Spaces:
Build error
Build error
File size: 15,638 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import mmcv
import numpy as np
import torch
from mmpose.core.visualization.image import imshow_mesh_3d
from mmpose.models.misc.discriminator import SMPLDiscriminator
from .. import builder
from ..builder import POSENETS
from .base import BasePose
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad for all the networks.
Args:
nets (nn.Module | list[nn.Module]): A list of networks or a single
network.
requires_grad (bool): Whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
@POSENETS.register_module()
class ParametricMesh(BasePose):
"""Model-based 3D human mesh detector. Take a single color image as input
and output 3D joints, SMPL parameters and camera parameters.
Args:
backbone (dict): Backbone modules to extract feature.
mesh_head (dict): Mesh head to process feature.
smpl (dict): Config for SMPL model.
disc (dict): Discriminator for SMPL parameters. Default: None.
loss_gan (dict): Config for adversarial loss. Default: None.
loss_mesh (dict): Config for mesh loss. Default: None.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
"""
def __init__(self,
backbone,
mesh_head,
smpl,
disc=None,
loss_gan=None,
loss_mesh=None,
train_cfg=None,
test_cfg=None,
pretrained=None):
super().__init__()
self.backbone = builder.build_backbone(backbone)
self.mesh_head = builder.build_head(mesh_head)
self.generator = torch.nn.Sequential(self.backbone, self.mesh_head)
self.smpl = builder.build_mesh_model(smpl)
self.with_gan = disc is not None and loss_gan is not None
if self.with_gan:
self.discriminator = SMPLDiscriminator(**disc)
self.loss_gan = builder.build_loss(loss_gan)
self.disc_step_count = 0
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.loss_mesh = builder.build_loss(loss_mesh)
self.init_weights(pretrained=pretrained)
def init_weights(self, pretrained=None):
"""Weight initialization for model."""
self.backbone.init_weights(pretrained)
self.mesh_head.init_weights()
if self.with_gan:
self.discriminator.init_weights()
def train_step(self, data_batch, optimizer, **kwargs):
"""Train step function.
In this function, the detector will finish the train step following
the pipeline:
1. get fake and real SMPL parameters
2. optimize discriminator (if have)
3. optimize generator
If `self.train_cfg.disc_step > 1`, the train step will contain multiple
iterations for optimizing discriminator with different input data and
only one iteration for optimizing generator after `disc_step`
iterations for discriminator.
Args:
data_batch (torch.Tensor): Batch of data as input.
optimizer (dict[torch.optim.Optimizer]): Dict with optimizers for
generator and discriminator (if have).
Returns:
outputs (dict): Dict with loss, information for logger,
the number of samples.
"""
img = data_batch['img']
pred_smpl = self.generator(img)
pred_pose, pred_beta, pred_camera = pred_smpl
# optimize discriminator (if have)
if self.train_cfg['disc_step'] > 0 and self.with_gan:
set_requires_grad(self.discriminator, True)
fake_data = (pred_camera.detach(), pred_pose.detach(),
pred_beta.detach())
mosh_theta = data_batch['mosh_theta']
real_data = (mosh_theta[:, :3], mosh_theta[:,
3:75], mosh_theta[:,
75:])
fake_score = self.discriminator(fake_data)
real_score = self.discriminator(real_data)
disc_losses = {}
disc_losses['real_loss'] = self.loss_gan(
real_score, target_is_real=True, is_disc=True)
disc_losses['fake_loss'] = self.loss_gan(
fake_score, target_is_real=False, is_disc=True)
loss_disc, log_vars_d = self._parse_losses(disc_losses)
optimizer['discriminator'].zero_grad()
loss_disc.backward()
optimizer['discriminator'].step()
self.disc_step_count = \
