File size: 15,638 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import mmcv
import numpy as np
import torch

from mmpose.core.visualization.image import imshow_mesh_3d
from mmpose.models.misc.discriminator import SMPLDiscriminator
from .. import builder
from ..builder import POSENETS
from .base import BasePose


def set_requires_grad(nets, requires_grad=False):
    """Set requies_grad for all the networks.

    Args:
        nets (nn.Module | list[nn.Module]): A list of networks or a single
            network.
        requires_grad (bool): Whether the networks require gradients or not
    """
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for param in net.parameters():
                param.requires_grad = requires_grad


@POSENETS.register_module()
class ParametricMesh(BasePose):
    """Model-based 3D human mesh detector. Take a single color image as input
    and output 3D joints, SMPL parameters and camera parameters.

    Args:
        backbone (dict): Backbone modules to extract feature.
        mesh_head (dict): Mesh head to process feature.
        smpl (dict): Config for SMPL model.
        disc (dict): Discriminator for SMPL parameters. Default: None.
        loss_gan (dict): Config for adversarial loss. Default: None.
        loss_mesh (dict): Config for mesh loss. Default: None.
        train_cfg (dict): Config for training. Default: None.
        test_cfg (dict): Config for testing. Default: None.
        pretrained (str): Path to the pretrained models.
    """

    def __init__(self,
                 backbone,
                 mesh_head,
                 smpl,
                 disc=None,
                 loss_gan=None,
                 loss_mesh=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super().__init__()

        self.backbone = builder.build_backbone(backbone)
        self.mesh_head = builder.build_head(mesh_head)
        self.generator = torch.nn.Sequential(self.backbone, self.mesh_head)

        self.smpl = builder.build_mesh_model(smpl)

        self.with_gan = disc is not None and loss_gan is not None
        if self.with_gan:
            self.discriminator = SMPLDiscriminator(**disc)
            self.loss_gan = builder.build_loss(loss_gan)
        self.disc_step_count = 0

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.loss_mesh = builder.build_loss(loss_mesh)
        self.init_weights(pretrained=pretrained)

    def init_weights(self, pretrained=None):
        """Weight initialization for model."""
        self.backbone.init_weights(pretrained)
        self.mesh_head.init_weights()
        if self.with_gan:
            self.discriminator.init_weights()

    def train_step(self, data_batch, optimizer, **kwargs):
        """Train step function.

        In this function, the detector will finish the train step following
        the pipeline:

            1. get fake and real SMPL parameters
            2. optimize discriminator (if have)
            3. optimize generator

        If `self.train_cfg.disc_step > 1`, the train step will contain multiple
        iterations for optimizing discriminator with different input data and
        only one iteration for optimizing generator after `disc_step`
        iterations for discriminator.

        Args:
            data_batch (torch.Tensor): Batch of data as input.
            optimizer (dict[torch.optim.Optimizer]): Dict with optimizers for
                generator and discriminator (if have).

        Returns:
            outputs (dict): Dict with loss, information for logger,
            the number of samples.
        """

        img = data_batch['img']
        pred_smpl = self.generator(img)
        pred_pose, pred_beta, pred_camera = pred_smpl

        # optimize discriminator (if have)
        if self.train_cfg['disc_step'] > 0 and self.with_gan:
            set_requires_grad(self.discriminator, True)
            fake_data = (pred_camera.detach(), pred_pose.detach(),
                         pred_beta.detach())
            mosh_theta = data_batch['mosh_theta']
            real_data = (mosh_theta[:, :3], mosh_theta[:,
                                                       3:75], mosh_theta[:,
                                                                         75:])
            fake_score = self.discriminator(fake_data)
            real_score = self.discriminator(real_data)

            disc_losses = {}
            disc_losses['real_loss'] = self.loss_gan(
                real_score, target_is_real=True, is_disc=True)
            disc_losses['fake_loss'] = self.loss_gan(
                fake_score, target_is_real=False, is_disc=True)
            loss_disc, log_vars_d = self._parse_losses(disc_losses)

            optimizer['discriminator'].zero_grad()
            loss_disc.backward()
            optimizer['discriminator'].step()
            self.disc_step_count = \
                (self.disc_step_count + 1) % self.train_cfg['disc_step']

            if self.disc_step_count != 0:
                outputs = dict(
                    loss=loss_disc,
                    log_vars=log_vars_d,
                    num_samples=len(next(iter(data_batch.values()))))
                return outputs

