Spaces:
Runtime error
Runtime error
File size: 5,404 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import multiprocessing
from multiprocessing.pool import ThreadPool
from tqdm import tqdm
from pyserini.search.lucene import LuceneSearcher
import kilt.kilt_utils as utils
from kilt.retrievers.base_retriever import Retriever
import jnius
from nltk import bigrams, word_tokenize, SnowballStemmer
from nltk.corpus import stopwords
import string
ent_start_token = "[START_ENT]"
ent_end_token = "[END_ENT]"
STOPWORDS = set(stopwords.words('english') + list(string.punctuation))
stemmer = SnowballStemmer("english")
def parse_hits(hits):
doc_ids = []
doc_scores = []
for hit in hits:
wikipedia_id = hit.docid.split('-')[0]
if wikipedia_id and wikipedia_id not in doc_ids:
doc_ids.append(wikipedia_id)
doc_scores.append(hit.score)
return doc_ids, doc_scores
def _get_predictions_thread(arguments):
id = arguments["id"]
queries_data = arguments["queries_data"]
topk = arguments["topk"]
ranker = arguments["ranker"]
logger = arguments["logger"]
use_bigrams = arguments["use_bigrams"]
stem_bigrams = arguments["stem_bigrams"]
if id == 0:
iter_ = tqdm(queries_data)
else:
iter_ = queries_data
result_doc_ids = []
result_doc_scores = []
result_query_id = []
for query_element in iter_:
query = (
query_element["query"]
.replace(ent_start_token, "")
.replace(ent_end_token, "")
.strip()
)
result_query_id.append(query_element["id"])
doc_ids = []
doc_scores = []
if use_bigrams:
tokens = filter(lambda word: word.lower() not in STOPWORDS, word_tokenize(query))
if stem_bigrams:
tokens = map(stemmer.stem, tokens)
bigram_query = bigrams(tokens)
bigram_query = " ".join(["".join(bigram) for bigram in bigram_query])
query += " " + bigram_query
try:
hits = ranker.search(query, k=topk)
doc_ids, doc_scores = parse_hits(hits)
# doc_ids = [hit.docid for hit in hits]
# doc_scores = [hit.score for hit in hits]
except RuntimeError as e:
if logger:
logger.warning("RuntimeError: {}".format(e))
except jnius.JavaException as e:
if logger:
logger.warning("{query} jnius.JavaException: {}".format(query_element, e))
if 'maxClauseCount' in str(e):
query = " ".join(query.split()[:950])
hits = ranker.search(query, k=topk)
doc_ids, doc_scores = parse_hits(hits)
else:
print(query, str(e))
raise e
# doc_ids = [hit.docid for hit in hits]
# doc_scores = [hit.score for hit in hits]
except Exception as e:
print(query, str(e))
raise e
result_doc_ids.append(doc_ids)
result_doc_scores.append(doc_scores)
return result_doc_ids, result_doc_scores, result_query_id
class Anserini(Retriever):
def __init__(self, name, num_threads, index_dir=None, k1=0.9, b=0.4, use_bigrams=False, stem_bigrams=False):
super().__init__(name)
self.num_threads = min(num_threads, int(multiprocessing.cpu_count()))
# initialize a ranker per thread
self.arguments = []
for id in tqdm(range(self.num_threads)):
ranker = LuceneSearcher(index_dir)
ranker.set_bm25(k1, b)
self.arguments.append(
{
"id": id,
"ranker": ranker,
"use_bigrams": use_bigrams,
"stem_bigrams": stem_bigrams
}
)
def fed_data(self, queries_data, topk, logger=None):
chunked_queries = utils.chunk_it(queries_data, self.num_threads)
for idx, arg in enumerate(self.arguments):
arg["queries_data"] = chunked_queries[idx]
arg["topk"] = topk
arg["logger"] = logger
def run(self):
pool = ThreadPool(self.num_threads)
results = pool.map(_get_predictions_thread, self.arguments)
all_doc_id = []
all_doc_scores = []
all_query_id = []
provenance = {}
for x in results:
i, s, q = x
all_doc_id.extend(i)
all_doc_scores.extend(s)
all_query_id.extend(q)
for query_id, doc_ids in zip(q, i):
provenance[query_id] = []
for d_id in doc_ids:
provenance[query_id].append({"wikipedia_id": str(d_id).strip()})
pool.terminate()
pool.join()
return all_doc_id, all_doc_scores, all_query_id, provenance
|