(self.disc_step_count + 1) % self.train_cfg['disc_step']
if self.disc_step_count != 0:
outputs = dict(
loss=loss_disc,
log_vars=log_vars_d,
num_samples=len(next(iter(data_batch.values()))))
return outputs
# optimize generator
pred_out = self.smpl(
betas=pred_beta,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, :1])
pred_vertices, pred_joints_3d = pred_out['vertices'], pred_out[
'joints']
gt_beta = data_batch['beta']
gt_pose = data_batch['pose']
gt_vertices = self.smpl(
betas=gt_beta,
body_pose=gt_pose[:, 3:],
global_orient=gt_pose[:, :3])['vertices']
pred = dict(
pose=pred_pose,
beta=pred_beta,
camera=pred_camera,
vertices=pred_vertices,
joints_3d=pred_joints_3d)
target = {
key: data_batch[key]
for key in [
'pose', 'beta', 'has_smpl', 'joints_3d', 'joints_2d',
'joints_3d_visible', 'joints_2d_visible'
]
}
target['vertices'] = gt_vertices
losses = self.loss_mesh(pred, target)
if self.with_gan:
set_requires_grad(self.discriminator, False)
pred_theta = (pred_camera, pred_pose, pred_beta)
pred_score = self.discriminator(pred_theta)
loss_adv = self.loss_gan(
pred_score, target_is_real=True, is_disc=False)
losses['adv_loss'] = loss_adv
loss, log_vars = self._parse_losses(losses)
optimizer['generator'].zero_grad()
loss.backward()
optimizer['generator'].step()
outputs = dict(
loss=loss,
log_vars=log_vars,
num_samples=len(next(iter(data_batch.values()))))
return outputs
def forward_train(self, *args, **kwargs):
"""Forward function for training.
For ParametricMesh, we do not use this interface.
"""
raise NotImplementedError('This interface should not be used in '
'current training schedule. Please use '
'`train_step` for training.')
def val_step(self, data_batch, **kwargs):
"""Forward function for evaluation.
Args:
data_batch (dict): Contain data for forward.
Returns:
dict: Contain the results from model.
"""
output = self.forward_test(**data_batch, **kwargs)
return output
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor): Input image.
Returns:
Tensor: Outputs.
"""
output = self.generator(img)
return output
def forward_test(self,
img,
img_metas,
return_vertices=False,
return_faces=False,
**kwargs):
"""Defines the computation performed at every call when testing."""
pred_smpl = self.generator(img)
pred_pose, pred_beta, pred_camera = pred_smpl
pred_out = self.smpl(
betas=pred_beta,
body_pose=pred_pose[:, 1:],
global_orient=pred_pose[:, :1])
pred_vertices, pred_joints_3d = pred_out['vertices'], pred_out[
'joints']
all_preds = {}
all_preds['keypoints_3d'] = pred_joints_3d.detach().cpu().numpy()
all_preds['smpl_pose'] = pred_pose.detach().cpu().numpy()
all_preds['smpl_beta'] = pred_beta.detach().cpu().numpy()
all_preds['camera'] = pred_camera.detach().cpu().numpy()
if return_vertices:
all_preds['vertices'] = pred_vertices.detach().cpu().numpy()
if return_faces:
all_preds['faces'] = self.smpl.get_faces()
all_boxes = []
image_path = []
for img_meta in img_metas:
box = np.zeros(6, dtype=np.float32)
c = img_meta['center']
s = img_meta['scale']
if 'bbox_score' in img_metas:
score = np.array(img_metas['bbox_score']).reshape(-1)
else:
score = 1.0
box[0:2] = c
box[2:4] = s
box[4] = np.prod(s * 200.0, axis=0)
box[5] = score
all_boxes.append(box)
image_path.append(img_meta['image_file'])
all_preds['bboxes'] = np.stack(all_boxes, axis=0)
all_preds['image_path'] = image_path
return all_preds
def get_3d_joints_from_mesh(self, vertices):
"""Get 3D joints from 3D mesh using predefined joints regressor."""
return torch.matmul(
self.joints_regressor.to(vertices.device), vertices)
def forward(self, img, img_metas=None, return_loss=False, **kwargs):
"""Forward function.
Calls either forward_train or forward_test depending on whether
return_loss=True.
