f 121/135/129 120/134/129 130/152/129 131/153/129
1139
+ f 122/136/130 121/135/130 131/153/130 132/143/130
1140
+ f 130/152/131 129/151/131 140/154/131 141/155/131
1141
+ f 131/153/132 130/152/132 141/155/132 142/156/132
1142
+ f 132/143/133 131/153/133 142/156/133 143/157/133
1143
+ f 133/144/134 132/143/134 143/157/134 144/158/134
1144
+ f 134/145/135 133/144/135 144/158/135 145/159/135
1145
+ f 127/147/136 126/146/136 137/160/136 138/161/136
1146
+ f 135/148/137 134/145/137 145/159/137 146/162/137
1147
+ f 128/149/138 127/147/138 138/161/138 139/163/138
1148
+ f 136/164/139 135/148/139 146/162/139
1149
+ f 129/151/140 128/149/140 139/163/140 140/154/140
1150
+ f 145/159/141 144/158/141 154/165/141 155/166/141
1151
+ f 138/161/142 137/160/142 147/167/142 148/168/142
1152
+ f 146/162/143 145/159/143 155/166/143 156/169/143
1153
+ f 139/163/144 138/161/144 148/168/144 149/170/144
1154
+ f 136/171/145 146/162/145 156/169/145
1155
+ f 140/154/146 139/163/146 149/170/146 150/172/146
1156
+ f 141/155/147 140/154/147 150/172/147 151/173/147
1157
+ f 142/156/148 141/155/148 151/173/148 152/174/148
1158
+ f 143/157/149 142/156/149 152/174/149 153/175/149
1159
+ f 144/158/150 143/157/150 153/175/150 154/165/150
1160
+ f 151/173/151 150/172/151 160/176/151 161/177/151
1161
+ f 152/174/152 151/173/152 161/177/152 162/178/152
1162
+ f 153/175/153 152/174/153 162/178/153 163/179/153
1163
+ f 154/165/154 153/175/154 163/179/154 164/180/154
1164
+ f 155/166/155 154/165/155 164/180/155 165/181/155
1165
+ f 148/168/156 147/167/156 157/182/156 158/183/156
1166
+ f 156/169/157 155/166/157 165/181/157 166/184/157
1167
+ f 149/170/158 148/168/158 158/183/158 159/185/158
1168
+ f 136/186/159 156/169/159 166/184/159
1169
+ f 150/172/160 149/170/160 159/185/160 160/176/160
1170
+ f 165/181/161 164/180/161 174/187/161 175/188/161
1171
+ f 158/183/162 157/182/162 167/189/162 168/190/162
1172
+ f 166/184/163 165/181/163 175/188/163 176/191/163
1173
+ f 159/185/164 158/183/164 168/190/164 169/192/164
1174
+ f 136/193/165 166/184/165 176/191/165
1175
+ f 160/176/166 159/185/166 169/192/166 170/194/166
1176
+ f 161/177/167 160/176/167 170/194/167 171/195/167
1177
+ f 162/178/168 161/177/168 171/195/168 172/196/168
1178
+ f 163/179/169 162/178/169 172/196/169 173/197/169
1179
+ f 164/180/170 163/179/170 173/197/170 174/187/170
1180
+ f 172/196/171 171/195/171 181/198/171 182/199/171
1181
+ f 173/197/172 172/196/172 182/199/172 183/200/172
1182
+ f 174/187/173 173/197/173 183/200/173 184/201/173
1183
+ f 175/188/174 174/187/174 184/201/174 185/202/174
1184
+ f 168/190/175 167/189/175 177/203/175 178/204/175
1185
+ f 176/191/176 175/188/176 185/202/176 186/205/176
1186
+ f 169/192/177 168/190/177 178/204/177 179/206/177
1187
+ f 136/207/178 176/191/178 186/205/178
1188
+ f 170/194/179 169/192/179 179/206/179 180/208/179
1189
+ f 171/195/180 170/194/180 180/208/180 181/198/180
1190
+ f 186/205/181 185/202/181 195/209/181 196/210/181
1191
+ f 179/206/182 178/204/182 188/211/182 189/212/182
1192
