File size: 11,708 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys

# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one).
# Comment these lines out to use a pip-installed one instead.
sys.path.insert(0, './')

import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from collections import defaultdict
from transformers import AutoTokenizer
from pyserini.search.lucene.ltr._search_msmarco import MsmarcoLtrSearcher
from pyserini.search.lucene.ltr import *
from pyserini.search.lucene import LuceneSearcher
from pyserini.analysis import Analyzer, get_lucene_analyzer

"""
Running prediction on candidates
"""
def dev_data_loader(file, format, topic, rerank, prebuilt, qrel, granularity, top=1000):
    if rerank:
        if format == 'tsv':
            dev = pd.read_csv(file, sep="\t",
                            names=['qid', 'pid', 'rank'],
                            dtype={'qid': 'S','pid': 'S', 'rank':'i',})
        elif format == 'trec':
            dev = pd.read_csv(file, sep="\s+",
                        names=['qid', 'q0', 'pid', 'rank', 'score', 'tag'],
                        usecols=['qid', 'pid', 'rank'],
                        dtype={'qid': 'S','pid': 'S', 'rank':'i',})
        else:
            raise Exception('unknown parameters')
        assert dev['qid'].dtype == object
        assert dev['pid'].dtype == object
        assert dev['rank'].dtype == np.int32
        dev = dev[dev['rank']<=top]
    else:
        if prebuilt:
            bm25search = LuceneSearcher.from_prebuilt_index(args.index)
        else:
            bm25search = LuceneSearcher(args.index)
        bm25search.set_bm25(0.82, 0.68)
        dev_dic = {"qid":[], "pid":[], "rank":[]}
        for topic in tqdm(queries.keys()):
            query_text = queries[topic]['raw']
            bm25_dev = bm25search.search(query_text, args.hits)
            doc_ids = [bm25_result.docid for bm25_result in bm25_dev]
            qid = [topic for _ in range(len(doc_ids))]
            rank = [i for i in range(1, len(doc_ids)+1)]
            dev_dic['qid'].extend(qid)
            dev_dic['pid'].extend(doc_ids)
            dev_dic['rank'].extend(rank)
        dev = pd.DataFrame(dev_dic)
        dev['rank'].astype(np.int32)
    if granularity == 'document':
        seperation = "\t"
    else:
        seperation = " "
    dev_qrel = pd.read_csv(qrel, sep=seperation,
                            names=["qid", "q0", "pid", "rel"], usecols=['qid', 'pid', 'rel'],
                            dtype={'qid': 'S','pid': 'S', 'rel':'i'})
    dev = dev.merge(dev_qrel, left_on=['qid', 'pid'], right_on=['qid', 'pid'], how='left')
    dev['rel'] = dev['rel'].fillna(0).astype(np.int32)
    dev = dev.sort_values(['qid', 'pid']).set_index(['qid', 'pid'])

    print(dev.shape)
    print(dev.index.get_level_values('qid').drop_duplicates().shape)
    print(dev.groupby('qid').count().mean())
    print(dev.head(10))
    print(dev.info())

    dev_rel_num = dev_qrel[dev_qrel['rel'] > 0].groupby('qid').count()['rel']

    recall_point = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]
    recall_curve = {k: [] for k in recall_point}
    for qid, group in tqdm(dev.groupby('qid')):
        group = group.reset_index()
        assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
        total_rel = dev_rel_num.loc[qid]
        query_recall = [0 for k in recall_point]
        for t in group.sort_values('rank').itertuples():
            if t.rel > 0:
                for i, p in enumerate(recall_point):
                    if t.rank <= p:
                        query_recall[i] += 1
        for i, p in enumerate(recall_point):
            if total_rel > 0:
                recall_curve[p].append(query_recall[i] / total_rel)
            else:
                recall_curve[p].append(0.)

    for k, v in recall_curve.items():
        avg = np.mean(v)
        print(f'recall@{k}:{avg}')

    return dev, dev_qrel


def query_loader(topic):
    queries = {}
    nlp = SpacyTextParser('en_core_web_sm', keep_only_alpha_num=True, lower_case=True)
    analyzer = Analyzer(get_lucene_analyzer())
    bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    inp_file = open(topic)
    ln = 0
    for line in tqdm(inp_file):
        ln += 1
        line = line.strip()
        if not line:
            continue
        fields = line.split('\t')
        if len(fields) != 2:
            print('Misformated line %d ignoring:' % ln)
            print(line.replace('\t', '<field delimiter>'))
            continue
        did, query = fields
        query_lemmas, query_unlemm = nlp.proc_text(query)
        analyzed = analyzer.analyze(query)
        for token in analyzed:
            if ' ' in token:
                print(analyzed)
        query_toks = query_lemmas.split()
        if len(query_toks) >= 0:
            query = {"raw" : query,
                "text": query_lemmas.split(' '),
                "text_unlemm": query_unlemm.split(' '),
                "analyzed": analyzed,
                "text_bert_tok": bert_tokenizer.tokenize(query.lower())}
            queries[did] = query

        if ln % 10000 == 0:
            print('Processed %d queries' % ln)

