Spaces:
Build error
Build error
File size: 13,314 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
constant_init, normal_init)
from mmpose.core.evaluation import pose_pck_accuracy
from mmpose.core.post_processing import flip_back
from mmpose.models.builder import build_loss
from mmpose.models.utils.ops import resize
from ..builder import HEADS
import torch.nn.functional as F
from .topdown_heatmap_base_head import TopdownHeatmapBaseHead
@HEADS.register_module()
class TopdownHeatmapSimpleHead(TopdownHeatmapBaseHead):
"""Top-down heatmap simple head. paper ref: Bin Xiao et al. ``Simple
Baselines for Human Pose Estimation and Tracking``.
TopdownHeatmapSimpleHead is consisted of (>=0) number of deconv layers
and a simple conv2d layer.
Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
num_deconv_layers (int): Number of deconv layers.
num_deconv_layers should >= 0. Note that 0 means
no deconv layers.
num_deconv_filters (list|tuple): Number of filters.
If num_deconv_layers > 0, the length of
num_deconv_kernels (list|tuple): Kernel sizes.
in_index (int|Sequence[int]): Input feature index. Default: 0
input_transform (str|None): Transformation type of input features.
Options: 'resize_concat', 'multiple_select', None.
Default: None.
- 'resize_concat': Multiple feature maps will be resized to the
same size as the first one and then concat together.
Usually used in FCN head of HRNet.
- 'multiple_select': Multiple feature maps will be bundle into
a list and passed into decode head.
- None: Only one select feature map is allowed.
align_corners (bool): align_corners argument of F.interpolate.
Default: False.
loss_keypoint (dict): Config for keypoint loss. Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_deconv_layers=3,
num_deconv_filters=(256, 256, 256),
num_deconv_kernels=(4, 4, 4),
extra=None,
in_index=0,
input_transform=None,
align_corners=False,
loss_keypoint=None,
train_cfg=None,
test_cfg=None,
upsample=0,):
super().__init__()
self.in_channels = in_channels
self.loss = build_loss(loss_keypoint)
self.upsample = upsample
self.train_cfg = {} if train_cfg is None else train_cfg
self.test_cfg = {} if test_cfg is None else test_cfg
self.target_type = self.test_cfg.get('target_type', 'GaussianHeatmap')
self._init_inputs(in_channels, in_index, input_transform)
self.in_index = in_index
self.align_corners = align_corners
if extra is not None and not isinstance(extra, dict):
raise TypeError('extra should be dict or None.')
if num_deconv_layers > 0:
self.deconv_layers = self._make_deconv_layer(
num_deconv_layers,
num_deconv_filters,
num_deconv_kernels,
)
elif num_deconv_layers == 0:
self.deconv_layers = nn.Identity()
else:
raise ValueError(
f'num_deconv_layers ({num_deconv_layers}) should >= 0.')
identity_final_layer = False
if extra is not None and 'final_conv_kernel' in extra:
assert extra['final_conv_kernel'] in [0, 1, 3]
if extra['final_conv_kernel'] == 3:
padding = 1
elif extra['final_conv_kernel'] == 1:
padding = 0
else:
# 0 for Identity mapping.
identity_final_layer = True
kernel_size = extra['final_conv_kernel']
else:
kernel_size = 1
padding = 0
if identity_final_layer:
self.final_layer = nn.Identity()
else:
conv_channels = num_deconv_filters[
-1] if num_deconv_layers > 0 else self.in_channels
layers = []
if extra is not None:
num_conv_layers = extra.get('num_conv_layers', 0)
num_conv_kernels = extra.get('num_conv_kernels',
[1] * num_conv_layers)
for i in range(num_conv_layers):
layers.append(
build_conv_layer(
dict(type='Conv2d'),
in_channels=conv_channels,
out_channels=conv_channels,
kernel_size=num_conv_kernels[i],
stride=1,
padding=(num_conv_kernels[i] - 1) // 2))
layers.append(
build_norm_layer(dict(type='BN'), conv_channels)[1])
layers.append(nn.ReLU(inplace=True))
layers.append(
build_conv_layer(
cfg=dict(type='Conv2d'),
in_channels=conv_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=padding))
if len(layers) > 1:
self.final_layer = nn.Sequential(*layers)
else:
self.final_layer = layers[0]
def get_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
- batch_size: N
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (torch.Tensor[N,K,H,W]): Output heatmaps.
target (torch.Tensor[N,K,H,W]): Target heatmaps.
target_weight (torch.Tensor[N,K,1]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss, nn.Sequential)
assert target.dim() == 4 and target_weight.dim() == 3
losses['heatmap_loss'] = self.loss(output, target, target_weight)
return losses
def get_accuracy(self, output, target, target_weight):
"""Calculate accuracy for top-down keypoint loss.
