Spaces:
Build error
Build error
File size: 9,874 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
from argparse import ArgumentParser
import mmcv
import numpy as np
from xtcocotools.coco import COCO
from mmpose.apis import inference_interhand_3d_model, vis_3d_pose_result
from mmpose.apis.inference import init_pose_model
from mmpose.core import SimpleCamera
def _transform_interhand_camera_param(interhand_camera_param):
"""Transform the camera parameters in interhand2.6m dataset to the format
of SimpleCamera.
Args:
interhand_camera_param (dict): camera parameters including:
- camrot: 3x3, camera rotation matrix (world-to-camera)
- campos: 3x1, camera location in world space
- focal: 2x1, camera focal length
- princpt: 2x1, camera center
Returns:
param (dict): camera parameters including:
- R: 3x3, camera rotation matrix (camera-to-world)
- T: 3x1, camera translation (camera-to-world)
- f: 2x1, camera focal length
- c: 2x1, camera center
"""
camera_param = {}
camera_param['R'] = np.array(interhand_camera_param['camrot']).T
camera_param['T'] = np.array(interhand_camera_param['campos'])[:, None]
camera_param['f'] = np.array(interhand_camera_param['focal'])[:, None]
camera_param['c'] = np.array(interhand_camera_param['princpt'])[:, None]
return camera_param
def main():
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for pose network')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument('--img-root', type=str, default='', help='Image root')
parser.add_argument(
'--json-file',
type=str,
default='',
help='Json file containing image info.')
parser.add_argument(
'--camera-param-file',
type=str,
default=None,
help='Camera parameter file for converting 3D pose predictions from '
' the pixel space to camera space. If None, keypoints in pixel space'
'will be visualized')
parser.add_argument(
'--gt-joints-file',
type=str,
default=None,
help='Optional argument. Ground truth 3D keypoint parameter file. '
'If None, gt keypoints will not be shown and keypoints in pixel '
'space will be visualized.')
parser.add_argument(
'--rebase-keypoint-height',
action='store_true',
help='Rebase the predicted 3D pose so its lowest keypoint has a '
'height of 0 (landing on the ground). This is useful for '
'visualization when the model do not predict the global position '
'of the 3D pose.')
parser.add_argument(
'--show-ground-truth',
action='store_true',
help='If True, show ground truth keypoint if it is available.')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--out-img-root',
type=str,
default=None,
help='Root of the output visualization images. '
'Default not saving the visualization images.')
parser.add_argument(
'--device', default='cuda:0', help='Device for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
args = parser.parse_args()
assert args.show or (args.out_img_root != '')
coco = COCO(args.json_file)
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']
# load camera parameters
camera_params = None
if args.camera_param_file is not None:
camera_params = mmcv.load(args.camera_param_file)
# load ground truth joints parameters
gt_joint_params = None
if args.gt_joints_file is not None:
gt_joint_params = mmcv.load(args.gt_joints_file)
# load hand bounding boxes
det_results_list = []
for image_id, image in coco.imgs.items():
image_name = osp.join(args.img_root, image['file_name'])
ann_ids = coco.getAnnIds(image_id)
det_results = []
capture_key = str(image['capture'])
camera_key = image['camera']
frame_idx = image['frame_idx']
for ann_id in ann_ids:
ann = coco.anns[ann_id]
if camera_params is not None:
camera_param = {
key: camera_params[capture_key][key][camera_key]
for key in camera_params[capture_key].keys()
}
camera_param = _transform_interhand_camera_param(camera_param)
else:
camera_param = None
if gt_joint_params is not None:
joint_param = gt_joint_params[capture_key][str(frame_idx)]
gt_joint = np.concatenate([
np.array(joint_param['world_coord']),
np.array(joint_param['joint_valid'])
],
axis=-1)
else:
gt_joint = None
det_result = {
'image_name': image_name,
'bbox': ann['bbox'], # bbox format is 'xywh'
'camera_param': camera_param,
'keypoints_3d_gt': gt_joint
}
det_results.append(det_result)
det_results_list.append(det_results)
for i, det_results in enumerate(
mmcv.track_iter_progress(det_results_list)):
image_name = det_results[0]['image_name']
pose_results = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset=dataset)
# Post processing
pose_results_vis = []
for idx, res in enumerate(pose_results):
keypoints_3d = res['keypoints_3d']
# normalize kpt score
if keypoints_3d[:, 3].max() > 1:
keypoints_3d[:, 3] /= 255
# get 2D keypoints in pixel space
res['keypoints'] = keypoints_3d[:, [0, 1, 3]]
# For model-predicted keypoints, channel 0 and 1 are coordinates
# in pixel space, and channel 2 is the depth (in mm) relative
# to root joints.
# If both camera parameter and absolute depth of root joints are
# provided, we can transform keypoint to camera space for better
# visualization.
camera_param = res['camera_param']
keypoints_3d_gt = res['keypoints_3d_gt']
if camera_param is not None and keypoints_3d_gt is not None:
# build camera model
camera = SimpleCamera(camera_param)
# transform gt joints from world space to camera space
keypoints_3d_gt[:, :3] = camera.world_to_camera(
keypoints_3d_gt[:, :3])
# transform relative depth to absolute depth
keypoints_3d[:21, 2] += keypoints_3d_gt[20, 2]
keypoints_3d[21:, 2] += keypoints_3d_gt[41, 2]
# transform keypoints from pixel space to camera space
keypoints_3d[:, :3] = camera.pixel_to_camera(
keypoints_3d[:, :3])
# rotate the keypoint to make z-axis correspondent to height
# for better visualization
vis_R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
keypoints_3d[:, :3] = keypoints_3d[:, :3] @ vis_R
if keypoints_3d_gt is not None:
keypoints_3d_gt[:, :3] = keypoints_3d_gt[:, :3] @ vis_R
# rebase height (z-axis)
if args.rebase_keypoint_height:
valid = keypoints_3d[..., 3] > 0
keypoints_3d[..., 2] -= np.min(
keypoints_3d[valid, 2], axis=-1, keepdims=True)
res['keypoints_3d'] = keypoints_3d
res['keypoints_3d_gt'] = keypoints_3d_gt
# Add title
instance_id = res.get('track_id', idx)
res['title'] = f'Prediction ({instance_id})'
pose_results_vis.append(res)
# Add ground truth
if args.show_ground_truth:
if keypoints_3d_gt is None:
print('Fail to show ground truth. Please make sure that'
' gt-joints-file is provided.')
else:
gt = res.copy()
if args.rebase_keypoint_height:
valid = keypoints_3d_gt[..., 3] > 0
keypoints_3d_gt[..., 2] -= np.min(
keypoints_3d_gt[valid, 2], axis=-1, keepdims=True)
gt['keypoints_3d'] = keypoints_3d_gt
gt['title'] = f'Ground truth ({instance_id})'
pose_results_vis.append(gt)
# Visualization
if args.out_img_root is None:
out_file = None
else:
os.makedirs(args.out_img_root, exist_ok=True)
out_file = osp.join(args.out_img_root, f'vis_{i}.jpg')
vis_3d_pose_result(
pose_model,
result=pose_results_vis,
img=det_results[0]['image_name'],
out_file=out_file,
dataset=dataset,
show=args.show,
kpt_score_thr=args.kpt_thr,
radius=args.radius,
thickness=args.thickness,
)
if __name__ == '__main__':
main()
|