+ f 136/213/183 186/205/183 196/210/183
1193
+ f 180/208/184 179/206/184 189/212/184 190/214/184
1194
+ f 181/198/185 180/208/185 190/214/185 191/215/185
1195
+ f 182/199/186 181/198/186 191/215/186 192/216/186
1196
+ f 183/200/187 182/199/187 192/216/187 193/217/187
1197
+ f 184/201/188 183/200/188 193/217/188 194/218/188
1198
+ f 185/202/189 184/201/189 194/218/189 195/209/189
1199
+ f 178/204/190 177/203/190 187/219/190 188/211/190
1200
+ f 193/217/191 192/216/191 202/220/191 203/221/191
1201
+ f 194/218/192 193/217/192 203/221/192 204/222/192
1202
+ f 195/209/193 194/218/193 204/222/193 205/223/193
1203
+ f 188/211/194 187/219/194 197/224/194 198/225/194
1204
+ f 196/210/195 195/209/195 205/223/195 206/226/195
1205
+ f 189/212/196 188/211/196 198/225/196 199/227/196
1206
+ f 136/228/197 196/210/197 206/226/197
1207
+ f 190/214/198 189/212/198 199/227/198 200/229/198
1208
+ f 191/215/199 190/214/199 200/229/199 201/230/199
1209
+ f 192/216/200 191/215/200 201/230/200 202/220/200
1210
+ f 199/227/201 198/225/201 208/231/201 209/232/201
1211
+ f 136/233/202 206/226/202 216/234/202
1212
+ f 200/229/203 199/227/203 209/232/203 210/235/203
1213
+ f 201/230/204 200/229/204 210/235/204 211/236/204
1214
+ f 202/220/205 201/230/205 211/236/205 212/237/205
1215
+ f 203/221/206 202/220/206 212/237/206 213/238/206
1216
+ f 204/222/207 203/221/207 213/238/207 214/239/207
1217
+ f 205/223/208 204/222/208 214/239/208 215/240/208
1218
+ f 198/225/209 197/224/209 207/241/209 208/231/209
1219
+ f 206/226/210 205/223/210 215/240/210 216/234/210
1220
+ f 213/238/211 212/237/211 222/242/211 223/243/211
1221
+ f 214/239/212 213/238/212 223/243/212 224/244/212
1222
+ f 215/240/213 214/239/213 224/244/213 225/245/213
1223
+ f 208/231/214 207/241/214 217/246/214 218/247/214
1224
+ f 216/234/215 215/240/215 225/245/215 226/248/215
1225
+ f 209/232/216 208/231/216 218/247/216 219/249/216
1226
+ f 136/250/217 216/234/217 226/248/217
1227
+ f 210/235/218 209/232/218 219/249/218 220/251/218
1228
+ f 211/236/219 210/235/219 220/251/219 221/252/219
1229
+ f 212/237/220 211/236/220 221/252/220 222/242/220
1230
+ f 136/253/221 226/248/221 236/254/221
1231
+ f 220/251/222 219/249/222 229/255/222 230/256/222
1232
+ f 221/252/223 220/251/223 230/256/223 231/257/223
1233
+ f 222/242/224 221/252/224 231/257/224 232/258/224
1234
+ f 223/243/225 222/242/225 232/258/225 233/259/225
1235
+ f 224/244/226 223/243/226 233/259/226 234/260/226
1236
+ f 225/245/227 224/244/227 234/260/227 235/261/227
1237
+ f 218/247/228 217/246/228 227/262/228 228/263/228
1238
+ f 226/248/229 225/245/229 235/261/229 236/254/229
1239
+ f 219/249/230 218/247/230 228/263/230 229/255/230
1240
+ f 234/260/231 233/259/231 243/264/231 244/265/231
1241
+ f 235/261/232 234/260/232 244/265/232 245/266/232
1242
+ f 228/263/233 227/262/233 237/267/233 238/268/233
1243
+ f 236/254/234 235/261/234 245/266/234 246/269/234
1244
+ f 229/255/235 228/263/235 238/268/235 239/270/235
1245
+ f 136/271/236 236/254/236 246/269/236
1246
+ f 230/256/237 229/255/237 239/270/237 240/272/237
