File size: 15,503 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import mmcv
import torch
from mmcv.image import imwrite
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.image import imshow

from mmpose.core.evaluation import (aggregate_scale, aggregate_stage_flip,
                                    flip_feature_maps, get_group_preds,
                                    split_ae_outputs)
from mmpose.core.post_processing.group import HeatmapParser
from mmpose.core.visualization import imshow_keypoints
from .. import builder
from ..builder import POSENETS
from .base import BasePose

try:
    from mmcv.runner import auto_fp16
except ImportError:
    warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
                  'Please install mmcv>=1.1.4')
    from mmpose.core import auto_fp16


@POSENETS.register_module()
class AssociativeEmbedding(BasePose):
    """Associative embedding pose detectors.

    Args:
        backbone (dict): Backbone modules to extract feature.
        keypoint_head (dict): Keypoint head to process feature.
        train_cfg (dict): Config for training. Default: None.
        test_cfg (dict): Config for testing. Default: None.
        pretrained (str): Path to the pretrained models.
        loss_pose (None): Deprecated arguments. Please use
            ``loss_keypoint`` for heads instead.
    """

    def __init__(self,
                 backbone,
                 keypoint_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 loss_pose=None):
        super().__init__()
        self.fp16_enabled = False

        self.backbone = builder.build_backbone(backbone)

        if keypoint_head is not None:
            if 'loss_keypoint' not in keypoint_head and loss_pose is not None:
                warnings.warn(
                    '`loss_pose` for BottomUp is deprecated, '
                    'use `loss_keypoint` for heads instead. See '
                    'https://github.com/open-mmlab/mmpose/pull/382'
                    ' for more information.', DeprecationWarning)
                keypoint_head['loss_keypoint'] = loss_pose

            self.keypoint_head = builder.build_head(keypoint_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.use_udp = test_cfg.get('use_udp', False)
        self.parser = HeatmapParser(self.test_cfg)
        self.init_weights(pretrained=pretrained)

    @property
    def with_keypoint(self):
        """Check if has keypoint_head."""
        return hasattr(self, 'keypoint_head')

    def init_weights(self, pretrained=None):
        """Weight initialization for model."""
        self.backbone.init_weights(pretrained)
        if self.with_keypoint:
            self.keypoint_head.init_weights()

    @auto_fp16(apply_to=('img', ))
    def forward(self,
                img=None,
                targets=None,
                masks=None,
                joints=None,
                img_metas=None,
                return_loss=True,
                return_heatmap=False,
                **kwargs):
        """Calls either forward_train or forward_test depending on whether
        return_loss is True.

        Note:
            - batch_size: N
            - num_keypoints: K
            - num_img_channel: C
            - img_width: imgW
            - img_height: imgH
            - heatmaps weight: W
            - heatmaps height: H
            - max_num_people: M

        Args:
            img (torch.Tensor[N,C,imgH,imgW]): Input image.
            targets (list(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
            masks (list(torch.Tensor[N,H,W])): Masks of multi-scale target
                heatmaps
            joints (list(torch.Tensor[N,M,K,2])): Joints of multi-scale target
                heatmaps for ae loss
            img_metas (dict): Information about val & test.
                By default it includes:

                - "image_file": image path
                - "aug_data": input
                - "test_scale_factor": test scale factor
                - "base_size": base size of input
                - "center": center of image
                - "scale": scale of image
                - "flip_index": flip index of keypoints
            return loss (bool): ``return_loss=True`` for training,
                ``return_loss=False`` for validation & test.
            return_heatmap (bool) : Option to return heatmap.

        Returns:
            dict|tuple: if 'return_loss' is true, then return losses. \
                Otherwise, return predicted poses, scores, image \
                paths and heatmaps.
        """

        if return_loss:
            return self.forward_train(img, targets, masks, joints, img_metas,
                                      **kwargs)
        return self.forward_test(
            img, img_metas, return_heatmap=return_heatmap, **kwargs)

    def forward_train(self, img, targets, masks, joints, img_metas, **kwargs):
        """Forward the bottom-up model and calculate the loss.

