Spaces:
Runtime error
Runtime error
File size: 11,708 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one).
# Comment these lines out to use a pip-installed one instead.
sys.path.insert(0, './')
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from collections import defaultdict
from transformers import AutoTokenizer
from pyserini.search.lucene.ltr._search_msmarco import MsmarcoLtrSearcher
from pyserini.search.lucene.ltr import *
from pyserini.search.lucene import LuceneSearcher
from pyserini.analysis import Analyzer, get_lucene_analyzer
"""
Running prediction on candidates
"""
def dev_data_loader(file, format, topic, rerank, prebuilt, qrel, granularity, top=1000):
if rerank:
if format == 'tsv':
dev = pd.read_csv(file, sep="\t",
names=['qid', 'pid', 'rank'],
dtype={'qid': 'S','pid': 'S', 'rank':'i',})
elif format == 'trec':
dev = pd.read_csv(file, sep="\s+",
names=['qid', 'q0', 'pid', 'rank', 'score', 'tag'],
usecols=['qid', 'pid', 'rank'],
dtype={'qid': 'S','pid': 'S', 'rank':'i',})
else:
raise Exception('unknown parameters')
assert dev['qid'].dtype == object
assert dev['pid'].dtype == object
assert dev['rank'].dtype == np.int32
dev = dev[dev['rank']<=top]
else:
if prebuilt:
bm25search = LuceneSearcher.from_prebuilt_index(args.index)
else:
bm25search = LuceneSearcher(args.index)
bm25search.set_bm25(0.82, 0.68)
dev_dic = {"qid":[], "pid":[], "rank":[]}
for topic in tqdm(queries.keys()):
query_text = queries[topic]['raw']
bm25_dev = bm25search.search(query_text, args.hits)
doc_ids = [bm25_result.docid for bm25_result in bm25_dev]
qid = [topic for _ in range(len(doc_ids))]
rank = [i for i in range(1, len(doc_ids)+1)]
dev_dic['qid'].extend(qid)
dev_dic['pid'].extend(doc_ids)
dev_dic['rank'].extend(rank)
dev = pd.DataFrame(dev_dic)
dev['rank'].astype(np.int32)
if granularity == 'document':
seperation = "\t"
else:
seperation = " "
dev_qrel = pd.read_csv(qrel, sep=seperation,
names=["qid", "q0", "pid", "rel"], usecols=['qid', 'pid', 'rel'],
dtype={'qid': 'S','pid': 'S', 'rel':'i'})
dev = dev.merge(dev_qrel, left_on=['qid', 'pid'], right_on=['qid', 'pid'], how='left')
dev['rel'] = dev['rel'].fillna(0).astype(np.int32)
dev = dev.sort_values(['qid', 'pid']).set_index(['qid', 'pid'])
print(dev.shape)
print(dev.index.get_level_values('qid').drop_duplicates().shape)
print(dev.groupby('qid').count().mean())
print(dev.head(10))
print(dev.info())
dev_rel_num = dev_qrel[dev_qrel['rel'] > 0].groupby('qid').count()['rel']
recall_point = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]
recall_curve = {k: [] for k in recall_point}
for qid, group in tqdm(dev.groupby('qid')):
group = group.reset_index()
assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
total_rel = dev_rel_num.loc[qid]
query_recall = [0 for k in recall_point]
for t in group.sort_values('rank').itertuples():
if t.rel > 0:
for i, p in enumerate(recall_point):
if t.rank <= p:
query_recall[i] += 1
for i, p in enumerate(recall_point):
if total_rel > 0:
recall_curve[p].append(query_recall[i] / total_rel)
else:
recall_curve[p].append(0.)
for k, v in recall_curve.items():
avg = np.mean(v)
print(f'recall@{k}:{avg}')
return dev, dev_qrel
def query_loader(topic):
queries = {}
nlp = SpacyTextParser('en_core_web_sm', keep_only_alpha_num=True, lower_case=True)
analyzer = Analyzer(get_lucene_analyzer())
bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
inp_file = open(topic)
ln = 0
for line in tqdm(inp_file):
ln += 1
line = line.strip()
if not line:
continue
fields = line.split('\t')
if len(fields) != 2:
print('Misformated line %d ignoring:' % ln)
print(line.replace('\t', '<field delimiter>'))
continue
did, query = fields
query_lemmas, query_unlemm = nlp.proc_text(query)
analyzed = analyzer.analyze(query)
for token in analyzed:
if ' ' in token:
print(analyzed)
query_toks = query_lemmas.split()
if len(query_toks) >= 0:
query = {"raw" : query,
"text": query_lemmas.split(' '),
"text_unlemm": query_unlemm.split(' '),
"analyzed": analyzed,
"text_bert_tok": bert_tokenizer.tokenize(query.lower())}
queries[did] = query
if ln % 10000 == 0:
print('Processed %d queries' % ln)
print('Processed %d queries' % ln)
return queries
def eval_mrr(dev_data):
score_tie_counter = 0
score_tie_query = set()
MRR = []
for qid, group in tqdm(dev_data.groupby('qid')):
group = group.reset_index()
rank = 0
prev_score = None
assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
# stable sort is also used in LightGBM
for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
if prev_score is not None and abs(t.score - prev_score) < 1e-8:
score_tie_counter += 1
score_tie_query.add(qid)
prev_score = t.score
rank += 1
if t.rel > 0:
MRR.append(1.0 / rank)
break
elif rank == 10 or rank == len(group):
MRR.append(0.)
