geonmin-kim's picture
Upload folder using huggingface_hub
d6585f5
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""Integration tests for DPR model using pre-encoded queries."""
import json
import os
import socket
import unittest
from integrations.utils import clean_files, run_command, parse_score_qa
from pyserini.search import QueryEncoder
from pyserini.search import get_topics
class TestSearchIntegration(unittest.TestCase):
def setUp(self):
self.temp_files = []
self.threads = 16
self.batch_size = 256
# Hard-code larger values for internal servers
if socket.gethostname().startswith('damiano') or socket.gethostname().startswith('orca'):
self.threads = 36
self.batch_size = 144
def test_dpr_nq_test_bf_otf(self):
output_file = 'test_run.dpr.nq-test.multi.bf.otf.trec'
retrieval_file = 'test_run.dpr.nq-test.multi.bf.otf.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.faiss --topics dpr-nq-test \
--index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
--output {output_file} \
--batch-size {self.batch_size} --threads {self.threads}'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.7947, places=4)
def test_dpr_nq_test_bf_bm25_hybrid_otf(self):
output_file = 'test_run.dpr.nq-test.multi.bf.otf.bm25.trec'
retrieval_file = 'test_run.dpr.nq-test.multi.bf.otf.bm25.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.hybrid dense --index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
sparse --index wikipedia-dpr \
fusion --alpha 1.3 \
run --topics dpr-nq-test \
--batch-size {self.batch_size} --threads {self.threads} \
--output {output_file} '
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.8260, places=4)
def test_dpr_nq_test_encoded_queries(self):
encoder = QueryEncoder.load_encoded_queries('dpr_multi-nq-test')
topics = get_topics('dpr-nq-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoder.embedding)
def test_dpr_trivia_test_bf_otf(self):
output_file = 'test_run.dpr.trivia-test.multi.bf.otf.trec'
retrieval_file = 'test_run.dpr.trivia-test.multi.bf.otf.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.faiss --topics dpr-trivia-test \
--encoder facebook/dpr-question_encoder-multiset-base \
--index wikipedia-dpr-multi-bf \
--output {output_file} \
--batch-size {self.batch_size} --threads {self.threads}'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-trivia-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.7887, places=4)
def test_dpr_trivia_test_bf_bm25_hybrid_otf(self):
output_file = 'test_run.dpr.trivia-test.multi.bf.otf.bm25.trec'
retrieval_file = 'test_run.dpr.trivia-test.multi.bf.otf.bm25.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.hybrid dense --index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
sparse --index wikipedia-dpr \
fusion --alpha 0.95 \
run --topics dpr-trivia-test \
--batch-size {self.batch_size} --threads {self.threads} \
--output {output_file} '
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-trivia-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.8264, places=4)
def test_dpr_trivia_test_encoded_queries(self):
encoder = QueryEncoder.load_encoded_queries('dpr_multi-trivia-test')
topics = get_topics('dpr-trivia-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoder.embedding)
def test_dpr_wq_test_bf_otf(self):
output_file = 'test_run.dpr.wq-test.multi.bf.otf.trec'
retrieval_file = 'test_run.dpr.wq-test.multi.bf.otf.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.faiss --topics dpr-wq-test \
--index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
--output {output_file} \
--batch-size {self.batch_size} --threads {self.threads}'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-wq-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.7505, places=4)
def test_dpr_wq_test_bf_bm25_hybrid_otf(self):
output_file = 'test_run.dpr.wq-test.multi.bf.otf.bm25.trec'
retrieval_file = 'test_run.dpr.wq-test.multi.bf.otf.bm25.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.hybrid dense --index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
sparse --index wikipedia-dpr \
fusion --alpha 0.95 \
run --topics dpr-wq-test \
--batch-size {self.batch_size} --threads {self.threads} \
--output {output_file} '
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-wq-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.7712, places=4)
def test_dpr_wq_test_encoded_queries(self):
encoder = QueryEncoder.load_encoded_queries('dpr_multi-wq-test')
topics = get_topics('dpr-wq-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoder.embedding)
def test_dpr_curated_test_bf_otf(self):
output_file = 'test_run.dpr.curated-test.multi.bf.otf.trec'
retrieval_file = 'test_run.dpr.curated-test.multi.bf.otf.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.faiss --topics dpr-curated-test \
