#!/bin/bash DATA_DIR=$1 TRAINTASK=${2-'[rainbow-stack,bowl-ball-placement]'} STEPS=${3-'61000'} DISP=False echo "Training single-task dataset... Folder: $DATA_DIR Task $TRAINTASK" trap "kill 0" SIGINT # You can parallelize these depending on how much resources you have ############################# ## Language-Conditioned Tasks # [align-rope,assembling-kits-seq-seen-colors,assembling-kits-seq-unseen-colors,packing-shapes] # TRAIN python cliport/train.py train.task=$TRAINTASK \ train.agent=cliport \ train.model_task=$TRAINTASK \ train.attn_stream_fusion_type=add \ train.trans_stream_fusion_type=conv \ train.lang_fusion_type=mult \ train.n_demos=200 \ train.n_steps=${STEPS} \ dataset.cache=True \ train.exp_folder=exps/exp-$TRAINTASK \ dataset.type=single \ train.load_from_last_ckpt=False # Convert Python list to Bash array bash_array=$(python3 -c "import sys; print(' '.join((sys.argv[1])[1:-1].split(',')))" "$TRAINTASK") # # Convert the space-separated string to a bash array # echo "Testing single-task dataset... Folder: $DATA_DIR Task $TASK" # echo "Testing $TASK" # # TEST # # bash scripts/generate_gpt_datasets.sh $DATA_DIR $task # python cliport/eval.py model_task=$TRAINTASK \ # eval_task=$TRAINTASK \ # agent=cliport \ # mode=test \ # n_demos=100 \ # train_demos=200 \ # checkpoint_type=test_best \ # type=single \ # exp_folder=exps/exp-$TRAINTASK \ # update_results=True # # wait # python notebooks/print_results.py -r=exps/exp-$TRAINTASK/ --single # echo "Finished Training."