Spaces:
Build error
Build error
File size: 14,210 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import numpy as np
from mmcv.utils.misc import deprecated_api_warning
from mmpose.core import imshow_bboxes, imshow_keypoints, imshow_keypoints_3d
from .. import builder
from ..builder import POSENETS
from .base import BasePose
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class PoseLifter(BasePose):
"""Pose lifter that lifts 2D pose to 3D pose.
The basic model is a pose model that predicts root-relative pose. If
traj_head is not None, a trajectory model that predicts absolute root joint
position is also built.
Args:
backbone (dict): Config for the backbone of pose model.
neck (dict|None): Config for the neck of pose model.
keypoint_head (dict|None): Config for the head of pose model.
traj_backbone (dict|None): Config for the backbone of trajectory model.
If traj_backbone is None and traj_head is not None, trajectory
model will share backbone with pose model.
traj_neck (dict|None): Config for the neck of trajectory model.
traj_head (dict|None): Config for the head of trajectory model.
loss_semi (dict|None): Config for semi-supervision loss.
train_cfg (dict|None): Config for keypoint head during training.
test_cfg (dict|None): Config for keypoint head during testing.
pretrained (str|None): Path to pretrained weights.
"""
def __init__(self,
backbone,
neck=None,
keypoint_head=None,
traj_backbone=None,
traj_neck=None,
traj_head=None,
loss_semi=None,
train_cfg=None,
test_cfg=None,
pretrained=None):
super().__init__()
self.fp16_enabled = False
self.train_cfg = train_cfg
self.test_cfg = test_cfg
# pose model
self.backbone = builder.build_backbone(backbone)
if neck is not None:
self.neck = builder.build_neck(neck)
if keypoint_head is not None:
keypoint_head['train_cfg'] = train_cfg
keypoint_head['test_cfg'] = test_cfg
self.keypoint_head = builder.build_head(keypoint_head)
# trajectory model
if traj_head is not None:
self.traj_head = builder.build_head(traj_head)
if traj_backbone is not None:
self.traj_backbone = builder.build_backbone(traj_backbone)
else:
self.traj_backbone = self.backbone
if traj_neck is not None:
self.traj_neck = builder.build_neck(traj_neck)
# semi-supervised learning
self.semi = loss_semi is not None
if self.semi:
assert keypoint_head is not None and traj_head is not None
self.loss_semi = builder.build_loss(loss_semi)
self.init_weights(pretrained=pretrained)
@property
def with_neck(self):
"""Check if has keypoint_neck."""
return hasattr(self, 'neck')
@property
def with_keypoint(self):
"""Check if has keypoint_head."""
return hasattr(self, 'keypoint_head')
@property
def with_traj_backbone(self):
"""Check if has trajectory_backbone."""
return hasattr(self, 'traj_backbone')
@property
def with_traj_neck(self):
"""Check if has trajectory_neck."""
return hasattr(self, 'traj_neck')
@property
def with_traj(self):
"""Check if has trajectory_head."""
return hasattr(self, 'traj_head')
@property
def causal(self):
if hasattr(self.backbone, 'causal'):
return self.backbone.causal
else:
raise AttributeError('A PoseLifter\'s backbone should have '
'the bool attribute "causal" to indicate if'
'it performs causal inference.')
def init_weights(self, pretrained=None):
"""Weight initialization for model."""
self.backbone.init_weights(pretrained)
if self.with_neck:
self.neck.init_weights()
if self.with_keypoint:
self.keypoint_head.init_weights()
if self.with_traj_backbone:
self.traj_backbone.init_weights(pretrained)
if self.with_traj_neck:
self.traj_neck.init_weights()
if self.with_traj:
self.traj_head.init_weights()
@auto_fp16(apply_to=('input', ))
def forward(self,
input,
target=None,
target_weight=None,
metas=None,
return_loss=True,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss=True.
Note:
- batch_size: N
- num_input_keypoints: Ki
- input_keypoint_dim: Ci
- input_sequence_len: Ti
- num_output_keypoints: Ko
- output_keypoint_dim: Co
- input_sequence_len: To
Args:
input (torch.Tensor[NxKixCixTi]): Input keypoint coordinates.
target (torch.Tensor[NxKoxCoxTo]): Output keypoint coordinates.
Defaults to None.
target_weight (torch.Tensor[NxKox1]): Weights across different
joint types. Defaults to None.
metas (list(dict)): Information about data augmentation
return_loss (bool): Option to `return loss`. `return loss=True`
for training, `return loss=False` for validation & test.
Returns:
dict|Tensor: If `reutrn_loss` is true, return losses. \
Otherwise return predicted poses.
