File size: 19,773 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
                      constant_init, normal_init)

from mmpose.core.evaluation.top_down_eval import (
    keypoints_from_heatmaps3d, multilabel_classification_accuracy)
from mmpose.core.post_processing import flip_back
from mmpose.models.builder import build_loss
from mmpose.models.necks import GlobalAveragePooling
from ..builder import HEADS


class Heatmap3DHead(nn.Module):
    """Heatmap3DHead is a sub-module of Interhand3DHead, and outputs 3D
    heatmaps. Heatmap3DHead is composed of (>=0) number of deconv layers and a
    simple conv2d layer.

    Args:
        in_channels (int): Number of input channels
        out_channels (int): Number of output channels
        depth_size (int): Number of depth discretization size
        num_deconv_layers (int): Number of deconv layers.
        num_deconv_layers should >= 0. Note that 0 means no deconv layers.
        num_deconv_filters (list|tuple): Number of filters.
        num_deconv_kernels (list|tuple): Kernel sizes.
        extra (dict): Configs for extra conv layers. Default: None
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 depth_size=64,
                 num_deconv_layers=3,
                 num_deconv_filters=(256, 256, 256),
                 num_deconv_kernels=(4, 4, 4),
                 extra=None):

        super().__init__()

        assert out_channels % depth_size == 0
        self.depth_size = depth_size
        self.in_channels = in_channels

        if extra is not None and not isinstance(extra, dict):
            raise TypeError('extra should be dict or None.')

        if num_deconv_layers > 0:
            self.deconv_layers = self._make_deconv_layer(
                num_deconv_layers,
                num_deconv_filters,
                num_deconv_kernels,
            )
        elif num_deconv_layers == 0:
            self.deconv_layers = nn.Identity()
        else:
            raise ValueError(
                f'num_deconv_layers ({num_deconv_layers}) should >= 0.')

        identity_final_layer = False
        if extra is not None and 'final_conv_kernel' in extra:
            assert extra['final_conv_kernel'] in [0, 1, 3]
            if extra['final_conv_kernel'] == 3:
                padding = 1
            elif extra['final_conv_kernel'] == 1:
                padding = 0
            else:
                # 0 for Identity mapping.
                identity_final_layer = True
            kernel_size = extra['final_conv_kernel']
        else:
            kernel_size = 1
            padding = 0

        if identity_final_layer:
            self.final_layer = nn.Identity()
        else:
            conv_channels = num_deconv_filters[
                -1] if num_deconv_layers > 0 else self.in_channels

            layers = []
            if extra is not None:
                num_conv_layers = extra.get('num_conv_layers', 0)
                num_conv_kernels = extra.get('num_conv_kernels',
                                             [1] * num_conv_layers)

                for i in range(num_conv_layers):
                    layers.append(
                        build_conv_layer(
                            dict(type='Conv2d'),
                            in_channels=conv_channels,
                            out_channels=conv_channels,
                            kernel_size=num_conv_kernels[i],
                            stride=1,
                            padding=(num_conv_kernels[i] - 1) // 2))
                    layers.append(
                        build_norm_layer(dict(type='BN'), conv_channels)[1])
                    layers.append(nn.ReLU(inplace=True))

            layers.append(
                build_conv_layer(
                    cfg=dict(type='Conv2d'),
                    in_channels=conv_channels,
                    out_channels=out_channels,
                    kernel_size=kernel_size,
                    stride=1,
                    padding=padding))

            if len(layers) > 1:
                self.final_layer = nn.Sequential(*layers)
            else:
                self.final_layer = layers[0]

    def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
        """Make deconv layers."""
        if num_layers != len(num_filters):
            error_msg = f'num_layers({num_layers}) ' \
                        f'!= length of num_filters({len(num_filters)})'
            raise ValueError(error_msg)
        if num_layers != len(num_kernels):
            error_msg = f'num_layers({num_layers}) ' \
                        f'!= length of num_kernels({len(num_kernels)})'
            raise ValueError(error_msg)

        layers = []
        for i in range(num_layers):
            kernel, padding, output_padding = \
                self._get_deconv_cfg(num_kernels[i])

            planes = num_filters[i]
            layers.append(
                build_upsample_layer(
                    dict(type='deconv'),
                    in_channels=self.in_channels,
                    out_channels=planes,
                    kernel_size=kernel,
                    stride=2,
                    padding=padding,
                    output_padding=output_padding,
                    bias=False))
            layers.append(nn.BatchNorm2d(planes))
            layers.append(nn.ReLU(inplace=True))
            self.in_channels = planes

        return nn.Sequential(*layers)

