Spaces:
Runtime error
Runtime error
File size: 6,687 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Integration tests for commands in Lin et al. (SIGIR 2021) paper."""
import os
import unittest
from integrations.utils import clean_files, run_command, parse_score_msmarco
from pyserini.dsearch import SimpleDenseSearcher, TctColBertQueryEncoder
from pyserini.hsearch import HybridSearcher
from pyserini.index import IndexReader
from pyserini.search import SimpleSearcher
from pyserini.search import get_topics, get_qrels
class TestSIGIR2021(unittest.TestCase):
def setUp(self):
self.temp_files = []
def test_figure1(self):
"""Sample code in Figure 1."""
searcher = SimpleSearcher.from_prebuilt_index('msmarco-passage')
hits = searcher.search('what is a lobster roll?', 10)
self.assertAlmostEqual(hits[0].score, 11.00830, delta=0.0001)
self.assertEqual(hits[0].docid, '7157707')
self.assertAlmostEqual(hits[9].score, 9.92200, delta=0.0001)
self.assertEqual(hits[9].docid, '6234461')
self.assertEqual(len(hits), 10)
def test_figure2(self):
"""Sample code in Figure 2."""
encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')
searcher = SimpleDenseSearcher.from_prebuilt_index('msmarco-passage-tct_colbert-hnsw', encoder)
hits = searcher.search('what is a lobster roll')
self.assertAlmostEqual(hits[0].score, 70.53741, delta=0.0001)
self.assertEqual(hits[0].docid, '7157710')
self.assertAlmostEqual(hits[9].score, 69.01737, delta=0.0001)
self.assertEqual(hits[9].docid, '2920399')
self.assertEqual(len(hits), 10)
def test_figure3(self):
"""Sample code in Figure 3."""
ssearcher = SimpleSearcher.from_prebuilt_index('msmarco-passage')
encoder = TctColBertQueryEncoder('castorini/tct_colbert-msmarco')
dsearcher = SimpleDenseSearcher.from_prebuilt_index('msmarco-passage-tct_colbert-hnsw', encoder)
hsearcher = HybridSearcher(dsearcher, ssearcher)
hits = hsearcher.search('what is a lobster roll')
self.assertAlmostEqual(hits[0].score, 71.56023, delta=0.0001)
self.assertEqual(hits[0].docid, '7157715')
self.assertAlmostEqual(hits[9].score, 70.07635, delta=0.0001)
self.assertEqual(hits[9].docid, '7157708')
self.assertEqual(len(hits), 10)
def test_figure4(self):
"""Sample code in Figure 4."""
topics = get_topics('msmarco-passage-dev-subset')
qrels = get_qrels('msmarco-passage-dev-subset')
self.assertEqual(len(topics), 6980)
self.assertEqual(len(qrels), 6980)
# Compute the average length of queries:
avg_qlen = sum([len(topics[t]['title'].split()) for t in topics])/len(topics)
# Compute the average number of relevance judgments per query:
avg_qrels = sum([len(qrels[t]) for t in topics])/len(topics)
self.assertAlmostEqual(avg_qlen, 5.925, delta=0.001)
self.assertAlmostEqual(avg_qrels, 1.065, delta=0.001)
def test_figure5(self):
"""Sample code in Figure 5."""
# Initialize from a pre-built index:
reader = IndexReader.from_prebuilt_index('robust04')
terms = reader.terms()
term = next(terms)
self.assertEqual(term.term, '0')
self.assertEqual(term.df, 10826)
self.assertEqual(term.cf, 33491)
term = next(terms)
self.assertEqual(term.term, '0,0')
self.assertEqual(term.df, 2)
self.assertEqual(term.cf, 2)
# Analyze a term:
term = 'atomic'
analyzed = reader.analyze(term)
self.assertEqual(analyzed[0], 'atom')
# Directly fetch term statistics for a term:
df, cf = reader.get_term_counts(term)
self.assertEqual(df, 5219)
self.assertEqual(cf, 9144)
# Traverse postings for a term:
postings_list = reader.get_postings_list(term)
self.assertEqual(len(postings_list), 5219)
self.assertEqual(postings_list[0].docid, 432)
self.assertEqual(postings_list[0].tf, 1)
self.assertEqual(postings_list[0].positions, [137])
self.assertEqual(postings_list[5218].docid, 527779)
self.assertEqual(postings_list[5218].tf, 1)
self.assertEqual(postings_list[5218].positions, [21])
# Examples of manipulating document vectors:
tf = reader.get_document_vector('LA071090-0047')
tp = reader.get_term_positions('LA071090-0047')
df = {
term: (reader.get_term_counts(term, analyzer=None))[0]
for term in tf.keys()
}
bm25_vector = {
term: reader.compute_bm25_term_weight('LA071090-0047',
term,
analyzer=None)
for term in tf.keys()
}
self.assertEqual(tf['hubbl'], 12)
self.assertEqual(tp['caught'], [42, 624, 960])
self.assertEqual(df['problem'], 82225)
self.assertAlmostEqual(bm25_vector['hubbl'], 7.49397, delta=0.001)
self.assertAlmostEqual(bm25_vector['earth'], 2.64872, delta=0.001)
def test_section3_3(self):
"""Sample code in Section 3.3."""
output_file = 'run.msmarco-passage.txt'
self.temp_files.append(output_file)
run_cmd = f'python -m pyserini.search --topics msmarco-passage-dev-subset \
--index msmarco-passage --output {output_file} \
--bm25 --output-format msmarco'
status = os.system(run_cmd)
self.assertEqual(status, 0)
eval_cmd = f'python -m pyserini.eval.msmarco_passage_eval \
msmarco-passage-dev-subset {output_file}'
stdout, stderr = run_command(eval_cmd)
score = parse_score_msmarco(stdout, "MRR @10")
self.assertAlmostEqual(score, 0.1872, delta=0.0001)
# Temporary fix: this is Lucene 9 code running on Lucene 8 prebuilt index.
def tearDown(self):
clean_files(self.temp_files)
if __name__ == '__main__':
unittest.main()
|