File size: 1,629 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from abc import ABCMeta, abstractmethod

import torch.nn as nn

# from .utils import load_checkpoint
from mmcv_custom.checkpoint import load_checkpoint

class BaseBackbone(nn.Module, metaclass=ABCMeta):
    """Base backbone.

    This class defines the basic functions of a backbone. Any backbone that
    inherits this class should at least define its own `forward` function.
    """

    def init_weights(self, pretrained=None, patch_padding='pad', part_features=None):
        """Init backbone weights.

        Args:
            pretrained (str | None): If pretrained is a string, then it
                initializes backbone weights by loading the pretrained
                checkpoint. If pretrained is None, then it follows default
                initializer or customized initializer in subclasses.
        """
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger, patch_padding=patch_padding, part_features=part_features)
        elif pretrained is None:
            # use default initializer or customized initializer in subclasses
            pass
        else:
            raise TypeError('pretrained must be a str or None.'
                            f' But received {type(pretrained)}.')

    @abstractmethod
    def forward(self, x):
        """Forward function.

        Args:
            x (Tensor | tuple[Tensor]): x could be a torch.Tensor or a tuple of
                torch.Tensor, containing input data for forward computation.
        """