Note:
- batch_size: N
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (torch.Tensor[N,K,H,W]): Output heatmaps.
target (torch.Tensor[N,K,H,W]): Target heatmaps.
target_weight (torch.Tensor[N,K,1]):
Weights across different joint types.
"""
accuracy = dict()
if self.target_type == 'GaussianHeatmap':
_, avg_acc, _ = pose_pck_accuracy(
output.detach().cpu().numpy(),
target.detach().cpu().numpy(),
target_weight.detach().cpu().numpy().squeeze(-1) > 0)
accuracy['acc_pose'] = float(avg_acc)
return accuracy
def forward(self, x):
"""Forward function."""
x = self._transform_inputs(x)
x = self.deconv_layers(x)
x = self.final_layer(x)
return x
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output_heatmap (np.ndarray): Output heatmaps.
Args:
x (torch.Tensor[N,K,H,W]): Input features.
flip_pairs (None | list[tuple]):
Pairs of keypoints which are mirrored.
"""
output = self.forward(x)
if flip_pairs is not None:
output_heatmap = flip_back(
output.detach().cpu().numpy(),
flip_pairs,
target_type=self.target_type)
# feature is not aligned, shift flipped heatmap for higher accuracy
if self.test_cfg.get('shift_heatmap', False):
output_heatmap[:, :, :, 1:] = output_heatmap[:, :, :, :-1]
else:
output_heatmap = output.detach().cpu().numpy()
return output_heatmap
def _init_inputs(self, in_channels, in_index, input_transform):
"""Check and initialize input transforms.
The in_channels, in_index and input_transform must match.
Specifically, when input_transform is None, only single feature map
will be selected. So in_channels and in_index must be of type int.
When input_transform is not None, in_channels and in_index must be
list or tuple, with the same length.
Args:
in_channels (int|Sequence[int]): Input channels.
in_index (int|Sequence[int]): Input feature index.
input_transform (str|None): Transformation type of input features.
Options: 'resize_concat', 'multiple_select', None.
- 'resize_concat': Multiple feature maps will be resize to the
same size as first one and than concat together.
Usually used in FCN head of HRNet.
- 'multiple_select': Multiple feature maps will be bundle into
a list and passed into decode head.
- None: Only one select feature map is allowed.
"""
if input_transform is not None:
assert input_transform in ['resize_concat', 'multiple_select']
self.input_transform = input_transform
self.in_index = in_index
if input_transform is not None:
assert isinstance(in_channels, (list, tuple))
assert isinstance(in_index, (list, tuple))
assert len(in_channels) == len(in_index)
if input_transform == 'resize_concat':
self.in_channels = sum(in_channels)
else:
self.in_channels = in_channels
else:
assert isinstance(in_channels, int)
assert isinstance(in_index, int)
self.in_channels = in_channels
def _transform_inputs(self, inputs):
"""Transform inputs for decoder.
Args:
inputs (list[Tensor] | Tensor): multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if not isinstance(inputs, list):
if not isinstance(inputs, list):
if self.upsample > 0:
inputs = resize(
input=F.relu(inputs),
scale_factor=self.upsample,
mode='bilinear',
align_corners=self.align_corners
)
return inputs
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
resize(
input=x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = torch.cat(upsampled_inputs, dim=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index]
return inputs
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
if num_layers != len(num_filters):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_filters({len(num_filters)})'
raise ValueError(error_msg)
if num_layers != len(num_kernels):
error_msg = f'num_layers({num_layers}) ' \
f'!= length of num_kernels({len(num_kernels)})'
raise ValueError(error_msg)
layers = []
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=self.in_channels,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
self.in_channels = planes
return nn.Sequential(*layers)
def init_weights(self):
"""Initialize model weights."""
for _, m in self.deconv_layers.named_modules():
if isinstance(m, nn.ConvTranspose2d):
normal_init(m, std=0.001)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
for m in self.final_layer.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
|