1247
+ f 231/257/238 230/256/238 240/272/238 241/273/238
1248
+ f 232/258/239 231/257/239 241/273/239 242/274/239
1249
+ f 233/259/240 232/258/240 242/274/240 243/264/240
1250
+ f 240/275/241 239/276/241 249/277/241 250/278/241
1251
+ f 241/279/242 240/275/242 250/278/242 251/280/242
1252
+ f 242/281/243 241/279/243 251/280/243 252/282/243
1253
+ f 243/283/244 242/281/244 252/282/244 253/284/244
1254
+ f 244/285/245 243/283/245 253/284/245 254/286/245
1255
+ f 245/287/246 244/285/246 254/286/246 255/288/246
1256
+ f 238/289/247 237/290/247 247/291/247 248/292/247
1257
+ f 246/293/248 245/287/248 255/288/248 256/294/248
1258
+ f 239/276/249 238/289/249 248/292/249 249/277/249
1259
+ f 136/295/250 246/293/250 256/294/250
1260
+ f 254/286/251 253/284/251 263/296/251 264/297/251
1261
+ f 255/288/252 254/286/252 264/297/252 265/298/252
1262
+ f 248/292/253 247/291/253 257/299/253 258/300/253
1263
+ f 256/294/254 255/288/254 265/298/254 266/301/254
1264
+ f 249/277/255 248/292/255 258/300/255 259/302/255
1265
+ f 136/303/256 256/294/256 266/301/256
1266
+ f 250/278/257 249/277/257 259/302/257 260/304/257
1267
+ f 251/280/258 250/278/258 260/304/258 261/305/258
1268
+ f 252/282/259 251/280/259 261/305/259 262/306/259
1269
+ f 253/284/260 252/282/260 262/306/260 263/296/260
1270
+ f 261/305/261 260/304/261 270/307/261 271/308/261
1271
+ f 262/306/262 261/305/262 271/308/262 272/309/262
1272
+ f 263/296/263 262/306/263 272/309/263 273/310/263
1273
+ f 264/297/264 263/296/264 273/310/264 274/311/264
1274
+ f 265/298/265 264/297/265 274/311/265 275/312/265
1275
+ f 258/300/266 257/299/266 267/313/266 268/314/266
1276
+ f 266/301/267 265/298/267 275/312/267 276/315/267
1277
+ f 259/302/268 258/300/268 268/314/268 269/316/268
1278
+ f 136/317/269 266/301/269 276/315/269
1279
+ f 260/304/270 259/302/270 269/316/270 270/307/270
1280
+ f 275/312/271 274/311/271 284/318/271 285/319/271
1281
+ f 268/314/272 267/313/272 277/320/272 278/321/272
1282
+ f 276/315/273 275/312/273 285/319/273 286/322/273
1283
+ f 269/316/274 268/314/274 278/321/274 279/323/274
1284
+ f 136/324/275 276/315/275 286/322/275
1285
+ f 270/307/276 269/316/276 279/323/276 280/325/276
1286
+ f 271/308/277 270/307/277 280/325/277 281/326/277
1287
+ f 272/309/278 271/308/278 281/326/278 282/327/278
1288
+ f 273/310/279 272/309/279 282/327/279 283/328/279
1289
+ f 274/311/280 273/310/280 283/328/280 284/318/280
1290
+ f 282/327/281 281/326/281 291/329/281 292/330/281
1291
+ f 283/328/282 282/327/282 292/330/282 293/331/282
1292
+ f 284/318/283 283/328/283 293/331/283 294/332/283
1293
+ f 285/319/284 284/318/284 294/332/284 295/333/284
1294
+ f 278/321/285 277/320/285 287/334/285 288/335/285
1295
+ f 286/322/286 285/319/286 295/333/286 296/336/286
1296
+ f 279/323/287 278/321/287 288/335/287 289/337/287
1297
+ f 136/338/288 286/322/288 296/336/288
1298
+ f 280/325/289 279/323/289 289/337/289 290/339/289
1299
+ f 281/326/290 280/325/290 290/339/290 291/329/290
1300
+ f 288/335/291 287/334/291 297/340/291 298/341/291
1301