        # optimize generator
        pred_out = self.smpl(
            betas=pred_beta,
            body_pose=pred_pose[:, 1:],
            global_orient=pred_pose[:, :1])
        pred_vertices, pred_joints_3d = pred_out['vertices'], pred_out[
            'joints']

        gt_beta = data_batch['beta']
        gt_pose = data_batch['pose']
        gt_vertices = self.smpl(
            betas=gt_beta,
            body_pose=gt_pose[:, 3:],
            global_orient=gt_pose[:, :3])['vertices']

        pred = dict(
            pose=pred_pose,
            beta=pred_beta,
            camera=pred_camera,
            vertices=pred_vertices,
            joints_3d=pred_joints_3d)

        target = {
            key: data_batch[key]
            for key in [
                'pose', 'beta', 'has_smpl', 'joints_3d', 'joints_2d',
                'joints_3d_visible', 'joints_2d_visible'
            ]
        }
        target['vertices'] = gt_vertices

        losses = self.loss_mesh(pred, target)

        if self.with_gan:
            set_requires_grad(self.discriminator, False)
            pred_theta = (pred_camera, pred_pose, pred_beta)
            pred_score = self.discriminator(pred_theta)
            loss_adv = self.loss_gan(
                pred_score, target_is_real=True, is_disc=False)
            losses['adv_loss'] = loss_adv

        loss, log_vars = self._parse_losses(losses)
        optimizer['generator'].zero_grad()
        loss.backward()
        optimizer['generator'].step()

        outputs = dict(
            loss=loss,
            log_vars=log_vars,
            num_samples=len(next(iter(data_batch.values()))))

        return outputs

    def forward_train(self, *args, **kwargs):
        """Forward function for training.

        For ParametricMesh, we do not use this interface.
        """
        raise NotImplementedError('This interface should not be used in '
                                  'current training schedule. Please use '
                                  '`train_step` for training.')

    def val_step(self, data_batch, **kwargs):
        """Forward function for evaluation.

        Args:
            data_batch (dict): Contain data for forward.

        Returns:
            dict: Contain the results from model.
        """
        output = self.forward_test(**data_batch, **kwargs)
        return output

    def forward_dummy(self, img):
        """Used for computing network FLOPs.

        See ``tools/get_flops.py``.

        Args:
            img (torch.Tensor): Input image.

        Returns:
            Tensor: Outputs.
        """
        output = self.generator(img)
        return output

    def forward_test(self,
                     img,
                     img_metas,
                     return_vertices=False,
                     return_faces=False,
                     **kwargs):
        """Defines the computation performed at every call when testing."""

        pred_smpl = self.generator(img)
        pred_pose, pred_beta, pred_camera = pred_smpl
        pred_out = self.smpl(
            betas=pred_beta,
            body_pose=pred_pose[:, 1:],
            global_orient=pred_pose[:, :1])
        pred_vertices, pred_joints_3d = pred_out['vertices'], pred_out[
            'joints']

        all_preds = {}
        all_preds['keypoints_3d'] = pred_joints_3d.detach().cpu().numpy()
        all_preds['smpl_pose'] = pred_pose.detach().cpu().numpy()
        all_preds['smpl_beta'] = pred_beta.detach().cpu().numpy()
        all_preds['camera'] = pred_camera.detach().cpu().numpy()

        if return_vertices:
            all_preds['vertices'] = pred_vertices.detach().cpu().numpy()
        if return_faces:
            all_preds['faces'] = self.smpl.get_faces()

        all_boxes = []
        image_path = []
        for img_meta in img_metas:
            box = np.zeros(6, dtype=np.float32)
            c = img_meta['center']
            s = img_meta['scale']
            if 'bbox_score' in img_metas:
                score = np.array(img_metas['bbox_score']).reshape(-1)
            else:
                score = 1.0
            box[0:2] = c
            box[2:4] = s
            box[4] = np.prod(s * 200.0, axis=0)
            box[5] = score
            all_boxes.append(box)
            image_path.append(img_meta['image_file'])

        all_preds['bboxes'] = np.stack(all_boxes, axis=0)
        all_preds['image_path'] = image_path
        return all_preds

    def get_3d_joints_from_mesh(self, vertices):
        """Get 3D joints from 3D mesh using predefined joints regressor."""
        return torch.matmul(
            self.joints_regressor.to(vertices.device), vertices)

    def forward(self, img, img_metas=None, return_loss=False, **kwargs):
        """Forward function.

        Calls either forward_train or forward_test depending on whether
        return_loss=True.