--index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
--output {output_file} \
--batch-size {self.batch_size} --threads {self.threads}'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-curated-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file} \
--regex'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20 --regex'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.8876, places=4)
def test_dpr_curated_test_bf_bm25_hybrid_otf(self):
output_file = 'test_run.dpr.curated-test.multi.bf.otf.bm25.trec'
retrieval_file = 'test_run.dpr.curated-test.multi.bf.otf.bm25.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.hybrid dense --index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
sparse --index wikipedia-dpr \
fusion --alpha 1.05 \
run --topics dpr-curated-test \
--batch-size {self.batch_size} --threads {self.threads} \
--output {output_file} '
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-curated-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file} \
--regex'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20 --regex'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.9006, places=4)
def test_dpr_curated_test_encoded_queries(self):
encoder = QueryEncoder.load_encoded_queries('dpr_multi-curated-test')
topics = get_topics('dpr-curated-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoder.embedding)
def test_dpr_squad_test_bf_otf(self):
output_file = 'test_run.dpr.squad-test.multi.bf.otf.trec'
retrieval_file = 'test_run.dpr.squad-test.multi.bf.otf.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.faiss --topics dpr-squad-test \
--index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
--output {output_file} \
--batch-size {self.batch_size} --threads {self.threads}'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-squad-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
self.assertAlmostEqual(score, 0.5199, places=4)
def test_dpr_squad_test_bf_bm25_hybrid_otf(self):
output_file = 'test_run.dpr.squad-test.multi.bf.otf.bm25.trec'
retrieval_file = 'test_run.dpr.squad-test.multi.bf.otf.bm25.json'
self.temp_files.extend([output_file, retrieval_file])
cmd1 = f'python -m pyserini.search.hybrid dense --index wikipedia-dpr-multi-bf \
--encoder facebook/dpr-question_encoder-multiset-base \
sparse --index wikipedia-dpr \
fusion --alpha 2.0 \
run --topics dpr-squad-test \
--batch-size {self.batch_size} --threads {self.threads} \
--output {output_file} '
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-squad-test \
--index wikipedia-dpr \
--input {output_file} \
--output {retrieval_file}'
cmd3 = f'python -m pyserini.eval.evaluate_dpr_retrieval --retrieval {retrieval_file} --topk 20'
status1 = os.system(cmd1)
status2 = os.system(cmd2)
stdout, stderr = run_command(cmd3)
score = parse_score_qa(stdout, 'Top20')
self.assertEqual(status1, 0)
self.assertEqual(status2, 0)
# This appears to be a flaky test case; previously, we were getting a score of 0.7511, per
# https://github.com/castorini/pyserini/pull/1273/files#diff-799c2c339e1d7defa31fa1e82f9b16886269b37805376ef93f7c8afedcee574e
# Sometimes we get 0.7512. Fix is to reduce tolerance.
self.assertAlmostEqual(score, 0.7514, places=3)
def test_dpr_squad_test_encoded_queries(self):
encoder = QueryEncoder.load_encoded_queries('dpr_multi-squad-test')
topics = get_topics('dpr-squad-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoder.embedding)
def test_convert_trec_run_to_dpr_retrieval_run(self):
trec_run_file = 'tests/resources/simple_test_run_convert_trec_run_dpr.trec'
topics_file = 'tests/resources/simple_topics_dpr.txt'
dpr_run_file = 'test_run.convert.trec_run.dpr.json'
collection_path = "tests/resources/sample_collection_dense"
topic_reader = "io.anserini.search.topicreader.DprNqTopicReader"
index_dir = 'temp_index'
self.temp_files.extend([dpr_run_file, index_dir])
cmd1 = f'python -m pyserini.index.lucene -collection JsonCollection ' + \
f'-generator DefaultLuceneDocumentGenerator ' + \
f'-threads 1 -input {collection_path} -index {index_dir} -storeRaw'
cmd2 = f'python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics-file {topics_file} \
--topics-reader {topic_reader} \
--index {index_dir} \
--input {trec_run_file} \
--output {dpr_run_file}'
_ = os.system(cmd1)
_ = os.system(cmd2)
with open(dpr_run_file) as f:
topic_data = json.load(f)
self.assertEqual(topic_data["0"]["answers"], ['text'])
self.assertEqual(topic_data["0"]["question"], "what is in document three")
self.assertEqual(topic_data["1"]["answers"], ['contents'])
self.assertEqual(topic_data["1"]["question"], "what is document two")
def tearDown(self):
clean_files(self.temp_files)
if __name__ == '__main__':
unittest.main()