File size: 11,398 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from mmpose.core.post_processing import (get_warp_matrix, transform_preds,
                                         warp_affine_joints)


def split_ae_outputs(outputs, num_joints, with_heatmaps, with_ae,
                     select_output_index):
    """Split multi-stage outputs into heatmaps & tags.

    Args:
        outputs (list(Tensor)): Outputs of network
        num_joints (int): Number of joints
        with_heatmaps (list[bool]): Option to output
            heatmaps for different stages.
        with_ae (list[bool]): Option to output
            ae tags for different stages.
        select_output_index (list[int]): Output keep the selected index

    Returns:
        tuple: A tuple containing multi-stage outputs.

        - list[Tensor]: multi-stage heatmaps.
        - list[Tensor]: multi-stage tags.
    """

    heatmaps = []
    tags = []

    # aggregate heatmaps from different stages
    for i, output in enumerate(outputs):
        if i not in select_output_index:
            continue
        # staring index of the associative embeddings
        offset_feat = num_joints if with_heatmaps[i] else 0
        if with_heatmaps[i]:
            heatmaps.append(output[:, :num_joints])
        if with_ae[i]:
            tags.append(output[:, offset_feat:])

    return heatmaps, tags


def flip_feature_maps(feature_maps, flip_index=None):
    """Flip the feature maps and swap the channels.

    Args:
        feature_maps (list[Tensor]): Feature maps.
        flip_index (list[int] | None): Channel-flip indexes.
            If None, do not flip channels.

    Returns:
        list[Tensor]: Flipped feature_maps.
    """
    flipped_feature_maps = []
    for feature_map in feature_maps:
        feature_map = torch.flip(feature_map, [3])
        if flip_index is not None:
            flipped_feature_maps.append(feature_map[:, flip_index, :, :])
        else:
            flipped_feature_maps.append(feature_map)

    return flipped_feature_maps


def _resize_average(feature_maps, align_corners, index=-1, resize_size=None):
    """Resize the feature maps and compute the average.

    Args:
        feature_maps (list[Tensor]): Feature maps.
        align_corners (bool): Align corners when performing interpolation.
        index (int): Only used when `resize_size' is None.
            If `resize_size' is None, the target size is the size
            of the indexed feature maps.
        resize_size (list[int, int]): The target size [w, h].

    Returns:
        list[Tensor]: Averaged feature_maps.
    """

    if feature_maps is None:
        return None
    feature_maps_avg = 0

    feature_map_list = _resize_concate(
        feature_maps, align_corners, index=index, resize_size=resize_size)
    for feature_map in feature_map_list:
        feature_maps_avg += feature_map

    feature_maps_avg /= len(feature_map_list)
    return [feature_maps_avg]


def _resize_unsqueeze_concat(feature_maps,
                             align_corners,
                             index=-1,
                             resize_size=None):
    """Resize, unsqueeze and concatenate the feature_maps.

    Args:
        feature_maps (list[Tensor]): Feature maps.
        align_corners (bool): Align corners when performing interpolation.
        index (int): Only used when `resize_size' is None.
            If `resize_size' is None, the target size is the size
            of the indexed feature maps.
        resize_size (list[int, int]): The target size [w, h].

    Returns:
        list[Tensor]: Averaged feature_maps.
    """
    if feature_maps is None:
        return None
    feature_map_list = _resize_concate(
        feature_maps, align_corners, index=index, resize_size=resize_size)

    feat_dim = len(feature_map_list[0].shape) - 1
    output_feature_maps = torch.cat(
        [torch.unsqueeze(fmap, dim=feat_dim + 1) for fmap in feature_map_list],
        dim=feat_dim + 1)
    return [output_feature_maps]


def _resize_concate(feature_maps, align_corners, index=-1, resize_size=None):
    """Resize and concatenate the feature_maps.

    Args:
        feature_maps (list[Tensor]): Feature maps.
        align_corners (bool): Align corners when performing interpolation.
        index (int): Only used when `resize_size' is None.
            If `resize_size' is None, the target size is the size
            of the indexed feature maps.
        resize_size (list[int, int]): The target size [w, h].

    Returns:
        list[Tensor]: Averaged feature_maps.
    """
    if feature_maps is None:
        return None

    feature_map_list = []

    if index < 0:
        index += len(feature_maps)

    if resize_size is None:
        resize_size = (feature_maps[index].size(2),
                       feature_maps[index].size(3))

    for feature_map in feature_maps:
        ori_size = (feature_map.size(2), feature_map.size(3))
        if ori_size != resize_size:
            feature_map = torch.nn.functional.interpolate(
                feature_map,
                size=resize_size,
                mode='bilinear',
                align_corners=align_corners)

        feature_map_list.append(feature_map)

    return feature_map_list


def aggregate_stage_flip(feature_maps,
                         feature_maps_flip,
                         index=-1,
                         project2image=True,
                         size_projected=None,
                         align_corners=False,
                         aggregate_stage='concat',
                         aggregate_flip='average'):
    """Inference the model to get multi-stage outputs (heatmaps & tags), and
    resize them to base sizes.