    print('Processed %d queries' % ln)
    return queries


def eval_mrr(dev_data):
    score_tie_counter = 0
    score_tie_query = set()
    MRR = []
    for qid, group in tqdm(dev_data.groupby('qid')):
        group = group.reset_index()
        rank = 0
        prev_score = None
        assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
        # stable sort is also used in LightGBM

        for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
            if prev_score is not None and abs(t.score - prev_score) < 1e-8:
                score_tie_counter += 1
                score_tie_query.add(qid)
            prev_score = t.score
            rank += 1
            if t.rel > 0:
                MRR.append(1.0 / rank)
                break
            elif rank == 10 or rank == len(group):
                MRR.append(0.)
                break

    score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
    print(score_tie)
    mrr_10 = np.mean(MRR).item()
    print(f'MRR@10:{mrr_10} with {len(MRR)} queries')
    return {'score_tie': score_tie, 'mrr_10': mrr_10}


def eval_recall(dev_qrel, dev_data):
    dev_rel_num = dev_qrel[dev_qrel['rel'] > 0].groupby('qid').count()['rel']

    score_tie_counter = 0
    score_tie_query = set()

    recall_point = [10,20,50,100,200,250,300,333,400,500,1000]
    recall_curve = {k: [] for k in recall_point}
    for qid, group in tqdm(dev_data.groupby('qid')):
        group = group.reset_index()
        rank = 0
        prev_score = None
        assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
        # stable sort is also used in LightGBM
        total_rel = dev_rel_num.loc[qid]
        query_recall = [0 for k in recall_point]
        for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
            if prev_score is not None and abs(t.score - prev_score) < 1e-8:
                score_tie_counter += 1
                score_tie_query.add(qid)
            prev_score = t.score
            rank += 1
            if t.rel > 0:
                for i, p in enumerate(recall_point):
                    if rank <= p:
                        query_recall[i] += 1
        for i, p in enumerate(recall_point):
            if total_rel > 0:
                recall_curve[p].append(query_recall[i] / total_rel)
            else:
                recall_curve[p].append(0.)

    score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
    print(score_tie)
    res = {'score_tie': score_tie}

    for k, v in recall_curve.items():
        avg = np.mean(v)
        print(f'recall@{k}:{avg}')
        res[f'recall@{k}'] = avg

    return res


def output(file, dev_data, format, maxp):
    score_tie_counter = 0
    score_tie_query = set()
    output_file = open(file,'w')
    results = defaultdict(dict)
    idx = 0
    for qid, group in tqdm(dev_data.groupby('qid')):
        group = group.reset_index()
        rank = 0
        prev_score = None
        assert len(group['pid'].tolist()) == len(set(group['pid'].tolist()))
        # stable sort is also used in LightGBM
        for t in group.sort_values('score', ascending=False, kind='mergesort').itertuples():
            if prev_score is not None and abs(t.score - prev_score) < 1e-8:
                score_tie_counter += 1
                score_tie_query.add(qid)
            prev_score = t.score
            if maxp:
                docid = t.pid.split('#')[0]
                if qid not in results or docid not in results[qid] or t.score > results[qid][docid]:
                    results[qid][docid] = t.score
            else:
                results[qid][t.pid] = t.score
            

    for qid in tqdm(results.keys()):
        rank = 1
        docid_score = results[qid]
        docid_score = sorted(docid_score.items(),key=lambda kv: kv[1], reverse=True)
        for docid, score in docid_score:
            if format=='trec':
                output_file.write(f"{qid}\tQ0\t{docid}\t{rank}\t{score}\tltr\n")
            else:
                output_file.write(f"{qid}\t{docid}\t{rank}\n")
            rank += 1
    score_tie = f'score_tie occurs {score_tie_counter} times in {len(score_tie_query)} queries'
    print(score_tie)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Learning to rank reranking')
    parser.add_argument('--input', default='')
    parser.add_argument('--hits', type=int, default=1000)
    parser.add_argument('--input-format', default = 'trec')
    parser.add_argument('--model', required=True)
    parser.add_argument('--index', required=True)
    parser.add_argument('--output', required=True)
    parser.add_argument('--ibm-model', required=True)
    parser.add_argument('--topic', required=True)
    parser.add_argument('--output-format', default='tsv')
    parser.add_argument('--max-passage', action='store_true')
    parser.add_argument('--rerank', action='store_true')
    parser.add_argument('--qrel', required=True)
    parser.add_argument('--granularity', default='passage')

    args = parser.parse_args()
    queries = query_loader(args.topic)
    print("---------------------loading dev----------------------------------------")
    prebuilt = args.index == 'msmarco-passage-ltr' or args.index == 'msmarco-doc-per-passage-ltr'
    dev, dev_qrel = dev_data_loader(args.input, args.input_format, args.topic, args.rerank, prebuilt, args.qrel, args.granularity, args.hits)
    searcher = MsmarcoLtrSearcher(args.model, args.ibm_model, args.index, args.granularity, prebuilt, args.topic)
    searcher.add_fe()
    batch_info = searcher.search(dev, queries)
    del dev, queries

    eval_res = eval_mrr(batch_info)
    eval_recall(dev_qrel, batch_info)
    output(args.output, batch_info,args.output_format, args.max_passage)
    print('Done!')