Spaces:
Build error
Build error
File size: 9,666 Bytes
d7a991a c6cc682 d7a991a c6cc682 d7a991a 6cacefa d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 d7a991a c6cc682 71c1877 d7a991a c6cc682 d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import argparse
import os
from pathlib import Path
import tempfile
import tarfile
import sys
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
# print file path
print(os.path.abspath(__file__))
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')
sys.path.append('/home/user/app/pyrender')
from hamer.configs import get_config
from hamer.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
ViTDetDataset)
from hamer.models import HAMER
from hamer.utils import recursive_to
from hamer.utils.renderer import Renderer, cam_crop_to_full
def extract_tar() -> None:
if Path('mmdet_configs/configs').exists():
return
with tarfile.open('mmdet_configs/configs.tar') as f:
f.extractall('mmdet_configs')
extract_tar()
#from vitpose_model import DetModel
#try:
# import detectron2
#except:
# import os
# os.system('pip install --upgrade pip')
# os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
#try:
# from vitpose_model import ViTPoseModel
#except:
# os.system('pip install -v -e /home/user/app/vendor/ViTPose')
# from vitpose_model import ViTPoseModel
from vitpose_model import ViTPoseModel
OUT_FOLDER = 'demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
# Setup HaMeR model
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
DEFAULT_CHECKPOINT='_DATA/hamer_ckpts/checkpoints/hamer.ckpt'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
# Override some config values, to crop bbox correctly
if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL):
model_cfg.defrost()
assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone"
model_cfg.MODEL.BBOX_SHAPE = [192,256]
model_cfg.freeze()
model = HAMER.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
model.eval()
# Load detector
#from detectron2.config import LazyConfig
#from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
#detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
#detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
#for i in range(3):
# detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
#detector = DefaultPredictor_Lazy(detectron2_cfg)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.mano.faces)
# mmdet detector
#det_model = DetModel()
det_model = torch.hub.load('ultralytics/yolov5', 'yolov5x6')
# keypoint detector
cpm = ViTPoseModel(device)
import numpy as np
def infer(in_pil_img, in_threshold=0.4, out_pil_img=None):
print(in_threshold)
open_cv_image = np.array(in_pil_img)
det_out = det_model(open_cv_image)
det_out = det_out.xyxy[0]
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
print("EEEEE", open_cv_image.shape)
print(det_out)
#det_out = detector(open_cv_image)
scores = det_out[:,4]
det_instances = det_out[:,5]
print(scores)
print(det_instances)
valid_idx = (det_instances==0) & (scores > in_threshold)
print(valid_idx)
pred_bboxes=det_out[valid_idx,:4].cpu().numpy()
pred_scores=scores[valid_idx].cpu().numpy()
# Detect human keypoints for each person
vitposes_out = cpm.predict_pose(
open_cv_image,
[np.concatenate([pred_bboxes, pred_scores[:, None]], axis=1)],
)
bboxes = []
is_right = []
# Use hands based on hand keypoint detections
for vitposes in vitposes_out:
left_hand_keyp = vitposes['keypoints'][-42:-21]
right_hand_keyp = vitposes['keypoints'][-21:]
# Rejecting not confident detections (this could be improved)
keyp = left_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(0)
keyp = right_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(1)
if len(bboxes) == 0:
return None, []
boxes = np.stack(bboxes)
right = np.stack(is_right)
print(boxes)
print(right)
print(open_cv_image)
# Run HaMeR on all detected humans
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes, right)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
all_right = []
all_mesh_paths = []
temp_name = next(tempfile._get_candidate_names())
for batch in dataloader:
batch = recursive_to(batch, device)
print(batch['img'])
with torch.no_grad():
out = model(batch)
multiplier = (2*batch['right']-1)
pred_cam = out['pred_cam']
print(out['pred_vertices'])
print(pred_cam)
pred_cam[:,1] = multiplier*pred_cam[:,1]
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
multiplier = (2*batch['right']-1)
render_size = img_size
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, scaled_focal_length).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
verts = out['pred_vertices'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
verts[:,0] = (2*is_right-1)*verts[:,0]
cam_t = pred_cam_t[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
all_right.append(is_right)
# Save all meshes to disk
# if args.save_mesh:
if True:
camera_translation = cam_t.copy()
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE, is_right=is_right)
temp_path = os.path.join(f'{OUT_FOLDER}/{temp_name}_{person_id}.obj')
tmesh.export(temp_path)
all_mesh_paths.append(temp_path)
# Render front view
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], is_right=all_right, **misc_args)
# Overlay image
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
# convert to PIL image
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
return out_pil_img, all_mesh_paths
else:
return None, []
with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
#title="HaMeR"
#description="Gradio Demo for HaMeR."
#gr.HTML("""<h1>HaMeR</h1>""")
#gr.HTML("""<h3>Gradio Demo for HaMeR. You can select an </h3>""")
gr.HTML("""<div style="font-weight:bold; text-align:center; font-size: 30px;">HaMeR</div>""")
gr.HTML("""<div style="text-align:left; font-size: 20px;">Demo for HaMeR. You can drop an image at the top-left panel
(or select one of the examples) and you will get the 3D reconstructions of the detected hands on the right.
You can also download the .obj files for each hand reconstruction.</div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="pil")
with gr.Column():
output_image = gr.Image(label="Reconstructions", type="pil")
output_meshes = gr.File(label="3D meshes")
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/test1.jpg'],
['/home/user/app/assets/test2.jpg'],
['/home/user/app/assets/test3.jpg'],
['/home/user/app/assets/test5.jpg'],
],
inputs=input_image)
#demo.queue()
demo.launch(debug=True)
### EOF ### |