Spaces:
Build error
Build error
File size: 4,028 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import warnings
from argparse import ArgumentParser
import mmcv
from mmpose.apis import (inference_bottom_up_pose_model, init_pose_model,
vis_pose_result)
from mmpose.datasets import DatasetInfo
def main():
"""Visualize the demo images."""
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for detection')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument(
'--img-path',
type=str,
help='Path to an image file or a image folder.')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--out-img-root',
type=str,
default='',
help='Root of the output img file. '
'Default not saving the visualization images.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--pose-nms-thr',
type=float,
default=0.9,
help='OKS threshold for pose NMS')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
args = parser.parse_args()
assert args.show or (args.out_img_root != '')
# prepare image list
if osp.isfile(args.img_path):
image_list = [args.img_path]
elif osp.isdir(args.img_path):
image_list = [
osp.join(args.img_path, fn) for fn in os.listdir(args.img_path)
if fn.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp'))
]
else:
raise ValueError('Image path should be an image or image folder.'
f'Got invalid image path: {args.img_path}')
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
if dataset_info is None:
warnings.warn(
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
assert (dataset == 'BottomUpCocoDataset')
else:
dataset_info = DatasetInfo(dataset_info)
# optional
return_heatmap = False
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
# process each image
for image_name in mmcv.track_iter_progress(image_list):
# test a single image, with a list of bboxes.
pose_results, returned_outputs = inference_bottom_up_pose_model(
pose_model,
image_name,
dataset=dataset,
dataset_info=dataset_info,
pose_nms_thr=args.pose_nms_thr,
return_heatmap=return_heatmap,
outputs=output_layer_names)
if args.out_img_root == '':
out_file = None
else:
os.makedirs(args.out_img_root, exist_ok=True)
out_file = os.path.join(
args.out_img_root,
f'vis_{osp.splitext(osp.basename(image_name))[0]}.jpg')
# show the results
vis_pose_result(
pose_model,
image_name,
pose_results,
radius=args.radius,
thickness=args.thickness,
dataset=dataset,
dataset_info=dataset_info,
kpt_score_thr=args.kpt_thr,
show=args.show,
out_file=out_file)
if __name__ == '__main__':
main()
|