    Args:
        feature_maps (list[Tensor]): feature_maps can be heatmaps,
            tags, and pafs.
        feature_maps_flip (list[Tensor] | None): flipped feature_maps.
            feature maps can be heatmaps, tags, and pafs.
        project2image (bool): Option to resize to base scale.
        size_projected (list[int, int]): Base size of heatmaps [w, h].
        align_corners (bool): Align corners when performing interpolation.
        aggregate_stage (str): Methods to aggregate multi-stage feature maps.
            Options: 'concat', 'average'. Default: 'concat.

            - 'concat': Concatenate the original and the flipped feature maps.
            - 'average': Get the average of the original and the flipped
                feature maps.
        aggregate_flip (str): Methods to aggregate the original and
            the flipped feature maps. Options: 'concat', 'average', 'none'.
            Default: 'average.

            - 'concat': Concatenate the original and the flipped feature maps.
            - 'average': Get the average of the original and the flipped
                feature maps..
            - 'none': no flipped feature maps.

    Returns:
        list[Tensor]: Aggregated feature maps with shape [NxKxWxH].
    """

    if feature_maps_flip is None:
        aggregate_flip = 'none'

    output_feature_maps = []

    if aggregate_stage == 'average':
        _aggregate_stage_func = _resize_average
    elif aggregate_stage == 'concat':
        _aggregate_stage_func = _resize_concate
    else:
        NotImplementedError()

    if project2image and size_projected:
        _origin = _aggregate_stage_func(
            feature_maps,
            align_corners,
            index=index,
            resize_size=(size_projected[1], size_projected[0]))

        _flipped = _aggregate_stage_func(
            feature_maps_flip,
            align_corners,
            index=index,
            resize_size=(size_projected[1], size_projected[0]))
    else:
        _origin = _aggregate_stage_func(
            feature_maps, align_corners, index=index, resize_size=None)
        _flipped = _aggregate_stage_func(
            feature_maps_flip, align_corners, index=index, resize_size=None)

    if aggregate_flip == 'average':
        assert feature_maps_flip is not None
        for _ori, _fli in zip(_origin, _flipped):
            output_feature_maps.append((_ori + _fli) / 2.0)

    elif aggregate_flip == 'concat':
        assert feature_maps_flip is not None
        output_feature_maps.append(*_origin)
        output_feature_maps.append(*_flipped)

    elif aggregate_flip == 'none':
        if isinstance(_origin, list):
            output_feature_maps.append(*_origin)
        else:
            output_feature_maps.append(_origin)
    else:
        NotImplementedError()

    return output_feature_maps


def aggregate_scale(feature_maps_list,
                    align_corners=False,
                    aggregate_scale='average'):
    """Aggregate multi-scale outputs.

    Note:
        batch size: N
        keypoints num : K
        heatmap width: W
        heatmap height: H

    Args:
        feature_maps_list (list[Tensor]): Aggregated feature maps.
        project2image (bool): Option to resize to base scale.
        align_corners (bool): Align corners when performing interpolation.
        aggregate_scale (str): Methods to aggregate multi-scale feature maps.
            Options: 'average', 'unsqueeze_concat'.

            - 'average': Get the average of the feature maps.
            - 'unsqueeze_concat': Concatenate the feature maps along new axis.
                Default: 'average.

    Returns:
        Tensor: Aggregated feature maps.
    """

    if aggregate_scale == 'average':
        output_feature_maps = _resize_average(
            feature_maps_list, align_corners, index=0, resize_size=None)

    elif aggregate_scale == 'unsqueeze_concat':
        output_feature_maps = _resize_unsqueeze_concat(
            feature_maps_list, align_corners, index=0, resize_size=None)
    else:
        NotImplementedError()

    return output_feature_maps[0]


def get_group_preds(grouped_joints,
                    center,
                    scale,
                    heatmap_size,
                    use_udp=False):
    """Transform the grouped joints back to the image.

    Args:
        grouped_joints (list): Grouped person joints.
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        heatmap_size (np.ndarray[2, ]): Size of the destination heatmaps.
        use_udp (bool): Unbiased data processing.
             Paper ref: Huang et al. The Devil is in the Details: Delving into
             Unbiased Data Processing for Human Pose Estimation (CVPR'2020).

    Returns:
        list: List of the pose result for each person.
    """
    if len(grouped_joints) == 0:
        return []

    if use_udp:
        if grouped_joints[0].shape[0] > 0:
            heatmap_size_t = np.array(heatmap_size, dtype=np.float32) - 1.0
            trans = get_warp_matrix(
                theta=0,
                size_input=heatmap_size_t,
                size_dst=scale,
                size_target=heatmap_size_t)
            grouped_joints[0][..., :2] = \
                warp_affine_joints(grouped_joints[0][..., :2], trans)
        results = [person for person in grouped_joints[0]]
    else:
        results = []
        for person in grouped_joints[0]:
            joints = transform_preds(person, center, scale, heatmap_size)
            results.append(joints)

    return results