        Note:
            batch_size: N
            num_keypoints: K
            num_img_channel: C
            img_width: imgW
            img_height: imgH
            heatmaps weight: W
            heatmaps height: H
            max_num_people: M

        Args:
            img (torch.Tensor[N,C,imgH,imgW]): Input image.
            targets (List(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
            masks (List(torch.Tensor[N,H,W])): Masks of multi-scale target
                                              heatmaps
            joints (List(torch.Tensor[N,M,K,2])): Joints of multi-scale target
                                                 heatmaps for ae loss
            img_metas (dict):Information about val&test
                By default this includes:
                - "image_file": image path
                - "aug_data": input
                - "test_scale_factor": test scale factor
                - "base_size": base size of input
                - "center": center of image
                - "scale": scale of image
                - "flip_index": flip index of keypoints

        Returns:
            dict: The total loss for bottom-up
        """

        output = self.backbone(img)

        if self.with_keypoint:
            output = self.keypoint_head(output)

        # if return loss
        losses = dict()
        if self.with_keypoint:
            keypoint_losses = self.keypoint_head.get_loss(
                output, targets, masks, joints)
            losses.update(keypoint_losses)

        return losses

    def forward_dummy(self, img):
        """Used for computing network FLOPs.

        See ``tools/get_flops.py``.

        Args:
            img (torch.Tensor): Input image.

        Returns:
            Tensor: Outputs.
        """
        output = self.backbone(img)
        if self.with_keypoint:
            output = self.keypoint_head(output)
        return output

    def forward_test(self, img, img_metas, return_heatmap=False, **kwargs):
        """Inference the bottom-up model.

        Note:
            - Batchsize: N (currently support batchsize = 1)
            - num_img_channel: C
            - img_width: imgW
            - img_height: imgH

        Args:
            flip_index (List(int)):
            aug_data (List(Tensor[NxCximgHximgW])): Multi-scale image
            test_scale_factor (List(float)): Multi-scale factor
            base_size (Tuple(int)): Base size of image when scale is 1
            center (np.ndarray): center of image
            scale (np.ndarray): the scale of image
        """
        assert img.size(0) == 1
        assert len(img_metas) == 1

        img_metas = img_metas[0]

        aug_data = img_metas['aug_data']

        test_scale_factor = img_metas['test_scale_factor']
        base_size = img_metas['base_size']
        center = img_metas['center']
        scale = img_metas['scale']

        result = {}

        scale_heatmaps_list = []
        scale_tags_list = []

        for idx, s in enumerate(sorted(test_scale_factor, reverse=True)):
            image_resized = aug_data[idx].to(img.device)

            features = self.backbone(image_resized)
            if self.with_keypoint:
                outputs = self.keypoint_head(features)

            heatmaps, tags = split_ae_outputs(
                outputs, self.test_cfg['num_joints'],
                self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
                self.test_cfg.get('select_output_index', range(len(outputs))))

            if self.test_cfg.get('flip_test', True):
                # use flip test
                features_flipped = self.backbone(
                    torch.flip(image_resized, [3]))
                if self.with_keypoint:
                    outputs_flipped = self.keypoint_head(features_flipped)

                heatmaps_flipped, tags_flipped = split_ae_outputs(
                    outputs_flipped, self.test_cfg['num_joints'],
                    self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
                    self.test_cfg.get('select_output_index',
                                      range(len(outputs))))

                heatmaps_flipped = flip_feature_maps(
                    heatmaps_flipped, flip_index=img_metas['flip_index'])
                if self.test_cfg['tag_per_joint']:
                    tags_flipped = flip_feature_maps(
                        tags_flipped, flip_index=img_metas['flip_index'])
                else:
                    tags_flipped = flip_feature_maps(
                        tags_flipped, flip_index=None, flip_output=True)

            else:
                heatmaps_flipped = None
                tags_flipped = None

            aggregated_heatmaps = aggregate_stage_flip(
                heatmaps,
                heatmaps_flipped,
                index=-1,
                project2image=self.test_cfg['project2image'],
                size_projected=base_size,
                align_corners=self.test_cfg.get('align_corners', True),
                aggregate_stage='average',
                aggregate_flip='average')

            aggregated_tags = aggregate_stage_flip(
                tags,
                tags_flipped,
                index=-1,
                project2image=self.test_cfg['project2image'],
                size_projected=base_size,
                align_corners=self.test_cfg.get('align_corners', True),
                aggregate_stage='concat',
                aggregate_flip='concat')

