Spaces:
Build error
Build error
File size: 1,541 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# Convolutional pose machines
<!-- [ALGORITHM] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Convolutional_Pose_Machines_CVPR_2016_paper.html">CPM (CVPR'2016)</a></summary>
```bibtex
@inproceedings{wei2016convolutional,
title={Convolutional pose machines},
author={Wei, Shih-En and Ramakrishna, Varun and Kanade, Takeo and Sheikh, Yaser},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={4724--4732},
year={2016}
}
```
</details>
## Abstract
<!-- [ABSTRACT] -->
We introduce associative embedding, a novel method for supervising convolutional neural networks for the task of detection and grouping. A number of computer vision problems can be framed in this manner including multi-person pose estimation, instance segmentation, and multi-object tracking. Usually the grouping of detections is achieved with multi-stage pipelines, instead we propose an approach that teaches a network to simultaneously output detections and group assignments. This technique can be easily integrated into any state-of-the-art network architecture that produces pixel-wise predictions. We show how to apply this method to both multi-person pose estimation and instance segmentation and report state-of-the-art performance for multi-person pose on the MPII and MS-COCO datasets.
<!-- [IMAGE] -->
<div align=center>
<img src="https://user-images.githubusercontent.com/15977946/146514331-a599580b-69a5-4ee4-9aaf-4a72f9c25c9a.png">
</div>
|