File size: 4,072 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser

import cv2

from mmpose.apis import (inference_bottom_up_pose_model, init_pose_model,
                         vis_pose_result)
from mmpose.datasets import DatasetInfo


def main():
    """Visualize the demo images."""
    parser = ArgumentParser()
    parser.add_argument('pose_config', help='Config file for pose')
    parser.add_argument('pose_checkpoint', help='Checkpoint file for pose')
    parser.add_argument('--video-path', type=str, help='Video path')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show visualizations.')
    parser.add_argument(
        '--out-video-root',
        default='',
        help='Root of the output video file. '
        'Default not saving the visualization video.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
    parser.add_argument(
        '--pose-nms-thr',
        type=float,
        default=0.9,
        help='OKS threshold for pose NMS')
    parser.add_argument(
        '--radius',
        type=int,
        default=4,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=1,
        help='Link thickness for visualization')

    args = parser.parse_args()

    assert args.show or (args.out_video_root != '')

    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(
        args.pose_config, args.pose_checkpoint, device=args.device.lower())

    dataset = pose_model.cfg.data['test']['type']
    dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
        assert (dataset == 'BottomUpCocoDataset')
    else:
        dataset_info = DatasetInfo(dataset_info)

    cap = cv2.VideoCapture(args.video_path)

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fps = cap.get(cv2.CAP_PROP_FPS)
        size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        videoWriter = cv2.VideoWriter(
            os.path.join(args.out_video_root,
                         f'vis_{os.path.basename(args.video_path)}'), fourcc,
            fps, size)

    # optional
    return_heatmap = False

    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None

    while (cap.isOpened()):
        flag, img = cap.read()
        if not flag:
            break

        pose_results, returned_outputs = inference_bottom_up_pose_model(
            pose_model,
            img,
            dataset=dataset,
            dataset_info=dataset_info,
            pose_nms_thr=args.pose_nms_thr,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        # show the results
        vis_img = vis_pose_result(
            pose_model,
            img,
            pose_results,
            radius=args.radius,
            thickness=args.thickness,
            dataset=dataset,
            dataset_info=dataset_info,
            kpt_score_thr=args.kpt_thr,
            show=False)

        if args.show:
            cv2.imshow('Image', vis_img)

        if save_out_video:
            videoWriter.write(vis_img)

        if args.show and cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    if save_out_video:
        videoWriter.release()
    if args.show:
        cv2.destroyAllWindows()


if __name__ == '__main__':
    main()