        Note:
            - batch_size: N
            - num_img_channel: C (Default: 3)
            - img height: imgH
            - img width: imgW

        Args:
            img (torch.Tensor[N x C x imgH x imgW]): Input images.
            img_metas (list(dict)): Information about data augmentation
                By default this includes:

                - "image_file: path to the image file
                - "center": center of the bbox
                - "scale": scale of the bbox
                - "rotation": rotation of the bbox
                - "bbox_score": score of bbox
            return_loss (bool): Option to `return loss`. `return loss=True`
                for training, `return loss=False` for validation & test.

        Returns:
            Return predicted 3D joints, SMPL parameters, boxes and image paths.
        """

        if return_loss:
            return self.forward_train(img, img_metas, **kwargs)
        return self.forward_test(img, img_metas, **kwargs)

    def show_result(self,
                    result,
                    img,
                    show=False,
                    out_file=None,
                    win_name='',
                    wait_time=0,
                    bbox_color='green',
                    mesh_color=(76, 76, 204),
                    **kwargs):
        """Visualize 3D mesh estimation results.

        Args:
            result (list[dict]): The mesh estimation results containing:

               - "bbox" (ndarray[4]): instance bounding bbox
               - "center" (ndarray[2]): bbox center
               - "scale" (ndarray[2]): bbox scale
               - "keypoints_3d" (ndarray[K,3]): predicted 3D keypoints
               - "camera" (ndarray[3]): camera parameters
               - "vertices" (ndarray[V, 3]): predicted 3D vertices
               - "faces" (ndarray[F, 3]): mesh faces
            img (str or Tensor): Optional. The image to visualize 2D inputs on.
            win_name (str): The window name.
            show (bool): Whether to show the image. Default: False.
            wait_time (int): Value of waitKey param. Default: 0.
            out_file (str or None): The filename to write the image.
                Default: None.
            bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
            mesh_color (str or tuple or :obj:`Color`): Color of mesh surface.

        Returns:
            ndarray: Visualized img, only if not `show` or `out_file`.
        """

        if img is not None:
            img = mmcv.imread(img)

        focal_length = self.loss_mesh.focal_length
        H, W, C = img.shape
        img_center = np.array([[0.5 * W], [0.5 * H]])

        # show bounding boxes
        bboxes = [res['bbox'] for res in result]
        bboxes = np.vstack(bboxes)
        mmcv.imshow_bboxes(
            img, bboxes, colors=bbox_color, top_k=-1, thickness=2, show=False)

        vertex_list = []
        face_list = []
        for res in result:
            vertices = res['vertices']
            faces = res['faces']
            camera = res['camera']
            camera_center = res['center']
            scale = res['scale']

            # predicted vertices are in root-relative space,
            # we need to translate them to camera space.
            translation = np.array([
                camera[1], camera[2],
                2 * focal_length / (scale[0] * 200.0 * camera[0] + 1e-9)
            ])
            mean_depth = vertices[:, -1].mean() + translation[-1]
            translation[:2] += (camera_center -
                                img_center[:, 0]) / focal_length * mean_depth
            vertices += translation[None, :]

            vertex_list.append(vertices)
            face_list.append(faces)

        # render from front view
        img_vis = imshow_mesh_3d(
            img,
            vertex_list,
            face_list,
            img_center, [focal_length, focal_length],
            colors=mesh_color)

        # render from side view
        # rotate mesh vertices
        R = cv2.Rodrigues(np.array([0, np.radians(90.), 0]))[0]
        rot_vertex_list = [np.dot(vert, R) for vert in vertex_list]

        # get the 3D bbox containing all meshes
        rot_vertices = np.concatenate(rot_vertex_list, axis=0)
        min_corner = rot_vertices.min(0)
        max_corner = rot_vertices.max(0)

        center_3d = 0.5 * (min_corner + max_corner)
        ratio = 0.8
        bbox3d_size = max_corner - min_corner

        # set appropriate translation to make all meshes appear in the image
        z_x = bbox3d_size[0] * focal_length / (ratio * W) - min_corner[2]
        z_y = bbox3d_size[1] * focal_length / (ratio * H) - min_corner[2]
        z = max(z_x, z_y)
        translation = -center_3d
        translation[2] = z
        translation = translation[None, :]
        rot_vertex_list = [
            rot_vert + translation for rot_vert in rot_vertex_list
        ]

        # render from side view
        img_side = imshow_mesh_3d(
            np.ones_like(img) * 255, rot_vertex_list, face_list, img_center,
            [focal_length, focal_length])

        # merger images from front view and side view
        img_vis = np.concatenate([img_vis, img_side], axis=1)

        if show:
            mmcv.visualization.imshow(img_vis, win_name, wait_time)

        if out_file is not None:
            mmcv.imwrite(img_vis, out_file)

        return img_vis