File size: 5,404 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import multiprocessing
from multiprocessing.pool import ThreadPool

from tqdm import tqdm
from pyserini.search.lucene import LuceneSearcher

import kilt.kilt_utils as utils
from kilt.retrievers.base_retriever import Retriever

import jnius

from nltk import bigrams, word_tokenize, SnowballStemmer
from nltk.corpus import stopwords
import string

ent_start_token = "[START_ENT]"
ent_end_token = "[END_ENT]"
STOPWORDS = set(stopwords.words('english') + list(string.punctuation))
stemmer = SnowballStemmer("english")


def parse_hits(hits):
    doc_ids = []
    doc_scores = []
    for hit in hits:
        wikipedia_id = hit.docid.split('-')[0]
        if wikipedia_id and wikipedia_id not in doc_ids:
            doc_ids.append(wikipedia_id)
            doc_scores.append(hit.score)
    return doc_ids, doc_scores


def _get_predictions_thread(arguments):

    id = arguments["id"]
    queries_data = arguments["queries_data"]
    topk = arguments["topk"]
    ranker = arguments["ranker"]
    logger = arguments["logger"]
    use_bigrams = arguments["use_bigrams"]
    stem_bigrams = arguments["stem_bigrams"]

    if id == 0:
        iter_ = tqdm(queries_data)
    else:
        iter_ = queries_data

    result_doc_ids = []
    result_doc_scores = []
    result_query_id = []

    for query_element in iter_:

        query = (
            query_element["query"]
            .replace(ent_start_token, "")
            .replace(ent_end_token, "")
            .strip()
        )
        result_query_id.append(query_element["id"])

        doc_ids = []
        doc_scores = []

        if use_bigrams:
            tokens = filter(lambda word: word.lower() not in STOPWORDS, word_tokenize(query))
            if stem_bigrams:
                tokens = map(stemmer.stem, tokens)
            bigram_query = bigrams(tokens)
            bigram_query = " ".join(["".join(bigram) for bigram in bigram_query])
            query += " " + bigram_query
        try:
            hits = ranker.search(query, k=topk)
            doc_ids, doc_scores = parse_hits(hits)
            # doc_ids = [hit.docid for hit in hits]
            # doc_scores = [hit.score for hit in hits]

        except RuntimeError as e:
            if logger:
                logger.warning("RuntimeError: {}".format(e))
        except jnius.JavaException as e:
            if logger:
                logger.warning("{query} jnius.JavaException: {}".format(query_element, e))
            if 'maxClauseCount' in str(e):
                query = " ".join(query.split()[:950])
                hits = ranker.search(query, k=topk)
                doc_ids, doc_scores = parse_hits(hits)
            else:
                print(query, str(e))
                raise e
            # doc_ids = [hit.docid for hit in hits]
            # doc_scores = [hit.score for hit in hits]
        except Exception as e:
            print(query, str(e))
            raise e

        result_doc_ids.append(doc_ids)
        result_doc_scores.append(doc_scores)

    return result_doc_ids, result_doc_scores, result_query_id


class Anserini(Retriever):
    def __init__(self, name, num_threads, index_dir=None, k1=0.9, b=0.4, use_bigrams=False, stem_bigrams=False):
        super().__init__(name)

        self.num_threads = min(num_threads, int(multiprocessing.cpu_count()))

        # initialize a ranker per thread
        self.arguments = []
        for id in tqdm(range(self.num_threads)):
            ranker = LuceneSearcher(index_dir)
            ranker.set_bm25(k1, b)
            self.arguments.append(
                {
                    "id": id,
                    "ranker": ranker,
                    "use_bigrams": use_bigrams,
                    "stem_bigrams": stem_bigrams
                }
            )

    def fed_data(self, queries_data, topk, logger=None):

        chunked_queries = utils.chunk_it(queries_data, self.num_threads)

        for idx, arg in enumerate(self.arguments):
            arg["queries_data"] = chunked_queries[idx]
            arg["topk"] = topk
            arg["logger"] = logger

    def run(self):
        pool = ThreadPool(self.num_threads)
        results = pool.map(_get_predictions_thread, self.arguments)

        all_doc_id = []
        all_doc_scores = []
        all_query_id = []
        provenance = {}

        for x in results:
            i, s, q = x
            all_doc_id.extend(i)
            all_doc_scores.extend(s)
            all_query_id.extend(q)
            for query_id, doc_ids in zip(q, i):
                provenance[query_id] = []
                for d_id in doc_ids:
                    provenance[query_id].append({"wikipedia_id": str(d_id).strip()})

        pool.terminate()
        pool.join()

        return all_doc_id, all_doc_scores, all_query_id, provenance