Spaces:
Build error
Build error
File size: 19,773 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
constant_init, normal_init)
from mmpose.core.evaluation.top_down_eval import (
keypoints_from_heatmaps3d, multilabel_classification_accuracy)
from mmpose.core.post_processing import flip_back
from mmpose.models.builder import build_loss
from mmpose.models.necks import GlobalAveragePooling
from ..builder import HEADS
class Heatmap3DHead(nn.Module):
"""Heatmap3DHead is a sub-module of Interhand3DHead, and outputs 3D
heatmaps. Heatmap3DHead is composed of (>=0) number of deconv layers and a
simple conv2d layer.
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
depth_size (int): Number of depth discretization size
num_deconv_layers (int): Number of deconv layers.
num_deconv_layers should >= 0. Note that 0 means no deconv layers.
num_deconv_filters (list|tuple): Number of filters.
num_deconv_kernels (list|tuple): Kernel sizes.
extra (dict): Configs for extra conv layers. Default: None
"""
def __init__(self,
in_channels,
out_channels,
depth_size=64,
num_deconv_layers=3,
num_deconv_filters=(256, 256, 256),
num_deconv_kernels=(4, 4, 4),
extra=None):
super().__init__()
assert out_channels % depth_size == 0
self.depth_size = depth_size
self.in_channels = in_channels
if extra is not None and not isinstance(extra, dict):
raise TypeError('extra should be dict or None.')
if num_deconv_layers > 0:
self.deconv_layers = self._make_deconv_layer(
num_deconv_layers,
num_deconv_filters,
num_deconv_kernels,
)
elif num_deconv_layers == 0:
self.deconv_layers = nn.Identity()
else:
raise ValueError(
f'num_deconv_layers ({num_deconv_layers}) should >= 0.')
identity_final_layer = False
if extra is not None and 'final_conv_kernel' in extra:
assert extra['final_conv_kernel'] in [0, 1, 3]
if extra['final_conv_kernel'] == 3:
padding = 1
elif extra['final_conv_kernel'] == 1:
padding = 0
else:
# 0 for Identity mapping.
identity_final_layer = True
kernel_size = extra['final_conv_kernel']
else:
kernel_size = 1
padding = 0
if identity_final_layer:
self.final_layer = nn.Identity()
else:
conv_channels = num_deconv_filters[
-1] if num_deconv_layers > 0 else self.in_channels
layers = []
if extra is not None:
num_conv_layers = extra.get('num_conv_layers', 0)
num_conv_kernels = extra.get('num_conv_kernels',
[1] * num_conv_layers)
for i in range(num_conv_layers):
layers.append(
build_conv_layer(
dict(type='Conv2d'),
in_channels=conv_channels,
out_channels=conv_channels,
kernel_size=num_conv_kernels[i],
stride=1,
padding=(num_conv_kernels[i] - 1) // 2))
layers.append(
build_norm_layer(dict(type='BN'), conv_channels)[1])
layers.append(nn.ReLU(inplace=True))
layers.append(
build_conv_layer(
cfg=dict(type='Conv2d'),
in_channels=conv_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding))
if len(layers) > 1:
self.final_layer = nn.Sequential(*layers)
else:
self.final_layer = layers[0]
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
if num_layers != len(num_filters):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_filters({len(num_filters)})'
raise ValueError(error_msg)
if num_layers != len(num_kernels):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_kernels({len(num_kernels)})'
raise ValueError(error_msg)
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=self.in_channels,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
self.in_channels = planes
return nn.Sequential(*layers)
@staticmethod
def _get_deconv_cfg(deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def forward(self, x):
"""Forward function."""
x = self.deconv_layers(x)
x = self.final_layer(x)
N, C, H, W = x.shape
# reshape the 2D heatmap to 3D heatmap
x = x.reshape(N, C // self.depth_size, self.depth_size, H, W)
return x
def init_weights(self):
"""Initialize model weights."""
for _, m in self.deconv_layers.named_modules():
if isinstance(m, nn.ConvTranspose2d):
normal_init(m, std=0.001)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
for m in self.final_layer.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
class Heatmap1DHead(nn.Module):
"""Heatmap1DHead is a sub-module of Interhand3DHead, and outputs 1D
heatmaps.
Args:
in_channels (int): Number of input channels
heatmap_size (int): Heatmap size
hidden_dims (list|tuple): Number of feature dimension of FC layers.
"""
def __init__(self, in_channels=2048, heatmap_size=64, hidden_dims=(512, )):
super().__init__()
self.in_channels = in_channels
self.heatmap_size = heatmap_size
feature_dims = [in_channels, *hidden_dims, heatmap_size]
self.fc = self._make_linear_layers(feature_dims, relu_final=False)
def soft_argmax_1d(self, heatmap1d):
heatmap1d = F.softmax(heatmap1d, 1)
accu = heatmap1d * torch.arange(
self.heatmap_size, dtype=heatmap1d.dtype,
device=heatmap1d.device)[None, :]
coord = accu.sum(dim=1)
return coord
def _make_linear_layers(self, feat_dims, relu_final=False):
"""Make linear layers."""
layers = []
for i in range(len(feat_dims) - 1):
layers.append(nn.Linear(feat_dims[i], feat_dims[i + 1]))
if i < len(feat_dims) - 2 or \
(i == len(feat_dims) - 2 and relu_final):
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
"""Forward function."""
heatmap1d = self.fc(x)
value = self.soft_argmax_1d(heatmap1d).view(-1, 1)
return value
def init_weights(self):
"""Initialize model weights."""
for m in self.fc.modules():
if isinstance(m, nn.Linear):
normal_init(m, mean=0, std=0.01, bias=0)
class MultilabelClassificationHead(nn.Module):
"""MultilabelClassificationHead is a sub-module of Interhand3DHead, and
outputs hand type classification.
