File size: 8,242 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Script that takes a base run for MS MARCO doc and reranks it using MaxP BM25.
For each topic, each document in the base run is segmented into passages; a new index is built over these passages,
and then MaxP retrieval is performed using this index. These MaxP results are then fused with the original base run."""

import argparse
import csv
import json
import os
import shutil
import sys

# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one).
# Comment these lines out to use a pip-installed one instead.
sys.path.insert(0, './')
sys.path.insert(0, '../pyserini/')

from pyserini.trectools import TrecRun
from pyserini.search.lucene import LuceneSearcher
from pyserini.dsearch import FaissSearcher

# Fixes this error: "OMP: Error #15: Initializing libomp.a, but found libomp.dylib already initialized."
# https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


def load_queries(query_file: str):
    queries = []
    with open(query_file, newline='') as f:
        reader = csv.reader(f, delimiter='\t')
        for row in reader:
            queries.append([row[0], row[1]])
    return queries


def generate_passage_collection(docs, collection_path):
    with open(collection_path, 'w') as writer:
        for doc in docs:
            docid = doc['docid']
            doc_tokens = doc['text'].split()

            for i in range(0, len(doc_tokens), 100):
                passage = ' '.join(doc_tokens[i: i + 150])
                json_doc = {"id": docid, "contents": passage}
                writer.write(json.dumps(json_doc) + '\n')


def bm25(qid, query, docs, index_path):
    s = LuceneSearcher(index_path)
    hits = s.search(query, 1000)

    n = 1
    seen_docids = {}
    with open(f'run-passage-{qid}.txt', 'w') as writer:
        for i in range(0, len(hits)):
            if hits[i].docid in seen_docids:
                continue
            writer.write(f'{qid} Q0 {hits[i].docid} {n} {hits[i].score:.5f} pyserini\n')
            n = n + 1
            seen_docids[hits[i].docid] = 1

    with open(f'run-doc-{qid}.txt', 'w') as writer:
        for doc in docs:
            writer.write(f'{qid} Q0 {doc["docid"]} {doc["rank"]} {doc["score"]} base\n')
            n = n + 1

    os.system(f'python -m pyserini.fusion --method rrf --runs run-passage-{qid}.txt run-doc-{qid}.txt ' +
              f'--output run-rrf-{qid}.txt --runtag test')
    fused_run = TrecRun(f'run-rrf-{qid}.txt')

    output = []
    for idx, r in fused_run.get_docs_by_topic(qid).iterrows():
        output.append([qid, r["docid"], r["rank"]])

    return output


def ance(qid, query, docs, index_path):
    searcher = FaissSearcher(index_path,  'castorini/ance-msmarco-doc-maxp')
    hits = searcher.search(query, 1000)

    output = []
    n = 1
    seen_docids = {}
    for i in range(0, len(hits)):
        if hits[i].docid in seen_docids:
            continue
        output.append([qid, hits[i].docid, n])
        n = n + 1
        seen_docids[hits[i].docid] = 1

    return output


def rerank(cache, qid, query, docs, reranker):
    # Check if we're using a cache:
    if cache:
        root = cache
    else:
        root = '.'

    collection_dir = os.path.join(root, f'docs-{qid}')
    collection_path = os.path.join(root, f'docs-{qid}/docs.json')
    index_path = ''
    if reranker == 'bm25':
        index_path = os.path.join(root, f'qid-index-{qid}')
    elif reranker == 'ance':
        index_path = os.path.join(root, f'qid-dindex-{qid}')

    if not os.path.exists(index_path):
        # Create a passage collection from docs:
        if not os.path.exists(collection_dir):
            os.mkdir(collection_dir)
        generate_passage_collection(docs, collection_path)

        # Build index over this passage collection:
        if reranker == 'bm25':
            os.system(f'python -m pyserini.index -collection JsonCollection ' +
                      f'-generator DefaultLuceneDocumentGenerator -threads 1 ' +
                      f'-input {collection_dir} -index {index_path}')
        elif reranker == 'ance':
            os.system(f'python -m pyserini.encode input   --corpus {collection_dir} \
                                  --fields text \
                          output  --embeddings {index_path} \
                                  --to-faiss \
                          encoder --encoder castorini/ance-msmarco-doc-maxp \
                                  --fields text \
                                  --batch 64 --device cpu ')

    output = []
    # Choose which reranker to use:
    if reranker == 'bm25':
        output = bm25(qid, query, docs, index_path)
    elif reranker == 'ance':
        output = ance(qid, query, docs, index_path)

    # If we're using a cache, don't clean up:
    if not args.cache:
        shutil.rmtree(collection_dir)
        shutil.rmtree(index_path)

    # Clean up run files.
    if reranker == 'bm25':
        os.remove(f'run-passage-{qid}.txt')
        os.remove(f'run-doc-{qid}.txt')
        os.remove(f'run-rrf-{qid}.txt')

    return output


def main(args):
    if args.cache and not os.path.exists(args.cache):
        os.mkdir(args.cache)

    # Load queries:
    queries = load_queries(args.queries)
    # Load base run to rerank:
    base_run = TrecRun(args.input)

    # LuceneSearcher to fetch document texts.
    searcher = LuceneSearcher.from_prebuilt_index('msmarco-doc')

    output = []

    if args.bm25:
        reranker = 'bm25'
    elif args.ance:
        reranker = 'ance'
    elif not args.identity:
        sys.exit('Unknown reranking method!')

    cnt = 1
    for row in queries:
        qid = int(row[0])
        query = row[1]
        print(f'{cnt} {qid} {query}')
        qid_results = base_run.get_docs_by_topic(qid)

        # Don't actually do reranking, just pass along the base run:
        if args.identity:
            rank = 1
            for docid in qid_results['docid'].tolist():
                output.append([qid, docid, rank])
                rank = rank + 1
            cnt = cnt + 1
            continue

        # Gather results for reranking:
        results_to_rerank = []
        for index, result in qid_results.iterrows():
            raw_doc = searcher.doc(result['docid']).raw().lstrip('<TEXT>').rstrip('</TEXT>')
            results_to_rerank.append({'docid': result['docid'],
                                      'rank': result['rank'],
                                      'score': result['score'],
                                      'text': raw_doc})

        # Perform the actual reranking:
        output.extend(rerank(args.cache, qid, query, results_to_rerank, reranker))
        cnt = cnt + 1

    # Write the output run file:
    with open(args.output, 'w') as writer:
        for r in output:
            writer.write(f'{r[0]}\t{r[1]}\t{r[2]}\n')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--queries', type=str, help='Queries.', required=True)
    parser.add_argument('--input', type=str, help='Base run.', required=True)
    parser.add_argument('--output', type=str, help='Output.', required=True)
    parser.add_argument('--cache', type=str, help='Cache directory.', required=False)
    parser.add_argument('--identity', action='store_true', help="Identity reranker.")
    parser.add_argument('--bm25', action='store_true', help="BM25 reranker.")
    parser.add_argument('--ance', action='store_true', help="ANCE reranker.")

    args = parser.parse_args()
    main(args)