"""
if return_loss:
return self.forward_train(input, target, target_weight, metas,
**kwargs)
else:
return self.forward_test(input, metas, **kwargs)
def forward_train(self, input, target, target_weight, metas, **kwargs):
"""Defines the computation performed at every call when training."""
assert input.size(0) == len(metas)
# supervised learning
# pose model
features = self.backbone(input)
if self.with_neck:
features = self.neck(features)
if self.with_keypoint:
output = self.keypoint_head(features)
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, target, target_weight)
keypoint_accuracy = self.keypoint_head.get_accuracy(
output, target, target_weight, metas)
losses.update(keypoint_losses)
losses.update(keypoint_accuracy)
# trajectory model
if self.with_traj:
traj_features = self.traj_backbone(input)
if self.with_traj_neck:
traj_features = self.traj_neck(traj_features)
traj_output = self.traj_head(traj_features)
traj_losses = self.traj_head.get_loss(traj_output,
kwargs['traj_target'], None)
losses.update(traj_losses)
# semi-supervised learning
if self.semi:
ul_input = kwargs['unlabeled_input']
ul_features = self.backbone(ul_input)
if self.with_neck:
ul_features = self.neck(ul_features)
ul_output = self.keypoint_head(ul_features)
ul_traj_features = self.traj_backbone(ul_input)
if self.with_traj_neck:
ul_traj_features = self.traj_neck(ul_traj_features)
ul_traj_output = self.traj_head(ul_traj_features)
output_semi = dict(
labeled_pose=output,
unlabeled_pose=ul_output,
unlabeled_traj=ul_traj_output)
target_semi = dict(
unlabeled_target_2d=kwargs['unlabeled_target_2d'],
intrinsics=kwargs['intrinsics'])
semi_losses = self.loss_semi(output_semi, target_semi)
losses.update(semi_losses)
return losses
def forward_test(self, input, metas, **kwargs):
"""Defines the computation performed at every call when training."""
assert input.size(0) == len(metas)
results = {}
features = self.backbone(input)
if self.with_neck:
features = self.neck(features)
if self.with_keypoint:
output = self.keypoint_head.inference_model(features)
keypoint_result = self.keypoint_head.decode(metas, output)
results.update(keypoint_result)
if self.with_traj:
traj_features = self.traj_backbone(input)
if self.with_traj_neck:
traj_features = self.traj_neck(traj_features)
traj_output = self.traj_head.inference_model(traj_features)
results['traj_preds'] = traj_output
return results
def forward_dummy(self, input):
"""Used for computing network FLOPs. See ``tools/get_flops.py``.
Args:
input (torch.Tensor): Input pose
Returns:
Tensor: Model output
"""
output = self.backbone(input)
if self.with_neck:
output = self.neck(output)
if self.with_keypoint:
output = self.keypoint_head(output)
if self.with_traj:
traj_features = self.traj_backbone(input)
if self.with_neck:
traj_features = self.traj_neck(traj_features)
traj_output = self.traj_head(traj_features)
output = output + traj_output
return output
@deprecated_api_warning({'pose_limb_color': 'pose_link_color'},
cls_name='PoseLifter')
def show_result(self,
result,
img=None,
skeleton=None,
pose_kpt_color=None,
pose_link_color=None,
radius=8,
thickness=2,
vis_height=400,
num_instances=-1,
win_name='',
show=False,
wait_time=0,
out_file=None):
"""Visualize 3D pose estimation results.
Args:
result (list[dict]): The pose estimation results containing:
- "keypoints_3d" ([K,4]): 3D keypoints
- "keypoints" ([K,3] or [T,K,3]): Optional for visualizing
2D inputs. If a sequence is given, only the last frame
will be used for visualization
- "bbox" ([4,] or [T,4]): Optional for visualizing 2D inputs
- "title" (str): title for the subplot
img (str or Tensor): Optional. The image to visualize 2D inputs on.
skeleton (list of [idx_i,idx_j]): Skeleton described by a list of
links, each is a pair of joint indices.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
If None, do not draw keypoints.
pose_link_color (np.array[Mx3]): Color of M links.
If None, do not draw links.
radius (int): Radius of circles.
thickness (int): Thickness of lines.
vis_height (int): The image height of the visualization. The width
will be N*vis_height depending on the number of visualized
items.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
Tensor: Visualized img, only if not `show` or `out_file`.
"""
if num_instances < 0:
assert len(result) > 0
result = sorted(result, key=lambda x: x.get('track_id', 1e4))
# draw image and input 2d poses
if img is not None:
img = mmcv.imread(img)
bbox_result = []
pose_input_2d = []
for res in result:
if 'bbox' in res:
bbox = np.array(res['bbox'])
if bbox.ndim != 1:
assert bbox.ndim == 2
bbox = bbox[-1] # Get bbox from the last frame
bbox_result.append(bbox)
if 'keypoints' in res:
kpts = np.array(res['keypoints'])
if kpts.ndim != 2:
assert kpts.ndim == 3
kpts = kpts[-1] # Get 2D keypoints from the last frame
pose_input_2d.append(kpts)
if len(bbox_result) > 0:
bboxes = np.vstack(bbox_result)
imshow_bboxes(
img,
bboxes,
colors='green',
thickness=thickness,
show=False)
if len(pose_input_2d) > 0:
imshow_keypoints(
img,
pose_input_2d,
skeleton,
kpt_score_thr=0.3,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
radius=radius,
thickness=thickness)
img = mmcv.imrescale(img, scale=vis_height / img.shape[0])
img_vis = imshow_keypoints_3d(
result,
img,
skeleton,
pose_kpt_color,
pose_link_color,
vis_height,
num_instances=num_instances)
if show:
mmcv.visualization.imshow(img_vis, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img_vis, out_file)
return img_vis
|