Args:
in_channels (int): Number of input channels
num_labels (int): Number of labels
hidden_dims (list|tuple): Number of hidden dimension of FC layers.
"""
def __init__(self, in_channels=2048, num_labels=2, hidden_dims=(512, )):
super().__init__()
self.in_channels = in_channels
self.num_labesl = num_labels
feature_dims = [in_channels, *hidden_dims, num_labels]
self.fc = self._make_linear_layers(feature_dims, relu_final=False)
def _make_linear_layers(self, feat_dims, relu_final=False):
"""Make linear layers."""
layers = []
for i in range(len(feat_dims) - 1):
layers.append(nn.Linear(feat_dims[i], feat_dims[i + 1]))
if i < len(feat_dims) - 2 or \
(i == len(feat_dims) - 2 and relu_final):
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
"""Forward function."""
labels = torch.sigmoid(self.fc(x))
return labels
def init_weights(self):
for m in self.fc.modules():
if isinstance(m, nn.Linear):
normal_init(m, mean=0, std=0.01, bias=0)
@HEADS.register_module()
class Interhand3DHead(nn.Module):
"""Interhand 3D head of paper ref: Gyeongsik Moon. "InterHand2.6M: A
Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single
RGB Image".
Args:
keypoint_head_cfg (dict): Configs of Heatmap3DHead for hand
keypoint estimation.
root_head_cfg (dict): Configs of Heatmap1DHead for relative
hand root depth estimation.
hand_type_head_cfg (dict): Configs of MultilabelClassificationHead
for hand type classification.
loss_keypoint (dict): Config for keypoint loss. Default: None.
loss_root_depth (dict): Config for relative root depth loss.
Default: None.
loss_hand_type (dict): Config for hand type classification
loss. Default: None.
"""
def __init__(self,
keypoint_head_cfg,
root_head_cfg,
hand_type_head_cfg,
loss_keypoint=None,
loss_root_depth=None,
loss_hand_type=None,
train_cfg=None,
test_cfg=None):
super().__init__()
# build sub-module heads
self.right_hand_head = Heatmap3DHead(**keypoint_head_cfg)
self.left_hand_head = Heatmap3DHead(**keypoint_head_cfg)
self.root_head = Heatmap1DHead(**root_head_cfg)
self.hand_type_head = MultilabelClassificationHead(
**hand_type_head_cfg)
self.neck = GlobalAveragePooling()
# build losses
self.keypoint_loss = build_loss(loss_keypoint)
self.root_depth_loss = build_loss(loss_root_depth)
self.hand_type_loss = build_loss(loss_hand_type)
self.train_cfg = {} if train_cfg is None else train_cfg
self.test_cfg = {} if test_cfg is None else test_cfg
self.target_type = self.test_cfg.get('target_type', 'GaussianHeatmap')
def init_weights(self):
self.left_hand_head.init_weights()
self.right_hand_head.init_weights()
self.root_head.init_weights()
self.hand_type_head.init_weights()
def get_loss(self, output, target, target_weight):
"""Calculate loss for hand keypoint heatmaps, relative root depth and
hand type.
Args:
output (list[Tensor]): a list of outputs from multiple heads.
target (list[Tensor]): a list of targets for multiple heads.
target_weight (list[Tensor]): a list of targets weight for
multiple heads.
"""
losses = dict()
# hand keypoint loss
assert not isinstance(self.keypoint_loss, nn.Sequential)
out, tar, tar_weight = output[0], target[0], target_weight[0]
assert tar.dim() == 5 and tar_weight.dim() == 3
losses['hand_loss'] = self.keypoint_loss(out, tar, tar_weight)
# relative root depth loss
assert not isinstance(self.root_depth_loss, nn.Sequential)
out, tar, tar_weight = output[1], target[1], target_weight[1]
assert tar.dim() == 2 and tar_weight.dim() == 2
losses['rel_root_loss'] = self.root_depth_loss(out, tar, tar_weight)
# hand type loss
assert not isinstance(self.hand_type_loss, nn.Sequential)
out, tar, tar_weight = output[2], target[2], target_weight[2]
assert tar.dim() == 2 and tar_weight.dim() in [1, 2]
losses['hand_type_loss'] = self.hand_type_loss(out, tar, tar_weight)
return losses
def get_accuracy(self, output, target, target_weight):
"""Calculate accuracy for hand type.