break
score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
print(score_tie)
mrr_10 = np.mean(MRR).item()
print(f'MRR@10:{mrr_10} with {len(MRR)} queries')
return {'score_tie': score_tie, 'mrr_10': mrr_10}
def eval_recall(dev_qrel, dev_data):
dev_rel_num = dev_qrel[dev_qrel['rel'] > 0].groupby('qid').count()['rel']
score_tie_counter = 0
score_tie_query = set()
recall_point = [10,20,50,100,200,250,300,333,400,500,1000]
recall_curve = {k: [] for k in recall_point}
for qid, group in tqdm(dev_data.groupby('qid')):
group = group.reset_index()
rank = 0
prev_score = None
assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
# stable sort is also used in LightGBM
total_rel = dev_rel_num.loc[qid]
query_recall = [0 for k in recall_point]
for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
if prev_score is not None and abs(t.score - prev_score) < 1e-8:
score_tie_counter += 1
score_tie_query.add(qid)
prev_score = t.score
rank += 1
if t.rel > 0:
for i, p in enumerate(recall_point):
if rank <= p:
query_recall[i] += 1
for i, p in enumerate(recall_point):
if total_rel > 0:
recall_curve[p].append(query_recall[i] / total_rel)
else:
recall_curve[p].append(0.)
score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
print(score_tie)
res = {'score_tie': score_tie}
for k, v in recall_curve.items():
avg = np.mean(v)
print(f'recall@{k}:{avg}')
res[f'recall@{k}'] = avg
return res
def output(file, dev_data, format, maxp):
score_tie_counter = 0
score_tie_query = set()
output_file = open(file,'w')
results = defaultdict(dict)
idx = 0
for qid, group in tqdm(dev_data.groupby('qid')):
group = group.reset_index()
rank = 0
prev_score = None
assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
# stable sort is also used in LightGBM
for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
if prev_score is not None and abs(t.score - prev_score) < 1e-8:
score_tie_counter += 1
score_tie_query.add(qid)
prev_score = t.score
if maxp:
docid = t.pid.split('#')[0]
if qid not in results or docid not in results[qid] or t.score > results[qid][docid]:
results[qid][docid] = t.score
else:
results[qid][t.pid] = t.score
for qid in tqdm(results.keys()):
rank = 1
docid_score = results[qid]
docid_score = sorted(docid_score.items(),key=lambda kv: kv[1], reverse=True)
for docid, score in docid_score:
if format=='trec':
output_file.write(f"{qid}\tQ0\t{docid}\t{rank}\t{score}\tltr\n")
else:
output_file.write(f"{qid}\t{docid}\t{rank}\n")
rank += 1
score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
print(score_tie)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Learning to rank reranking')
parser.add_argument('--input', default='')
parser.add_argument('--hits', type=int, default=1000)
parser.add_argument('--input-format', default = 'trec')
parser.add_argument('--model', required=True)
parser.add_argument('--index', required=True)
parser.add_argument('--output', required=True)
parser.add_argument('--ibm-model', required=True)
parser.add_argument('--topic', required=True)
parser.add_argument('--output-format', default='tsv')
parser.add_argument('--max-passage', action='store_true')
parser.add_argument('--rerank', action='store_true')
parser.add_argument('--qrel', required=True)
parser.add_argument('--granularity', default='passage')
args = parser.parse_args()
queries = query_loader(args.topic)
print("---------------------loading dev----------------------------------------")
prebuilt = args.index == 'msmarco-passage-ltr' or args.index == 'msmarco-doc-per-passage-ltr'
dev, dev_qrel = dev_data_loader(args.input, args.input_format, args.topic, args.rerank, prebuilt, args.qrel, args.granularity, args.hits)
searcher = MsmarcoLtrSearcher(args.model, args.ibm_model, args.index, args.granularity, prebuilt, args.topic)
searcher.add_fe()
batch_info = searcher.search(dev, queries)
del dev, queries
eval_res = eval_mrr(batch_info)
eval_recall(dev_qrel, batch_info)
output(args.output, batch_info,args.output_format, args.max_passage)
print('Done!') |