Spaces:
Build error
Build error
File size: 8,937 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones import MobileNetV2
from mmpose.models.backbones.mobilenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_mobilenetv2_invertedresidual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(16, 24, stride=3, expand_ratio=6)
# Test InvertedResidual with checkpoint forward, stride=1
block = InvertedResidual(16, 24, stride=1, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
# Test InvertedResidual with expand_ratio=1
block = InvertedResidual(16, 16, stride=1, expand_ratio=1)
assert len(block.conv) == 2
# Test InvertedResidual with use_res_connect
block = InvertedResidual(16, 16, stride=1, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert block.use_res_connect is True
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual with checkpoint forward, stride=2
block = InvertedResidual(16, 24, stride=2, expand_ratio=6)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 28, 28))
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(16, 24, stride=1, expand_ratio=6, with_cp=True)
assert block.with_cp
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
# Test InvertedResidual with act_cfg=dict(type='ReLU')
block = InvertedResidual(
16, 24, stride=1, expand_ratio=6, act_cfg=dict(type='ReLU'))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 24, 56, 56))
def test_mobilenetv2_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV2()
model.init_weights(pretrained=0)
with pytest.raises(ValueError):
# frozen_stages must in range(1, 8)
MobileNetV2(frozen_stages=8)
with pytest.raises(ValueError):
# tout_indices in range(-1, 8)
MobileNetV2(out_indices=[8])
# Test MobileNetV2 with first stage frozen
frozen_stages = 1
model = MobileNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.conv1.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with norm_eval=True
model = MobileNetV2(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV2 forward with widen_factor=1.0
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 8))
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
assert feat[7].shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with widen_factor=0.5
model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 8, 112, 112))
assert feat[1].shape == torch.Size((1, 16, 56, 56))
assert feat[2].shape == torch.Size((1, 16, 28, 28))
assert feat[3].shape == torch.Size((1, 32, 14, 14))
assert feat[4].shape == torch.Size((1, 48, 14, 14))
assert feat[5].shape == torch.Size((1, 80, 7, 7))
assert feat[6].shape == torch.Size((1, 160, 7, 7))
# Test MobileNetV2 forward with widen_factor=2.0
model = MobileNetV2(widen_factor=2.0)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 2560, 7, 7))
# Test MobileNetV2 forward with out_indices=None
model = MobileNetV2(widen_factor=1.0)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat.shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with dict(type='ReLU')
model = MobileNetV2(
widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 7))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with GroupNorm forward
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with BatchNorm forward
model = MobileNetV2(
widen_factor=1.0,
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with layers 1, 3, 5 out forward
model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 32, 28, 28))
assert feat[2].shape == torch.Size((1, 96, 14, 14))
# Test MobileNetV2 with checkpoint forward
model = MobileNetV2(
widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
|