    @staticmethod
    def _get_deconv_cfg(deconv_kernel):
        """Get configurations for deconv layers."""
        if deconv_kernel == 4:
            padding = 1
            output_padding = 0
        elif deconv_kernel == 3:
            padding = 1
            output_padding = 1
        elif deconv_kernel == 2:
            padding = 0
            output_padding = 0
        else:
            raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')

        return deconv_kernel, padding, output_padding

    def forward(self, x):
        """Forward function."""
        x = self.deconv_layers(x)
        x = self.final_layer(x)
        N, C, H, W = x.shape
        # reshape the 2D heatmap to 3D heatmap
        x = x.reshape(N, C // self.depth_size, self.depth_size, H, W)
        return x

    def init_weights(self):
        """Initialize model weights."""
        for _, m in self.deconv_layers.named_modules():
            if isinstance(m, nn.ConvTranspose2d):
                normal_init(m, std=0.001)
            elif isinstance(m, nn.BatchNorm2d):
                constant_init(m, 1)
        for m in self.final_layer.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, std=0.001, bias=0)
            elif isinstance(m, nn.BatchNorm2d):
                constant_init(m, 1)


class Heatmap1DHead(nn.Module):
    """Heatmap1DHead is a sub-module of Interhand3DHead, and outputs 1D
    heatmaps.

    Args:
        in_channels (int): Number of input channels
        heatmap_size (int): Heatmap size
        hidden_dims (list|tuple): Number of feature dimension of FC layers.
    """

    def __init__(self, in_channels=2048, heatmap_size=64, hidden_dims=(512, )):
        super().__init__()

        self.in_channels = in_channels
        self.heatmap_size = heatmap_size

        feature_dims = [in_channels, *hidden_dims, heatmap_size]
        self.fc = self._make_linear_layers(feature_dims, relu_final=False)

    def soft_argmax_1d(self, heatmap1d):
        heatmap1d = F.softmax(heatmap1d, 1)
        accu = heatmap1d * torch.arange(
            self.heatmap_size, dtype=heatmap1d.dtype,
            device=heatmap1d.device)[None, :]
        coord = accu.sum(dim=1)
        return coord

    def _make_linear_layers(self, feat_dims, relu_final=False):
        """Make linear layers."""
        layers = []
        for i in range(len(feat_dims) - 1):
            layers.append(nn.Linear(feat_dims[i], feat_dims[i + 1]))
            if i < len(feat_dims) - 2 or \
                    (i == len(feat_dims) - 2 and relu_final):
                layers.append(nn.ReLU(inplace=True))
        return nn.Sequential(*layers)

    def forward(self, x):
        """Forward function."""
        heatmap1d = self.fc(x)
        value = self.soft_argmax_1d(heatmap1d).view(-1, 1)
        return value

    def init_weights(self):
        """Initialize model weights."""
        for m in self.fc.modules():
            if isinstance(m, nn.Linear):
                normal_init(m, mean=0, std=0.01, bias=0)


class MultilabelClassificationHead(nn.Module):
    """MultilabelClassificationHead is a sub-module of Interhand3DHead, and
    outputs hand type classification.

    Args:
        in_channels (int): Number of input channels
        num_labels (int): Number of labels
        hidden_dims (list|tuple): Number of hidden dimension of FC layers.
    """

    def __init__(self, in_channels=2048, num_labels=2, hidden_dims=(512, )):
        super().__init__()

        self.in_channels = in_channels
        self.num_labesl = num_labels

        feature_dims = [in_channels, *hidden_dims, num_labels]
        self.fc = self._make_linear_layers(feature_dims, relu_final=False)

    def _make_linear_layers(self, feat_dims, relu_final=False):
        """Make linear layers."""
        layers = []
        for i in range(len(feat_dims) - 1):
            layers.append(nn.Linear(feat_dims[i], feat_dims[i + 1]))
            if i < len(feat_dims) - 2 or \
                    (i == len(feat_dims) - 2 and relu_final):
                layers.append(nn.ReLU(inplace=True))
        return nn.Sequential(*layers)

    def forward(self, x):
        """Forward function."""
        labels = torch.sigmoid(self.fc(x))
        return labels

    def init_weights(self):
        for m in self.fc.modules():
            if isinstance(m, nn.Linear):
                normal_init(m, mean=0, std=0.01, bias=0)


@HEADS.register_module()
class Interhand3DHead(nn.Module):
    """Interhand 3D head of paper ref: Gyeongsik Moon. "InterHand2.6M: A
    Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single
    RGB Image".