Args:
output (list[Tensor]): a list of outputs from multiple heads.
target (list[Tensor]): a list of targets for multiple heads.
target_weight (list[Tensor]): a list of targets weight for
multiple heads.
"""
accuracy = dict()
avg_acc = multilabel_classification_accuracy(
output[2].detach().cpu().numpy(),
target[2].detach().cpu().numpy(),
target_weight[2].detach().cpu().numpy(),
)
accuracy['acc_classification'] = float(avg_acc)
return accuracy
def forward(self, x):
"""Forward function."""
outputs = []
outputs.append(
torch.cat([self.right_hand_head(x),
self.left_hand_head(x)], dim=1))
x = self.neck(x)
outputs.append(self.root_head(x))
outputs.append(self.hand_type_head(x))
return outputs
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output (list[np.ndarray]): list of output hand keypoint
heatmaps, relative root depth and hand type.
Args:
x (torch.Tensor[N,K,H,W]): Input features.
flip_pairs (None | list[tuple()):
Pairs of keypoints which are mirrored.
"""
output = self.forward(x)
if flip_pairs is not None:
# flip 3D heatmap
heatmap_3d = output[0]
N, K, D, H, W = heatmap_3d.shape
# reshape 3D heatmap to 2D heatmap
heatmap_3d = heatmap_3d.reshape(N, K * D, H, W)
# 2D heatmap flip
heatmap_3d_flipped_back = flip_back(
heatmap_3d.detach().cpu().numpy(),
flip_pairs,
target_type=self.target_type)
# reshape back to 3D heatmap
heatmap_3d_flipped_back = heatmap_3d_flipped_back.reshape(
N, K, D, H, W)
# feature is not aligned, shift flipped heatmap for higher accuracy
if self.test_cfg.get('shift_heatmap', False):
heatmap_3d_flipped_back[...,
1:] = heatmap_3d_flipped_back[..., :-1]
output[0] = heatmap_3d_flipped_back
# flip relative hand root depth
output[1] = -output[1].detach().cpu().numpy()
# flip hand type
hand_type = output[2].detach().cpu().numpy()
hand_type_flipped_back = hand_type.copy()
hand_type_flipped_back[:, 0] = hand_type[:, 1]
hand_type_flipped_back[:, 1] = hand_type[:, 0]
output[2] = hand_type_flipped_back
else:
output = [out.detach().cpu().numpy() for out in output]
return output
def decode(self, img_metas, output, **kwargs):
"""Decode hand keypoint, relative root depth and hand type.
Args:
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
- "heatmap3d_depth_bound": depth bound of hand keypoint
3D heatmap
- "root_depth_bound": depth bound of relative root depth
1D heatmap
output (list[np.ndarray]): model predicted 3D heatmaps, relative
root depth and hand type.
"""
batch_size = len(img_metas)
result = {}
heatmap3d_depth_bound = np.ones(batch_size, dtype=np.float32)
root_depth_bound = np.ones(batch_size, dtype=np.float32)
center = np.zeros((batch_size, 2), dtype=np.float32)
scale = np.zeros((batch_size, 2), dtype=np.float32)
image_paths = []
score = np.ones(batch_size, dtype=np.float32)
if 'bbox_id' in img_metas[0]:
bbox_ids = []
else:
bbox_ids = None
for i in range(batch_size):
heatmap3d_depth_bound[i] = img_metas[i]['heatmap3d_depth_bound']
root_depth_bound[i] = img_metas[i]['root_depth_bound']
center[i, :] = img_metas[i]['center']
scale[i, :] = img_metas[i]['scale']
image_paths.append(img_metas[i]['image_file'])
if 'bbox_score' in img_metas[i]:
score[i] = np.array(img_metas[i]['bbox_score']).reshape(-1)
if bbox_ids is not None:
bbox_ids.append(img_metas[i]['bbox_id'])
all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
all_boxes[:, 0:2] = center[:, 0:2]
all_boxes[:, 2:4] = scale[:, 0:2]
# scale is defined as: bbox_size / 200.0, so we
# need multiply 200.0 to get bbox size
all_boxes[:, 4] = np.prod(scale * 200.0, axis=1)
all_boxes[:, 5] = score
result['boxes'] = all_boxes
result['image_paths'] = image_paths
result['bbox_ids'] = bbox_ids
# decode 3D heatmaps of hand keypoints
heatmap3d = output[0]
preds, maxvals = keypoints_from_heatmaps3d(heatmap3d, center, scale)
keypoints_3d = np.zeros((batch_size, preds.shape[1], 4),
dtype=np.float32)
keypoints_3d[:, :, 0:3] = preds[:, :, 0:3]
keypoints_3d[:, :, 3:4] = maxvals
# transform keypoint depth to camera space
keypoints_3d[:, :, 2] = \
(keypoints_3d[:, :, 2] / self.right_hand_head.depth_size - 0.5) \
* heatmap3d_depth_bound[:, np.newaxis]
result['preds'] = keypoints_3d
# decode relative hand root depth
# transform relative root depth to camera space
result['rel_root_depth'] = (output[1] / self.root_head.heatmap_size -
0.5) * root_depth_bound
# decode hand type
result['hand_type'] = output[2] > 0.5
return result
|