Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import math | |
import os | |
import time | |
from collections import defaultdict | |
from string import Template | |
import yaml | |
from defs_odqa import models, evaluate_dpr_retrieval_metric_definitions | |
from utils import run_dpr_retrieval_eval_and_return_metric, convert_trec_run_to_dpr_retrieval_json, run_fusion, ok_str, fail_str | |
GARRRF_LS = ['answers','titles','sentences'] | |
HITS_1K = set(['GarT5-RRF', 'DPR-DKRR', 'DPR-Hybrid']) | |
def print_results(metric, topics): | |
print(f'Metric = {metric}, Topics = {topics}') | |
for model in models['models']: | |
print(' ' * 32, end='') | |
print(f'{model:30}', end='') | |
key = f'{model}' | |
print(f'{table[key][metric]:7.2f}', end='\n') | |
print('') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser( | |
description='Generate regression matrix for GarDKRR') | |
parser.add_argument('--skip-eval', action='store_true', | |
default=False, help='Skip running trec_eval.') | |
parser.add_argument('--topics', choices=['tqa', 'nq'], | |
help='Topics to be run [tqa, nq]', required=True) | |
parser.add_argument('--full-topk', action='store_true', | |
default=False, help='Run topk 5-1000, default is topk 5-100') | |
args = parser.parse_args() | |
hits = 1000 if args.full_topk else 100 | |
yaml_path = 'pyserini/resources/triviaqa.yaml' if args.topics == "tqa" else 'pyserini/resources/naturalquestion.yaml' | |
topics = 'dpr-trivia-test' if args.topics == 'tqa' else 'nq-test' | |
start = time.time() | |
table = defaultdict(lambda: defaultdict(lambda: 0.0)) | |
with open(yaml_path) as f: | |
yaml_data = yaml.safe_load(f) | |
for condition in yaml_data['conditions']: | |
name = condition['model_name'] | |
cmd_template = condition['command'] | |
if not args.full_topk: | |
# if using topk100 | |
if name in HITS_1K: | |
# if running topk1000 is a must to ensure scores match with the ones in the table | |
hits = 1000 | |
else: | |
hits = 100 | |
print(f'model {name}:') | |
if topics == 'nq-test' and name == 'BM25-k1_0.9_b_0.4_dpr-topics': | |
topics = 'dpr-nq-test' | |
elif args.topics == 'nq': | |
topics = 'nq-test' | |
print(f' - Topics: {topics}') | |
# running retrieval | |
if name == "GarT5-RRF": | |
runfile = [f'runs/run.odqa.{name}.{topics}.{i}.hits-{hits}.txt' for i in GARRRF_LS] | |
else: | |
runfile = [f'runs/run.odqa.{name}.{topics}.hits-{hits}.txt'] | |
if name != "GarT5RRF-DKRR-RRF": | |
cmd = [Template(cmd_template[i]).substitute(output=runfile[i]) for i in range(len(runfile))] | |
if hits == 100: | |
cmd = [i + ' --hits 100' for i in cmd] | |
for i in range(len(runfile)): | |
if not os.path.exists(runfile[i]): | |
print(f' Running: {cmd[i]}') | |
os.system(cmd[i]) | |
# fusion | |
if 'RRF' in name: | |
runs = [] | |
output = '' | |
if name == 'GarT5-RRF': | |
runs = runfile | |
output = f'runs/run.odqa.{name}.{topics}.hits-{hits}.fusion.txt' | |
elif name == 'GarT5RRF-DKRR-RRF': | |
runs = [f'runs/run.odqa.DPR-DKRR.{topics}.hits-1000.txt', f'runs/run.odqa.GarT5-RRF.{topics}.hits-1000.fusion.txt'] | |
output = runfile[0].replace('.txt','.fusion.txt') | |
else: | |
raise NameError('Unexpected model name') | |
if not os.path.exists(output): | |
if not args.full_topk and name != 'GarT5-RRF': | |
# if using topk100, we change it back for methods that require topk1000 to generate runs | |
hits = 100 | |
status = run_fusion(runs, output, hits) | |
if status != 0: | |
raise RuntimeError('fusion failed') | |
runfile = [output] | |
# trec conversion + evaluation | |
if not args.skip_eval: | |
jsonfile = runfile[0].replace('.txt', '.json') | |
runfile = jsonfile.replace('.json','.txt') | |
if not os.path.exists(jsonfile): | |
status = convert_trec_run_to_dpr_retrieval_json( | |
topics, 'wikipedia-dpr', runfile, jsonfile) | |
if status != 0: | |
raise RuntimeError("dpr retrieval convertion failed") | |
topk_defs = evaluate_dpr_retrieval_metric_definitions['Top5-100'] | |
if args.full_topk: | |
topk_defs = evaluate_dpr_retrieval_metric_definitions['Top5-1000'] | |
score = run_dpr_retrieval_eval_and_return_metric(topk_defs, jsonfile) | |
# comparing ground truth scores with the generated ones | |
for expected in condition['scores']: | |
for metric, expected_score in expected.items(): | |
if metric not in score.keys(): continue | |
if not args.skip_eval: | |
if math.isclose(score[metric], float(expected_score),abs_tol=2e-2): | |
result_str = ok_str | |
else: | |
result_str = fail_str + \ | |
f' expected {expected[metric]:.4f}' | |
print(f' {metric:7}: {score[metric]:.2f} {result_str}') | |
table[name][metric] = score[metric] | |
else: | |
table[name][metric] = expected_score | |
print('') | |
metric_ls = ['Top5', 'Top20', 'Top100', 'Top500', 'Top1000'] | |
metric_ls = metric_ls[:3] if not args.full_topk else metric_ls | |
for metric in metric_ls: | |
print_results(metric, topics) | |
end = time.time() | |
print(f'Total elapsed time: {end - start:.0f}s') | |