            if s == 1 or len(test_scale_factor) == 1:
                if isinstance(aggregated_tags, list):
                    scale_tags_list.extend(aggregated_tags)
                else:
                    scale_tags_list.append(aggregated_tags)

            if isinstance(aggregated_heatmaps, list):
                scale_heatmaps_list.extend(aggregated_heatmaps)
            else:
                scale_heatmaps_list.append(aggregated_heatmaps)

        aggregated_heatmaps = aggregate_scale(
            scale_heatmaps_list,
            align_corners=self.test_cfg.get('align_corners', True),
            aggregate_scale='average')

        aggregated_tags = aggregate_scale(
            scale_tags_list,
            align_corners=self.test_cfg.get('align_corners', True),
            aggregate_scale='unsqueeze_concat')

        heatmap_size = aggregated_heatmaps.shape[2:4]
        tag_size = aggregated_tags.shape[2:4]
        if heatmap_size != tag_size:
            tmp = []
            for idx in range(aggregated_tags.shape[-1]):
                tmp.append(
                    torch.nn.functional.interpolate(
                        aggregated_tags[..., idx],
                        size=heatmap_size,
                        mode='bilinear',
                        align_corners=self.test_cfg.get('align_corners',
                                                        True)).unsqueeze(-1))
            aggregated_tags = torch.cat(tmp, dim=-1)

        # perform grouping
        grouped, scores = self.parser.parse(aggregated_heatmaps,
                                            aggregated_tags,
                                            self.test_cfg['adjust'],
                                            self.test_cfg['refine'])

        preds = get_group_preds(
            grouped,
            center,
            scale, [aggregated_heatmaps.size(3),
                    aggregated_heatmaps.size(2)],
            use_udp=self.use_udp)

        image_paths = []
        image_paths.append(img_metas['image_file'])

        if return_heatmap:
            output_heatmap = aggregated_heatmaps.detach().cpu().numpy()
        else:
            output_heatmap = None

        result['preds'] = preds
        result['scores'] = scores
        result['image_paths'] = image_paths
        result['output_heatmap'] = output_heatmap

        return result

    @deprecated_api_warning({'pose_limb_color': 'pose_link_color'},
                            cls_name='AssociativeEmbedding')
    def show_result(self,
                    img,
                    result,
                    skeleton=None,
                    kpt_score_thr=0.3,
                    bbox_color=None,
                    pose_kpt_color=None,
                    pose_link_color=None,
                    radius=4,
                    thickness=1,
                    font_scale=0.5,
                    win_name='',
                    show=False,
                    show_keypoint_weight=False,
                    wait_time=0,
                    out_file=None):
        """Draw `result` over `img`.

        Args:
            img (str or Tensor): The image to be displayed.
            result (list[dict]): The results to draw over `img`
                (bbox_result, pose_result).
            skeleton (list[list]): The connection of keypoints.
                skeleton is 0-based indexing.
            kpt_score_thr (float, optional): Minimum score of keypoints
                to be shown. Default: 0.3.
            pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
                If None, do not draw keypoints.
            pose_link_color (np.array[Mx3]): Color of M links.
                If None, do not draw links.
            radius (int): Radius of circles.
            thickness (int): Thickness of lines.
            font_scale (float): Font scales of texts.
            win_name (str): The window name.
            show (bool): Whether to show the image. Default: False.
            show_keypoint_weight (bool): Whether to change the transparency
                using the predicted confidence scores of keypoints.
            wait_time (int): Value of waitKey param.
                Default: 0.
            out_file (str or None): The filename to write the image.
                Default: None.

        Returns:
            Tensor: Visualized image only if not `show` or `out_file`
        """
        img = mmcv.imread(img)
        img = img.copy()
        img_h, img_w, _ = img.shape

        pose_result = []
        for res in result:
            pose_result.append(res['keypoints'])

        imshow_keypoints(img, pose_result, skeleton, kpt_score_thr,
                         pose_kpt_color, pose_link_color, radius, thickness)

        if show:
            imshow(img, win_name, wait_time)

        if out_file is not None:
            imwrite(img, out_file)

        return img