Note:
- batch_size: N
- num_img_channel: C (Default: 3)
- img height: imgH
- img width: imgW
Args:
img (torch.Tensor[N x C x imgH x imgW]): Input images.
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
return_loss (bool): Option to `return loss`. `return loss=True`
for training, `return loss=False` for validation & test.
Returns:
Return predicted 3D joints, SMPL parameters, boxes and image paths.
"""
if return_loss:
return self.forward_train(img, img_metas, **kwargs)
return self.forward_test(img, img_metas, **kwargs)
def show_result(self,
result,
img,
show=False,
out_file=None,
win_name='',
wait_time=0,
bbox_color='green',
mesh_color=(76, 76, 204),
**kwargs):
"""Visualize 3D mesh estimation results.
Args:
result (list[dict]): The mesh estimation results containing:
- "bbox" (ndarray[4]): instance bounding bbox
- "center" (ndarray[2]): bbox center
- "scale" (ndarray[2]): bbox scale
- "keypoints_3d" (ndarray[K,3]): predicted 3D keypoints
- "camera" (ndarray[3]): camera parameters
- "vertices" (ndarray[V, 3]): predicted 3D vertices
- "faces" (ndarray[F, 3]): mesh faces
img (str or Tensor): Optional. The image to visualize 2D inputs on.
win_name (str): The window name.
show (bool): Whether to show the image. Default: False.
wait_time (int): Value of waitKey param. Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
mesh_color (str or tuple or :obj:`Color`): Color of mesh surface.
Returns:
ndarray: Visualized img, only if not `show` or `out_file`.
"""
if img is not None:
img = mmcv.imread(img)
focal_length = self.loss_mesh.focal_length
H, W, C = img.shape
img_center = np.array([[0.5 * W], [0.5 * H]])
# show bounding boxes
bboxes = [res['bbox'] for res in result]
bboxes = np.vstack(bboxes)
mmcv.imshow_bboxes(
img, bboxes, colors=bbox_color, top_k=-1, thickness=2, show=False)
vertex_list = []
face_list = []
for res in result:
vertices = res['vertices']
faces = res['faces']
camera = res['camera']
camera_center = res['center']
scale = res['scale']
# predicted vertices are in root-relative space,
# we need to translate them to camera space.
translation = np.array([
camera[1], camera[2],
2 * focal_length / (scale[0] * 200.0 * camera[0] + 1e-9)
])
mean_depth = vertices[:, -1].mean() + translation[-1]
translation[:2] += (camera_center -
img_center[:, 0]) / focal_length * mean_depth
vertices += translation[None, :]
vertex_list.append(vertices)
face_list.append(faces)
# render from front view
img_vis = imshow_mesh_3d(
img,
vertex_list,
face_list,
img_center, [focal_length, focal_length],
colors=mesh_color)
# render from side view
# rotate mesh vertices
R = cv2.Rodrigues(np.array([0, np.radians(90.), 0]))[0]
rot_vertex_list = [np.dot(vert, R) for vert in vertex_list]
# get the 3D bbox containing all meshes
rot_vertices = np.concatenate(rot_vertex_list, axis=0)
min_corner = rot_vertices.min(0)
max_corner = rot_vertices.max(0)
center_3d = 0.5 * (min_corner + max_corner)
ratio = 0.8
bbox3d_size = max_corner - min_corner
# set appropriate translation to make all meshes appear in the image
z_x = bbox3d_size[0] * focal_length / (ratio * W) - min_corner[2]
z_y = bbox3d_size[1] * focal_length / (ratio * H) - min_corner[2]
z = max(z_x, z_y)
translation = -center_3d
translation[2] = z
translation = translation[None, :]
rot_vertex_list = [
rot_vert + translation for rot_vert in rot_vertex_list
]
# render from side view
img_side = imshow_mesh_3d(
np.ones_like(img) * 255, rot_vertex_list, face_list, img_center,
[focal_length, focal_length])
# merger images from front view and side view
img_vis = np.concatenate([img_vis, img_side], axis=1)
if show:
mmcv.visualization.imshow(img_vis, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img_vis, out_file)
return img_vis
|