+ f 296/336/292 295/333/292 305/342/292 306/343/292
1302
+ f 289/337/293 288/335/293 298/341/293 299/344/293
1303
+ f 136/345/294 296/336/294 306/343/294
1304
+ f 290/339/295 289/337/295 299/344/295 300/346/295
1305
+ f 291/329/296 290/339/296 300/346/296 301/347/296
1306
+ f 292/330/297 291/329/297 301/347/297 302/348/297
1307
+ f 293/331/298 292/330/298 302/348/298 303/349/298
1308
+ f 294/332/299 293/331/299 303/349/299 304/350/299
1309
+ f 295/333/300 294/332/300 304/350/300 305/342/300
1310
+ f 302/348/301 301/347/301 311/351/301 312/352/301
1311
+ f 303/349/302 302/348/302 312/352/302 313/353/302
1312
+ f 304/350/303 303/349/303 313/353/303 314/354/303
1313
+ f 305/342/304 304/350/304 314/354/304 315/355/304
1314
+ f 298/341/305 297/340/305 307/356/305 308/357/305
1315
+ f 306/343/306 305/342/306 315/355/306 316/358/306
1316
+ f 299/344/307 298/341/307 308/357/307 309/359/307
1317
+ f 136/360/308 306/343/308 316/358/308
1318
+ f 300/346/309 299/344/309 309/359/309 310/361/309
1319
+ f 301/347/310 300/346/310 310/361/310 311/351/310
1320
+ f 316/358/311 315/355/311 320/6/311 321/5/311
1321
+ f 309/359/312 308/357/312 2/1/312 3/9/312
1322
+ f 136/362/313 316/358/313 321/5/313
1323
+ f 310/361/314 309/359/314 3/9/314 4/12/314
1324
+ f 311/351/315 310/361/315 4/12/315 317/14/315
1325
+ f 312/352/316 311/351/316 317/14/316 318/16/316
1326
+ f 313/353/317 312/352/317 318/16/317 319/18/317
1327
+ f 314/354/318 313/353/318 319/18/318 5/20/318
1328
+ f 315/355/319 314/354/319 5/20/319 320/6/319
1329
+ f 308/357/320 307/356/320 1/2/320 2/1/320
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.4_numV_321_top_ring.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0 0.00000 0.92388 0.38268
2
+ 5 0.18024 0.90613 0.38268
3
+ 15 0.35355 0.85355 0.38268
4
+ 25 0.51328 0.76818 0.38268
5
+ 35 0.65328 0.65328 0.38268
6
+ 45 0.76818 0.51328 0.38268
7
+ 55 0.85355 0.35355 0.38268
8
+ 65 0.90613 0.18024 0.38268
9
+ 75 0.92388 -0.00000 0.38268
10
+ 85 0.90613 -0.18024 0.38268
11
+ 95 0.85355 -0.35355 0.38268
12
+ 105 0.76818 -0.51328 0.38268
13
+ 115 0.65328 -0.65328 0.38268
14
+ 125 0.51328 -0.76818 0.38268
15
+ 136 0.35355 -0.85355 0.38268
16
+ 146 0.18024 -0.90613 0.38268
17
+ 156 0.00000 -0.92388 0.38268
18
+ 166 -0.18024 -0.90613 0.38268
19
+ 176 -0.35355 -0.85355 0.38268
20
+ 186 -0.51328 -0.76818 0.38268
21
+ 196 -0.65328 -0.65328 0.38268
22
+ 206 -0.76818 -0.51328 0.38268
23
+ 216 -0.85355 -0.35355 0.38268
24
+ 226 -0.90613 -0.18024 0.38268
25
+ 236 -0.92388 -0.00000 0.38268
26
+ 246 -0.90613 0.18024 0.38268
27
+ 256 -0.85355 0.35355 0.38268
28
+ 266 -0.76818 0.51328 0.38268
29
+ 276 -0.65328 0.65328 0.38268
30
+ 286 -0.51328 0.76818 0.38268
31
+ 296 -0.35355 0.85355 0.38268
32
+ 306 -0.18024 0.90613 0.38268
cliport/environments/assets/bags/bl_sphere_bag_rad_1.0_zthresh_0.6_numV_353.mtl ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Blender MTL File: 'None'
2
+ # Material Count: 1
3
+
4
+ newmtl None
5
+ Ns 500
6
+ Ka 0.8 0.8 0.8
7
+ Kd 0.8 0.8 0.8
8
+ Ks 0.8 0.8 0.8
9
+ d 1
10
+ illum 2