Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import os | |
import re | |
import shutil | |
import unittest | |
import json | |
import gzip | |
from random import randint | |
from pyserini.util import download_url, download_prebuilt_index | |
class TestSearchIntegration(unittest.TestCase): | |
def setUp(self): | |
curdir = os.getcwd() | |
if curdir.endswith('clprf'): | |
self.pyserini_root = '../..' | |
else: | |
self.pyserini_root = '.' | |
self.tmp = f'{self.pyserini_root}/integrations/tmp{randint(0, 10000)}' | |
# In the rare event there's a collision | |
if os.path.exists(self.tmp): | |
shutil.rmtree(self.tmp) | |
os.mkdir(self.tmp) | |
os.mkdir(f'{self.tmp}/runs') | |
self.round5_runs = { | |
'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.d2q.1s.gz': | |
'2181ae5b7fe8bafbd3b41700f3ccde02', | |
'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.d2q.2s.gz': | |
'e61f9b6de5ffbe1b5b82d35216968154', | |
'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.2s.gz': | |
'6e517a5e044d8b7ce983f7e165cf4aeb', | |
'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.1s.gz': | |
'dc9b4b45494294a8448cf0693f07f7fd' | |
} | |
for url in self.round5_runs: | |
print(f'Verifying stored run at {url}...') | |
filename = url.split('/')[-1] | |
filename = re.sub('\\?dl=1$', '', filename) # Remove the Dropbox 'force download' parameter | |
gzip_filename = '.'.join(filename.split('.')[:-1]) | |
download_url(url, f'{self.tmp}/runs/', md5=self.round5_runs[url], force=True) | |
self.assertTrue(os.path.exists(os.path.join(f'{self.tmp}/runs/', filename))) | |
with gzip.open(f'{self.tmp}/runs/{filename}', 'rb') as f_in: | |
with open(f'{self.tmp}/runs/{gzip_filename}', 'wb') as f_out: | |
shutil.copyfileobj(f_in, f_out) | |
def test_round5(self): | |
tmp_folder_name = self.tmp.split('/')[-1] | |
prebuilt_index_path = download_prebuilt_index('trec-covid-r5-abstract') | |
os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ | |
-alpha 0.6 \ | |
-clf lr \ | |
-vectorizer tfidf \ | |
-new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ | |
-base {self.tmp}/runs/covidex.r5.d2q.1s \ | |
-tmp_base {tmp_folder_name} \ | |
-qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ | |
-index {prebuilt_index_path} \ | |
-tag covidex.r5.d2q.1s \ | |
-output {self.tmp}/output.json') | |
with open(f'{self.tmp}/output.json') as json_file: | |
data = json.load(json_file) | |
self.assertEqual("0.3859", data['map']) | |
self.assertEqual("0.8221", data['ndcg']) | |
os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ | |
-alpha 0.6 \ | |
-clf lr \ | |
-vectorizer tfidf \ | |
-new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ | |
-base {self.tmp}/runs/covidex.r5.d2q.2s \ | |
-tmp_base {tmp_folder_name} \ | |
-qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ | |
-index {prebuilt_index_path} \ | |
-tag covidex.r5.d2q.2s \ | |
-output {self.tmp}/output.json') | |
with open(f'{self.tmp}/output.json') as json_file: | |
data = json.load(json_file) | |
self.assertEqual("0.3875", data['map']) | |
self.assertEqual("0.8304", data['ndcg']) | |
os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ | |
-alpha 0.6 \ | |
-clf lr \ | |
-vectorizer tfidf \ | |
-new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ | |
-base {self.tmp}/runs/covidex.r5.1s \ | |
-tmp_base {tmp_folder_name} \ | |
-qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ | |
-index {prebuilt_index_path} \ | |
-tag covidex.r5.1s \ | |
-output {self.tmp}/output.json') | |
with open(f'{self.tmp}/output.json') as json_file: | |
data = json.load(json_file) | |
self.assertEqual("0.3885", data['map']) | |
self.assertEqual("0.8135", data['ndcg']) | |
os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ | |
-alpha 0.6 \ | |
-clf lr \ | |
-vectorizer tfidf \ | |
-new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ | |
-base {self.tmp}/runs/covidex.r5.2s \ | |
-tmp_base {tmp_folder_name} \ | |
-qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ | |
-index {prebuilt_index_path} \ | |
-tag covidex.r5.2s \ | |
-output {self.tmp}/output.json') | |
with open(f'{self.tmp}/output.json') as json_file: | |
data = json.load(json_file) | |
self.assertEqual("0.3922", data['map']) | |
self.assertEqual("0.8311", data['ndcg']) | |
def tearDown(self): | |
shutil.rmtree(self.tmp) | |
if __name__ == '__main__': | |
unittest.main() | |