Spaces:
Runtime error
Runtime error
File size: 8,242 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Script that takes a base run for MS MARCO doc and reranks it using MaxP BM25.
For each topic, each document in the base run is segmented into passages; a new index is built over these passages,
and then MaxP retrieval is performed using this index. These MaxP results are then fused with the original base run."""
import argparse
import csv
import json
import os
import shutil
import sys
# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one).
# Comment these lines out to use a pip-installed one instead.
sys.path.insert(0, './')
sys.path.insert(0, '../pyserini/')
from pyserini.trectools import TrecRun
from pyserini.search.lucene import LuceneSearcher
from pyserini.dsearch import FaissSearcher
# Fixes this error: "OMP: Error #15: Initializing libomp.a, but found libomp.dylib already initialized."
# https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def load_queries(query_file: str):
queries = []
with open(query_file, newline='') as f:
reader = csv.reader(f, delimiter='\t')
for row in reader:
queries.append([row[0], row[1]])
return queries
def generate_passage_collection(docs, collection_path):
with open(collection_path, 'w') as writer:
for doc in docs:
docid = doc['docid']
doc_tokens = doc['text'].split()
for i in range(0, len(doc_tokens), 100):
passage = ' '.join(doc_tokens[i: i + 150])
json_doc = {"id": docid, "contents": passage}
writer.write(json.dumps(json_doc) + '\n')
def bm25(qid, query, docs, index_path):
s = LuceneSearcher(index_path)
hits = s.search(query, 1000)
n = 1
seen_docids = {}
with open(f'run-passage-{qid}.txt', 'w') as writer:
for i in range(0, len(hits)):
if hits[i].docid in seen_docids:
continue
writer.write(f'{qid} Q0 {hits[i].docid} {n} {hits[i].score:.5f} pyserini\n')
n = n + 1
seen_docids[hits[i].docid] = 1
with open(f'run-doc-{qid}.txt', 'w') as writer:
for doc in docs:
writer.write(f'{qid} Q0 {doc["docid"]} {doc["rank"]} {doc["score"]} base\n')
n = n + 1
os.system(f'python -m pyserini.fusion --method rrf --runs run-passage-{qid}.txt run-doc-{qid}.txt ' +
f'--output run-rrf-{qid}.txt --runtag test')
fused_run = TrecRun(f'run-rrf-{qid}.txt')
output = []
for idx, r in fused_run.get_docs_by_topic(qid).iterrows():
output.append([qid, r["docid"], r["rank"]])
return output
def ance(qid, query, docs, index_path):
searcher = FaissSearcher(index_path, 'castorini/ance-msmarco-doc-maxp')
hits = searcher.search(query, 1000)
output = []
n = 1
seen_docids = {}
for i in range(0, len(hits)):
if hits[i].docid in seen_docids:
continue
output.append([qid, hits[i].docid, n])
n = n + 1
seen_docids[hits[i].docid] = 1
return output
def rerank(cache, qid, query, docs, reranker):
# Check if we're using a cache:
if cache:
root = cache
else:
root = '.'
collection_dir = os.path.join(root, f'docs-{qid}')
collection_path = os.path.join(root, f'docs-{qid}/docs.json')
index_path = ''
if reranker == 'bm25':
index_path = os.path.join(root, f'qid-index-{qid}')
elif reranker == 'ance':
index_path = os.path.join(root, f'qid-dindex-{qid}')
if not os.path.exists(index_path):
# Create a passage collection from docs:
if not os.path.exists(collection_dir):
os.mkdir(collection_dir)
generate_passage_collection(docs, collection_path)
# Build index over this passage collection:
if reranker == 'bm25':
os.system(f'python -m pyserini.index -collection JsonCollection ' +
f'-generator DefaultLuceneDocumentGenerator -threads 1 ' +
f'-input {collection_dir} -index {index_path}')
elif reranker == 'ance':
os.system(f'python -m pyserini.encode input --corpus {collection_dir} \
--fields text \
output --embeddings {index_path} \
--to-faiss \
encoder --encoder castorini/ance-msmarco-doc-maxp \
--fields text \
--batch 64 --device cpu ')
output = []
# Choose which reranker to use:
if reranker == 'bm25':
output = bm25(qid, query, docs, index_path)
elif reranker == 'ance':
output = ance(qid, query, docs, index_path)
# If we're using a cache, don't clean up:
if not args.cache:
shutil.rmtree(collection_dir)
shutil.rmtree(index_path)
# Clean up run files.
if reranker == 'bm25':
os.remove(f'run-passage-{qid}.txt')
os.remove(f'run-doc-{qid}.txt')
os.remove(f'run-rrf-{qid}.txt')
return output
def main(args):
if args.cache and not os.path.exists(args.cache):
os.mkdir(args.cache)
# Load queries:
queries = load_queries(args.queries)
# Load base run to rerank:
base_run = TrecRun(args.input)
# LuceneSearcher to fetch document texts.
searcher = LuceneSearcher.from_prebuilt_index('msmarco-doc')
output = []
if args.bm25:
reranker = 'bm25'
elif args.ance:
reranker = 'ance'
elif not args.identity:
sys.exit('Unknown reranking method!')
cnt = 1
for row in queries:
qid = int(row[0])
query = row[1]
print(f'{cnt} {qid} {query}')
qid_results = base_run.get_docs_by_topic(qid)
# Don't actually do reranking, just pass along the base run:
if args.identity:
rank = 1
for docid in qid_results['docid'].tolist():
output.append([qid, docid, rank])
rank = rank + 1
cnt = cnt + 1
continue
# Gather results for reranking:
results_to_rerank = []
for index, result in qid_results.iterrows():
raw_doc = searcher.doc(result['docid']).raw().lstrip('<TEXT>').rstrip('</TEXT>')
results_to_rerank.append({'docid': result['docid'],
'rank': result['rank'],
'score': result['score'],
'text': raw_doc})
# Perform the actual reranking:
output.extend(rerank(args.cache, qid, query, results_to_rerank, reranker))
cnt = cnt + 1
# Write the output run file:
with open(args.output, 'w') as writer:
for r in output:
writer.write(f'{r[0]}\t{r[1]}\t{r[2]}\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--queries', type=str, help='Queries.', required=True)
parser.add_argument('--input', type=str, help='Base run.', required=True)
parser.add_argument('--output', type=str, help='Output.', required=True)
parser.add_argument('--cache', type=str, help='Cache directory.', required=False)
parser.add_argument('--identity', action='store_true', help="Identity reranker.")
parser.add_argument('--bm25', action='store_true', help="BM25 reranker.")
parser.add_argument('--ance', action='store_true', help="ANCE reranker.")
args = parser.parse_args()
main(args)
|