    Args:
        keypoint_head_cfg (dict): Configs of Heatmap3DHead for hand
            keypoint estimation.
        root_head_cfg (dict): Configs of Heatmap1DHead for relative
            hand root depth estimation.
        hand_type_head_cfg (dict): Configs of MultilabelClassificationHead
            for hand type classification.
        loss_keypoint (dict): Config for keypoint loss. Default: None.
        loss_root_depth (dict): Config for relative root depth loss.
            Default: None.
        loss_hand_type (dict): Config for hand type classification
            loss. Default: None.
    """

    def __init__(self,
                 keypoint_head_cfg,
                 root_head_cfg,
                 hand_type_head_cfg,
                 loss_keypoint=None,
                 loss_root_depth=None,
                 loss_hand_type=None,
                 train_cfg=None,
                 test_cfg=None):
        super().__init__()

        # build sub-module heads
        self.right_hand_head = Heatmap3DHead(**keypoint_head_cfg)
        self.left_hand_head = Heatmap3DHead(**keypoint_head_cfg)
        self.root_head = Heatmap1DHead(**root_head_cfg)
        self.hand_type_head = MultilabelClassificationHead(
            **hand_type_head_cfg)
        self.neck = GlobalAveragePooling()

        # build losses
        self.keypoint_loss = build_loss(loss_keypoint)
        self.root_depth_loss = build_loss(loss_root_depth)
        self.hand_type_loss = build_loss(loss_hand_type)
        self.train_cfg = {} if train_cfg is None else train_cfg
        self.test_cfg = {} if test_cfg is None else test_cfg
        self.target_type = self.test_cfg.get('target_type', 'GaussianHeatmap')

    def init_weights(self):
        self.left_hand_head.init_weights()
        self.right_hand_head.init_weights()
        self.root_head.init_weights()
        self.hand_type_head.init_weights()

    def get_loss(self, output, target, target_weight):
        """Calculate loss for hand keypoint heatmaps, relative root depth and
        hand type.

        Args:
            output (list[Tensor]): a list of outputs from multiple heads.
            target (list[Tensor]): a list of targets for multiple heads.
            target_weight (list[Tensor]): a list of targets weight for
                multiple heads.
        """
        losses = dict()

        # hand keypoint loss
        assert not isinstance(self.keypoint_loss, nn.Sequential)
        out, tar, tar_weight = output[0], target[0], target_weight[0]
        assert tar.dim() == 5 and tar_weight.dim() == 3
        losses['hand_loss'] = self.keypoint_loss(out, tar, tar_weight)

        # relative root depth loss
        assert not isinstance(self.root_depth_loss, nn.Sequential)
        out, tar, tar_weight = output[1], target[1], target_weight[1]
        assert tar.dim() == 2 and tar_weight.dim() == 2
        losses['rel_root_loss'] = self.root_depth_loss(out, tar, tar_weight)

        # hand type loss
        assert not isinstance(self.hand_type_loss, nn.Sequential)
        out, tar, tar_weight = output[2], target[2], target_weight[2]
        assert tar.dim() == 2 and tar_weight.dim() in [1, 2]
        losses['hand_type_loss'] = self.hand_type_loss(out, tar, tar_weight)

        return losses

    def get_accuracy(self, output, target, target_weight):
        """Calculate accuracy for hand type.

        Args:
            output (list[Tensor]): a list of outputs from multiple heads.
            target (list[Tensor]): a list of targets for multiple heads.
            target_weight (list[Tensor]): a list of targets weight for
                multiple heads.
        """
        accuracy = dict()
        avg_acc = multilabel_classification_accuracy(
            output[2].detach().cpu().numpy(),
            target[2].detach().cpu().numpy(),
            target_weight[2].detach().cpu().numpy(),
        )
        accuracy['acc_classification'] = float(avg_acc)
        return accuracy

    def forward(self, x):
        """Forward function."""
        outputs = []
        outputs.append(
            torch.cat([self.right_hand_head(x),
                       self.left_hand_head(x)], dim=1))
        x = self.neck(x)
        outputs.append(self.root_head(x))
        outputs.append(self.hand_type_head(x))
        return outputs

    def inference_model(self, x, flip_pairs=None):
        """Inference function.

        Returns:
            output (list[np.ndarray]): list of output hand keypoint
            heatmaps, relative root depth and hand type.

