# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyserini.pyclass import autoclass import json import numpy as np import pandas as pd import spacy import re class Feature: def name(self): return self.extractor.getName() class NormalizedTfIdf(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.NormalizedTfIdf') self.extractor = Jclass(field, qfield) class ProbalitySum(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.ProbalitySum') self.extractor = Jclass(field, qfield) class IbmModel1(Feature): def __init__(self, path, field, tag, qfield): Jclass = autoclass('io.anserini.ltr.feature.IbmModel1') self.extractor = Jclass(path, field, tag, qfield) class Proximity(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.Proximity') self.extractor = Jclass(field, qfield) class TpScore(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.TpScore') self.extractor = Jclass(field, qfield) class TpDist(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.TpDist') self.extractor = Jclass(field, qfield) class DocSize(Feature): def __init__(self, field='contents'): Jclass = autoclass('io.anserini.ltr.feature.DocSize') self.extractor = Jclass(field) class MatchingTermCount(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.MatchingTermCount') self.extractor = Jclass(field, qfield) class QueryLength(Feature): def __init__(self, qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.QueryLength') self.extractor = Jclass(qfield) class SCS(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.SCS') self.extractor = Jclass(field, qfield) class SumMatchingTF(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.SumMatchingTF') self.extractor = Jclass(field, qfield) class QueryCoverageRatio(Feature): def __init__(self, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.QueryCoverageRatio') self.extractor = Jclass(field, qfield) class RunList(Feature): def __init__(self,filename,tag): Jclass = autoclass('io.anserini.ltr.feature.RunList') self.extractor = Jclass(filename,tag) class UniqueTermCount(Feature): def __init__(self, qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.UniqueTermCount') self.extractor = Jclass(qfield) class UnorderedSequentialPairs(Feature): def __init__(self, gap=8, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.UnorderedSequentialPairs') self.extractor = Jclass(gap, field, qfield) class OrderedSequentialPairs(Feature): def __init__(self, gap=8, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.OrderedSequentialPairs') self.extractor = Jclass(gap, field, qfield) class UnorderedQueryPairs(Feature): def __init__(self, gap=8, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.UnorderedQueryPairs') self.extractor = Jclass(gap, field, qfield) class OrderedQueryPairs(Feature): def __init__(self, gap=8, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.OrderedQueryPairs') self.extractor = Jclass(gap, field, qfield) class AvgPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.AvgPooler') self.extractor = Jclass() class SumPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.SumPooler') self.extractor = Jclass() class MedianPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.MedianPooler') self.extractor = Jclass() class MinPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.MinPooler') self.extractor = Jclass() class MaxPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.MaxPooler') self.extractor = Jclass() class VarPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.VarPooler') self.extractor = Jclass() class ConfidencePooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.ConfidencePooler') self.extractor = Jclass() class MaxMinRatioPooler(Feature): def __init__(self): Jclass = autoclass('io.anserini.ltr.MaxMinRatioPooler') self.extractor = Jclass() class TfStat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.TfStat') self.extractor = Jclass(pooler.extractor, field, qfield) class TfIdfStat(Feature): def __init__(self, sublinear, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.TfIdfStat') JBoolean = autoclass('java.lang.Boolean') self.extractor = Jclass(JBoolean(sublinear), pooler.extractor, field, qfield) class NormalizedTfStat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.NormalizedTfStat') self.extractor = Jclass(pooler.extractor, field, qfield) class IdfStat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.IdfStat') self.extractor = Jclass(pooler.extractor, field, qfield) class IcTfStat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.IcTfStat') self.extractor = Jclass(pooler.extractor, field, qfield) class BM25Stat(Feature): def __init__(self, pooler, k1=0.9, b=0.4, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.BM25Stat') self.extractor = Jclass(pooler.extractor, k1, b, field, qfield) class DfrInExpB2Stat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.DfrInExpB2Stat') self.extractor = Jclass(pooler.extractor, field, qfield) class DphStat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.DphStat') self.extractor = Jclass(pooler.extractor, field, qfield) class LmDirStat(Feature): def __init__(self, pooler, mu=1000, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.LmDirStat') self.extractor = Jclass(pooler.extractor, mu, field, qfield) class DfrGl2Stat(Feature): def __init__(self, pooler, field='contents', qfield='analyzed'): Jclass = autoclass('io.anserini.ltr.feature.DfrGl2Stat') self.extractor = Jclass(pooler.extractor, field, qfield) class FeatureExtractor: def __init__(self, index_dir, worker_num=1): JFeatureExtractorUtils = autoclass('io.anserini.ltr.FeatureExtractorUtils') self.utils = JFeatureExtractorUtils(index_dir, worker_num) self.feature_name = [] def add(self, pyclass): """ add feature extractor; cannot add feature extractors in the middle of extraction Parameters ---------- pyclass: Feature an initialized feature extractor """ self.utils.add(pyclass.extractor) self.feature_name.append(pyclass.name()) def feature_names(self): """ get all feature names Returns ------- List[str] all the feature names in order """ return self.feature_name def lazy_extract(self, qid, doc_ids, query_dict): input = {'qid': qid, 'docIds': doc_ids} input.update(query_dict) self.utils.lazyExtract(json.dumps(input)) def batch_extract(self, tasks): need_rows = 0 for task in tasks: self.lazy_extract(task['qid'], task['docIds'], task['query_dict']) need_rows += len(task['docIds']) feature_name = self.feature_names() feature = np.zeros(shape=(need_rows, len(feature_name)), dtype=np.float32) idx = 0 for task in tasks: flattened = self.get_result(task['qid']) feature[idx:idx+len(task['docIds']),:] = flattened.reshape(len(task['docIds']), len(feature_name)) idx += len(task['docIds']) return pd.DataFrame(feature, columns=feature_name) def get_result(self, qid): res = self.utils.getResult(qid).tostring() dt = np.dtype(np.float32) dt = dt.newbyteorder('>') return np.frombuffer(res, dt) class SpacyTextParser: def __init__(self, model_name, remove_punct=True, sent_split=False, keep_only_alpha_num=False, lower_case=True, enable_POS=True): disable_list = ['ner', 'parser'] if not enable_POS: disable_list.append('tagger') print('Disabled Spacy components: ', disable_list) self._nlp = spacy.load(model_name, disable=disable_list) if sent_split: sentencizer = self._nlp.create_pipe("sentencizer") self._nlp.add_pipe(sentencizer) self._remove_punct = remove_punct sw = ['a', 'about', 'above', 'according', 'across', 'after', 'afterwards', 'again', 'against', 'albeit', 'all', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'an', 'and', 'another', 'any', 'anybody', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'apart', 'are', 'around', 'as', 'at', 'av', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'both', 'but', 'by', 'can', 'cannot', 'canst', 'certain', 'cf', 'choose', 'contrariwise', 'cos', 'could', 'cu', 'day', 'do', 'does', "doesn't", 'doing', 'dost', 'doth', 'double', 'down', 'dual', 'during', 'each', 'either', 'else', 'elsewhere', 'enough', 'et', 'etc', 'even', 'ever', 'every', 'everybody', 'everyone', 'everything', 'everywhere', 'except', 'excepted', 