import os import numpy as np import os import hydra import numpy as np import random from cliport import tasks from cliport.dataset import RavensDataset from cliport.environments.environment import Environment from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter import re import openai import IPython import time import pybullet as p import traceback from datetime import datetime from pprint import pprint import cv2 import re import random import json import operator import csv import itertools model = "gpt-4" # model = "gpt-3.5-turbo-16k" # model = "gpt-4-0613" def set_gpt_model(gpt_model_name): """ globally set gpt-model""" global model model = gpt_model_name print("use gpt model:", model) def mkdir_if_missing(dst_dir): if not os.path.exists(dst_dir): os.makedirs(dst_dir) def save_text(folder, name, out): mkdir_if_missing(folder) with open(os.path.join(folder, name + ".txt"), "w") as fhandle: fhandle.write(out) def add_to_txt(full_interaction, message, with_print=False): """ Add the message string to the full interaction """ full_interaction.append("\n\n"+message) if with_print: print("\n\n"+message) return full_interaction def get_task_import_str(): return "import numpy as np\n" + \ "import os\n" + \ "import pybullet as p\n" + \ "import random\n" + \ "from cliport.tasks import primitives\n" + \ "from cliport.tasks.grippers import Spatula\n" + \ "from cliport.tasks.task import Task\n" + \ "from cliport.utils import utils\n" def extract_code(res): """ parse code block """ # Pattern to find string between ``` pattern = r'```(.*?)```' # Use re.findall to get all substrings within ``` code_string = re.findall(pattern, res, re.DOTALL) if len(code_string) == 0: print("\n".join(res.split("\n"))) print("empty code string") return '', '' code_string = code_string[0] code_string = code_string.replace('python', '') code_lines = code_string.split("\n") if 'python' in code_string: code_lines = code_lines[1:] # skip the first line class_def = [line for line in code_lines if line.startswith('class')] task_name = class_def[0] task_name = task_name[task_name.find("class "): task_name.rfind("(Task)")][6:] print("task_name:", task_name) return get_task_import_str() + '\n'.join(code_lines).strip(), task_name def extract_code_topdown(res): """ parse code block """ # Pattern to find string between ``` pattern = r'```python\n(.*?)```' # pattern = r'```python\n(.*?)' # Use re.findall to get all substrings within ``` # code_string = re.findall(pattern, res, re.DOTALL) print(res) code_string = res[res.index("```python\n"):].strip() if len(code_string) == 0: print("\n".join(res.split("\n"))) print("empty code string") return '', '' # code_string = code_string[0] code_string = code_string.replace('python', '') code_lines = code_string.split("\n")[1:] if code_lines[-1].strip().endswith(","): code_lines[-1] = code_lines[-1][:-1] + "))" if 'python' in code_string: code_lines = code_lines[1:] # skip the first line class_def = [line for line in code_lines if line.startswith('class')] task_name = class_def[0] task_name = task_name[task_name.find("class "): task_name.rfind("(Task)")][6:] # IPython.embed() print("task_name:", task_name) return '\n'.join(code_lines).strip(), task_name def extract_dict(res, prefix="new_task"): """ parse task dictionary """ pattern = r'{(.*?)}' code_string = re.findall(pattern, res, re.DOTALL) if len(code_string) == 0: return '' code_string = code_string[0] code_string = code_string.replace('python', '') return prefix + '={'+ code_string.replace("\n","").strip() + '}' def extract_list(res, prefix="code_reference"): """ parse task dictionary """ pattern = r'\[(.*?)\]' code_string = re.findall(pattern, res, re.DOTALL) if len(code_string) == 0: return '' code_string = code_string[0] return prefix + '=[' + code_string.strip() + ']' def extract_assets(res): """ parse generated assets """ pattern = r'' code_string = re.findall(pattern, res, re.DOTALL) assets_pattern = r'robot name="(.*?)">' assets_string = re.findall(assets_pattern, res, re.DOTALL) if len(code_string) == 0: return {} try: new_urdf = {} for asset_path, code in zip(assets_string, code_string): new_urdf[asset_path] = " 0: sample_idx = np.random.choice(sample_idx, sample_num, replace=False) for idx, (task_name, task_desc) in enumerate(task_name_dict.items()): if idx in sample_idx: prompt_replacement += f'- {task_name}: {task_desc}\n' return prompt_replacement + "\n\n" def format_list_prompt(task_list, sample_num=-1, sort_items=False): """ format a saved dictionary into prompt """ # if sort_items: # task_list = sorted(task_list, key=operator.itemgetter(0)) prompt_replacement = '' sample_idx = list(range(len(task_list))) if sample_num > 0: sample_idx = np.random.choice(len(task_list), sample_num, replace=False) for idx, task in enumerate(task_list): if idx in sample_idx: prompt_replacement += f"- {task['task-name']}: {task['task-descriptions']}\n" return prompt_replacement + "\n\n" def sample_list_reference(item_list, sample_num=-1): """ sample reference code from a list of python files """ sample_idx = list(range(len(item_list))) prompt_replacement = '' if sample_num > 0: sample_idx = np.random.choice(len(item_list), sample_num, replace=False) print("reference files: ", [item_list[idx] for idx in sample_idx]) for idx, item in enumerate(item_list): try: item_content = open(f"cliport/tasks/{item}").read() except: # one or the other item_content = open(f"cliport/generated_tasks/{item}").read() if idx in sample_idx: prompt_replacement += f'```\n{item_content}\n```\n\n' return prompt_replacement + "\n\n" def compute_diversity_score_from_assets_old(task_assets): """ compute how many new asset combos are covered by previous by a proxy""" if len(task_assets) < 2: return 0 existing_assets = [] for asset in task_assets: new_asset_flag = True for existing_asset in existing_assets: # it's covered by any previous assets if set(asset).issubset(existing_asset): new_asset_flag = False break if new_asset_flag: existing_assets.append(asset) return len(existing_assets) / len(task_assets) def iou_assets(asset1, asset2): asset1 = set(asset1) asset2 = set(asset2) return len(asset1 & asset2) / len(asset1 | asset2) def compute_diversity_score_from_assets(task_assets, total_trials): """ compute the pairwise IOU for assets""" if len(task_assets) == 0: return 0 score = 0 pairs = list(itertools.combinations(range(len(task_assets)), 2)) for j, k in pairs: score += 1. - iou_assets(task_assets[j], task_assets[k]) if len(pairs) == 0: return 0 return score / len(pairs) def truncate_message_for_token_limit(message_history, max_tokens=6000): truncated_messages = [] tokens = 0 # reverse for idx in range(len(message_history)-1, -1, -1) : message = message_history[idx] message_tokens = len(message['content']) / 4 # rough estimate. # print("message_tokens:", message['content']) if tokens + message_tokens > max_tokens: break # This message would put us over the limit truncated_messages.append(message) tokens += message_tokens truncated_messages.reverse() # print("truncated messages:", len(truncated_messages)) return truncated_messages def insert_system_message(message_history): system_message_prompt = 'You are a helpful and expert assistant in robot simulation code writing and task design.' 'You design tasks that are creative and do-able by table-top manipulation. ' 'You write code without syntax errors and always think through and document your code carefully. ' message_history.insert(0, {"role": "system", "content": system_message_prompt}) # globally always feed the previous reply as the assistant message back into the model existing_messages = [] def generate_feedback(prompt, max_tokens=2048, temperature=0.0, interaction_txt=None, retry_max=5, n=1): """ use GPT-4 API """ global existing_messages global model if model == "text-davinci-003": return generate_feedback_completion_only(prompt, max_tokens, temperature) existing_messages.append({"role": "user", "content": prompt}) truncated_messages = truncate_message_for_token_limit(existing_messages) insert_system_message(truncated_messages) params = { "model": model, "max_tokens": max_tokens, "temperature": temperature, "messages": truncated_messages, "n": n } for retry in range(retry_max): try: if interaction_txt is not None: add_to_txt(interaction_txt, ">>> Prompt: \n" + prompt, with_print=False) call_res = openai.ChatCompletion.create(**params) res = call_res["choices"][0]["message"]["content"] existing_messages.append({"role": "assistant", "content": res}) to_print = highlight(f"{res}", PythonLexer(), TerminalFormatter()) print(to_print) if interaction_txt is not None: add_to_txt(interaction_txt, ">>> Answer: \n" + res, with_print=False) if n > 1: return [r["message"]["content"] for r in call_res["choices"]] return res except Exception as e: print("failed chat completion", e) raise Exception("Failed to generate") def clear_messages(): global existing_messages existing_messages = [] def format_finetune_prompt(task_name): instruction_text = open('prompts/finetune_instructions_prompt.txt').read() instruction_text = instruction_text.replace("TASK_NAME_TEMPLATE", task_name) prompt_text = instruction_text return prompt_text def format_finetune_prompt_codeonly(task_name): instruction_text = open('prompts/finetune_instructions_prompt_codeonly.txt').read() instruction_text = instruction_text.replace("TASK_NAME_TEMPLATE", task_name) prompt_text = instruction_text return prompt_text existing_messages = [] def generate_feedback_completion_only(prompt, max_tokens=800, temperature=0.0, interaction_txt=None, retry_max=5, n=1): """ use GPT-4 API """ print("prompt size:", len(prompt)) params = { "model": model, "max_tokens": 1200, "temperature": temperature, "prompt": prompt[-6000:], # in total 2048 "n": n } for retry in range(retry_max): try: if interaction_txt is not None: add_to_txt(interaction_txt, ">>> Prompt: \n" + prompt, with_print=False) call_res = openai.Completion.create(**params) res = call_res["choices"][0]["text"] to_print = highlight(f"{res}", PythonLexer(), TerminalFormatter()) print(to_print) if interaction_txt is not None: add_to_txt(interaction_txt, ">>> Answer: \n" + res, with_print=False) if n > 1: return [r["text"] for r in call_res["choices"]] return res except Exception as e: print("failed chat completion", e) # IPython.embed() raise Exception("Failed to generate")