        Args:
            x (torch.Tensor[N,K,H,W]): Input features.
            flip_pairs (None | list[tuple()):
                Pairs of keypoints which are mirrored.
        """

        output = self.forward(x)

        if flip_pairs is not None:
            # flip 3D heatmap
            heatmap_3d = output[0]
            N, K, D, H, W = heatmap_3d.shape
            # reshape 3D heatmap to 2D heatmap
            heatmap_3d = heatmap_3d.reshape(N, K * D, H, W)
            # 2D heatmap flip
            heatmap_3d_flipped_back = flip_back(
                heatmap_3d.detach().cpu().numpy(),
                flip_pairs,
                target_type=self.target_type)
            # reshape back to 3D heatmap
            heatmap_3d_flipped_back = heatmap_3d_flipped_back.reshape(
                N, K, D, H, W)
            # feature is not aligned, shift flipped heatmap for higher accuracy
            if self.test_cfg.get('shift_heatmap', False):
                heatmap_3d_flipped_back[...,
                                        1:] = heatmap_3d_flipped_back[..., :-1]
            output[0] = heatmap_3d_flipped_back

            # flip relative hand root depth
            output[1] = -output[1].detach().cpu().numpy()

            # flip hand type
            hand_type = output[2].detach().cpu().numpy()
            hand_type_flipped_back = hand_type.copy()
            hand_type_flipped_back[:, 0] = hand_type[:, 1]
            hand_type_flipped_back[:, 1] = hand_type[:, 0]
            output[2] = hand_type_flipped_back
        else:
            output = [out.detach().cpu().numpy() for out in output]

        return output

    def decode(self, img_metas, output, **kwargs):
        """Decode hand keypoint, relative root depth and hand type.

        Args:
            img_metas (list(dict)): Information about data augmentation
                By default this includes:

                - "image_file: path to the image file
                - "center": center of the bbox
                - "scale": scale of the bbox
                - "rotation": rotation of the bbox
                - "bbox_score": score of bbox
                - "heatmap3d_depth_bound": depth bound of hand keypoint
                    3D heatmap
                - "root_depth_bound": depth bound of relative root depth
                    1D heatmap
            output (list[np.ndarray]): model predicted 3D heatmaps, relative
                root depth and hand type.
        """

        batch_size = len(img_metas)
        result = {}

        heatmap3d_depth_bound = np.ones(batch_size, dtype=np.float32)
        root_depth_bound = np.ones(batch_size, dtype=np.float32)
        center = np.zeros((batch_size, 2), dtype=np.float32)
        scale = np.zeros((batch_size, 2), dtype=np.float32)
        image_paths = []
        score = np.ones(batch_size, dtype=np.float32)
        if 'bbox_id' in img_metas[0]:
            bbox_ids = []
        else:
            bbox_ids = None

        for i in range(batch_size):
            heatmap3d_depth_bound[i] = img_metas[i]['heatmap3d_depth_bound']
            root_depth_bound[i] = img_metas[i]['root_depth_bound']
            center[i, :] = img_metas[i]['center']
            scale[i, :] = img_metas[i]['scale']
            image_paths.append(img_metas[i]['image_file'])

            if 'bbox_score' in img_metas[i]:
                score[i] = np.array(img_metas[i]['bbox_score']).reshape(-1)
            if bbox_ids is not None:
                bbox_ids.append(img_metas[i]['bbox_id'])

        all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
        all_boxes[:, 0:2] = center[:, 0:2]
        all_boxes[:, 2:4] = scale[:, 0:2]
        # scale is defined as: bbox_size / 200.0, so we
        # need multiply 200.0 to get bbox size
        all_boxes[:, 4] = np.prod(scale * 200.0, axis=1)
        all_boxes[:, 5] = score
        result['boxes'] = all_boxes
        result['image_paths'] = image_paths
        result['bbox_ids'] = bbox_ids

        # decode 3D heatmaps of hand keypoints
        heatmap3d = output[0]
        preds, maxvals = keypoints_from_heatmaps3d(heatmap3d, center, scale)
        keypoints_3d = np.zeros((batch_size, preds.shape[1], 4),
                                dtype=np.float32)
        keypoints_3d[:, :, 0:3] = preds[:, :, 0:3]
        keypoints_3d[:, :, 3:4] = maxvals
        # transform keypoint depth to camera space
        keypoints_3d[:, :, 2] = \
            (keypoints_3d[:, :, 2] / self.right_hand_head.depth_size - 0.5) \
            * heatmap3d_depth_bound[:, np.newaxis]

        result['preds'] = keypoints_3d

        # decode relative hand root depth
        # transform relative root depth to camera space
        result['rel_root_depth'] = (output[1] / self.root_head.heatmap_size -
                                    0.5) * root_depth_bound

        # decode hand type
        result['hand_type'] = output[2] > 0.5
        return result