'excepting', 'exception', 'exclude', 'excluding', 'exclusive', 'far', 'farther', 'farthest', 'few', 'ff', 'first', 'for', 'formerly', 'forth', 'forward', 'from', 'front', 'further', 'furthermore', 'furthest', 'get', 'go', 'had', 'halves', 'hardly', 'has', 'hast', 'hath', 'have', 'he', 'hence', 'henceforth', 'her', 'here', 'hereabouts', 'hereafter', 'hereby', 'herein', 'hereto', 'hereupon', 'hers', 'herself', 'him', 'himself', 'hindmost', 'his', 'hither', 'hitherto', 'how', 'however', 'howsoever', 'i', 'ie', 'if', 'in', 'inasmuch', 'inc', 'include', 'included', 'including', 'indeed', 'indoors', 'inside', 'insomuch', 'instead', 'into', 'inward', 'inwards', 'is', 'it', 'its', 'itself', 'just', 'kind', 'kg', 'km', 'last', 'latter', 'latterly', 'less', 'lest', 'let', 'like', 'little', 'ltd', 'many', 'may', 'maybe', 'me', 'meantime', 'meanwhile', 'might', 'moreover', 'most', 'mostly', 'more', 'mr', 'mrs', 'ms', 'much', 'must', 'my', 'myself', 'namely', 'need', 'neither', 'never', 'nevertheless', 'next', 'no', 'nobody', 'none', 'nonetheless', 'noone', 'nope', 'nor', 'not', 'nothing', 'notwithstanding', 'now', 'nowadays', 'nowhere', 'of', 'off', 'often', 'ok', 'on', 'once', 'one', 'only', 'onto', 'or', 'other', 'others', 'otherwise', 'ought', 'our', 'ours', 'ourselves', 'out', 'outside', 'over', 'own', 'per', 'perhaps', 'plenty', 'provide', 'quite', 'rather', 'really', 'round', 'said', 'sake', 'same', 'sang', 'save', 'saw', 'see', 'seeing', 'seem', 'seemed', 'seeming', 'seems', 'seen', 'seldom', 'selves', 'sent', 'several', 'shalt', 'she', 'should', 'shown', 'sideways', 'since', 'slept', 'slew', 'slung', 'slunk', 'smote', 'so', 'some', 'somebody', 'somehow', 'someone', 'something', 'sometime', 'sometimes', 'somewhat', 'somewhere', 'spake', 'spat', 'spoke', 'spoken', 'sprang', 'sprung', 'stave', 'staves', 'still', 'such', 'supposing', 'than', 'that', 'the', 'thee', 'their', 'them', 'themselves', 'then', 'thence', 'thenceforth', 'there', 'thereabout', 'thereabouts', 'thereafter', 'thereby', 'therefore', 'therein', 'thereof', 'thereon', 'thereto', 'thereupon', 'these', 'they', 'this', 'those', 'thou', 'though', 'thrice', 'through', 'throughout', 'thru', 'thus', 'thy', 'thyself', 'till', 'to', 'together', 'too', 'toward', 'towards', 'ugh', 'unable', 'under', 'underneath', 'unless', 'unlike', 'until', 'up', 'upon', 'upward', 'upwards', 'us', 'use', 'used', 'using', 'very', 'via', 'vs', 'want', 'was', 'we', 'week', 'well', 'were', 'what', 'whatever', 'whatsoever', 'when', 'whence', 'whenever', 'whensoever', 'where', 'whereabouts', 'whereafter', 'whereas', 'whereat', 'whereby', 'wherefore', 'wherefrom', 'wherein', 'whereinto', 'whereof', 'whereon', 'wheresoever', 'whereto', 'whereunto', 'whereupon', 'wherever', 'wherewith', 'whether', 'whew', 'which', 'whichever', 'whichsoever', 'while', 'whilst', 'whither', 'who', 'whoa', 'whoever', 'whole', 'whom', 'whomever', 'whomsoever', 'whose', 'whosoever', 'why', 'will', 'wilt', 'with', 'within', 'without', 'worse', 'worst', 'would', 'wow', 'ye', 'yet', 'year', 'yippee', 'you', 'your', 'yours', 'yourself', 'yourselves', "n't", "'d", "'ll", "'m", "'re", "'s", "'ves"] stopwords = set(sw) self._stopwords = frozenset([w.lower() for w in stopwords]) self._keep_only_alpha_num = keep_only_alpha_num self._lower_case = lower_case @staticmethod def _basic_clean(text): return text.replace("’", "'") def __call__(self, text): return self._nlp(SpacyTextParser._basic_clean(text)) def is_alpha_num(self, s): return s and (re.match("^[a-zA-Z-_.0-9]+$", s) is not None) def proc_text(self, text): lemmas = [] tokens = [] doc = self(text) for tokObj in doc: if self._remove_punct and tokObj.is_punct: continue lemma = tokObj.lemma_ text = tokObj.text if self._keep_only_alpha_num and not self.is_alpha_num(text): continue tok1 = text.lower() tok2 = lemma.lower() if tok1 in self._stopwords or tok2 in self._stopwords: continue if self._lower_case: text = text.lower() lemma = lemma.lower() lemmas.append(lemma) tokens.append(text) return ' '.join(lemmas), ' '.join(tokens)