File size: 6,340 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm

from mmpose.models.backbones import ShuffleNetV2
from mmpose.models.backbones.shufflenet_v2 import InvertedResidual


def is_block(modules):
    """Check if is ResNet building block."""
    if isinstance(modules, (InvertedResidual, )):
        return True
    return False


def is_norm(modules):
    """Check if is one of the norms."""
    if isinstance(modules, (GroupNorm, _BatchNorm)):
        return True
    return False


def check_norm_state(modules, train_state):
    """Check if norm layer is in correct train state."""
    for mod in modules:
        if isinstance(mod, _BatchNorm):
            if mod.training != train_state:
                return False
    return True


def test_shufflenetv2_invertedresidual():

    with pytest.raises(AssertionError):
        # when stride==1, in_channels should be equal to out_channels // 2 * 2
        InvertedResidual(24, 32, stride=1)

    with pytest.raises(AssertionError):
        # when in_channels !=  out_channels // 2 * 2, stride should not be
        # equal to 1.
        InvertedResidual(24, 32, stride=1)

    # Test InvertedResidual forward
    block = InvertedResidual(24, 48, stride=2)
    x = torch.randn(1, 24, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size((1, 48, 28, 28))

    # Test InvertedResidual with checkpoint forward
    block = InvertedResidual(48, 48, stride=1, with_cp=True)
    assert block.with_cp
    x = torch.randn(1, 48, 56, 56)
    x.requires_grad = True
    x_out = block(x)
    assert x_out.shape == torch.Size((1, 48, 56, 56))


def test_shufflenetv2_backbone():

    with pytest.raises(ValueError):
        # groups must be in 0.5, 1.0, 1.5, 2.0]
        ShuffleNetV2(widen_factor=3.0)

    with pytest.raises(ValueError):
        # frozen_stages must be in [0, 1, 2, 3]
        ShuffleNetV2(widen_factor=1.0, frozen_stages=4)

    with pytest.raises(ValueError):
        # out_indices must be in [0, 1, 2, 3]
        ShuffleNetV2(widen_factor=1.0, out_indices=(4, ))

    with pytest.raises(TypeError):
        # pretrained must be str or None
        model = ShuffleNetV2()
        model.init_weights(pretrained=1)

    # Test ShuffleNetV2 norm state
    model = ShuffleNetV2()
    model.init_weights()
    model.train()
    assert check_norm_state(model.modules(), True)

    # Test ShuffleNetV2 with first stage frozen
    frozen_stages = 1
    model = ShuffleNetV2(frozen_stages=frozen_stages)
    model.init_weights()
    model.train()
    for param in model.conv1.parameters():
        assert param.requires_grad is False
    for i in range(0, frozen_stages):
        layer = model.layers[i]
        for mod in layer.modules():
            if isinstance(mod, _BatchNorm):
                assert mod.training is False
        for param in layer.parameters():
            assert param.requires_grad is False

    # Test ShuffleNetV2 with norm_eval
    model = ShuffleNetV2(norm_eval=True)
    model.init_weights()
    model.train()

    assert check_norm_state(model.modules(), False)

    # Test ShuffleNetV2 forward with widen_factor=0.5
    model = ShuffleNetV2(widen_factor=0.5, out_indices=(0, 1, 2, 3))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size((1, 48, 28, 28))
    assert feat[1].shape == torch.Size((1, 96, 14, 14))
    assert feat[2].shape == torch.Size((1, 192, 7, 7))

    # Test ShuffleNetV2 forward with widen_factor=1.0
    model = ShuffleNetV2(widen_factor=1.0, out_indices=(0, 1, 2, 3))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size((1, 116, 28, 28))
    assert feat[1].shape == torch.Size((1, 232, 14, 14))
    assert feat[2].shape == torch.Size((1, 464, 7, 7))

    # Test ShuffleNetV2 forward with widen_factor=1.5
    model = ShuffleNetV2(widen_factor=1.5, out_indices=(0, 1, 2, 3))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size((1, 176, 28, 28))
    assert feat[1].shape == torch.Size((1, 352, 14, 14))
    assert feat[2].shape == torch.Size((1, 704, 7, 7))

    # Test ShuffleNetV2 forward with widen_factor=2.0
    model = ShuffleNetV2(widen_factor=2.0, out_indices=(0, 1, 2, 3))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size((1, 244, 28, 28))
    assert feat[1].shape == torch.Size((1, 488, 14, 14))
    assert feat[2].shape == torch.Size((1, 976, 7, 7))

    # Test ShuffleNetV2 forward with layers 3 forward
    model = ShuffleNetV2(widen_factor=1.0, out_indices=(2, ))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert isinstance(feat, torch.Tensor)
    assert feat.shape == torch.Size((1, 464, 7, 7))

    # Test ShuffleNetV2 forward with layers 1 2 forward
    model = ShuffleNetV2(widen_factor=1.0, out_indices=(1, 2))
    model.init_weights()
    model.train()

    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 2
    assert feat[0].shape == torch.Size((1, 232, 14, 14))
    assert feat[1].shape == torch.Size((1, 464, 7, 7))

    # Test ShuffleNetV2 forward with checkpoint forward
    model = ShuffleNetV2(widen_factor=1.0, with_cp=True)
    for m in model.modules():
        if is_block(m):
            assert m.with_cp