File size: 4,918 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser

import cv2

from mmpose.apis import (get_track_id, inference_bottom_up_pose_model,
                         init_pose_model, vis_pose_tracking_result)
from mmpose.datasets import DatasetInfo


def main():
    """Visualize the demo images."""
    parser = ArgumentParser()
    parser.add_argument('pose_config', help='Config file for pose')
    parser.add_argument('pose_checkpoint', help='Checkpoint file for pose')
    parser.add_argument('--video-path', type=str, help='Video path')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show visualizations.')
    parser.add_argument(
        '--out-video-root',
        default='',
        help='Root of the output video file. '
        'Default not saving the visualization video.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--kpt-thr', type=float, default=0.5, help='Keypoint score threshold')
    parser.add_argument(
        '--pose-nms-thr',
        type=float,
        default=0.9,
        help='OKS threshold for pose NMS')
    parser.add_argument(
        '--use-oks-tracking', action='store_true', help='Using OKS tracking')
    parser.add_argument(
        '--tracking-thr', type=float, default=0.3, help='Tracking threshold')
    parser.add_argument(
        '--euro',
        action='store_true',
        help='Using One_Euro_Filter for smoothing')
    parser.add_argument(
        '--radius',
        type=int,
        default=4,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=1,
        help='Link thickness for visualization')

    args = parser.parse_args()

    assert args.show or (args.out_video_root != '')

    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(
        args.pose_config, args.pose_checkpoint, device=args.device.lower())

    dataset = pose_model.cfg.data['test']['type']
    dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
        assert (dataset == 'BottomUpCocoDataset')
    else:
        dataset_info = DatasetInfo(dataset_info)

    cap = cv2.VideoCapture(args.video_path)
    fps = None

    assert cap.isOpened(), f'Faild to load video file {args.video_path}'

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fps = cap.get(cv2.CAP_PROP_FPS)
        size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        videoWriter = cv2.VideoWriter(
            os.path.join(args.out_video_root,
                         f'vis_{os.path.basename(args.video_path)}'), fourcc,
            fps, size)

    # optional
    return_heatmap = False

    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None
    next_id = 0
    pose_results = []
    while (cap.isOpened()):
        flag, img = cap.read()
        if not flag:
            break
        pose_results_last = pose_results

        pose_results, returned_outputs = inference_bottom_up_pose_model(
            pose_model,
            img,
            dataset=dataset,
            dataset_info=dataset_info,
            pose_nms_thr=args.pose_nms_thr,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        # get track id for each person instance
        pose_results, next_id = get_track_id(
            pose_results,
            pose_results_last,
            next_id,
            use_oks=args.use_oks_tracking,
            tracking_thr=args.tracking_thr,
            use_one_euro=args.euro,
            fps=fps)

        # show the results
        vis_img = vis_pose_tracking_result(
            pose_model,
            img,
            pose_results,
            radius=args.radius,
            thickness=args.thickness,
            dataset=dataset,
            dataset_info=dataset_info,
            kpt_score_thr=args.kpt_thr,
            show=False)

        if args.show:
            cv2.imshow('Image', vis_img)

        if save_out_video:
            videoWriter.write(vis_img)

        if args.show and cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    if save_out_video:
        videoWriter.release()
    if args.show:
        cv2.destroyAllWindows()


if __name__ == '__main__':
    main()