Spaces:
Build error
Build error
File size: 6,340 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.models.backbones import ShuffleNetV2
from mmpose.models.backbones.shufflenet_v2 import InvertedResidual
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_shufflenetv2_invertedresidual():
with pytest.raises(AssertionError):
# when stride==1, in_channels should be equal to out_channels // 2 * 2
InvertedResidual(24, 32, stride=1)
with pytest.raises(AssertionError):
# when in_channels != out_channels // 2 * 2, stride should not be
# equal to 1.
InvertedResidual(24, 32, stride=1)
# Test InvertedResidual forward
block = InvertedResidual(24, 48, stride=2)
x = torch.randn(1, 24, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 48, 28, 28))
# Test InvertedResidual with checkpoint forward
block = InvertedResidual(48, 48, stride=1, with_cp=True)
assert block.with_cp
x = torch.randn(1, 48, 56, 56)
x.requires_grad = True
x_out = block(x)
assert x_out.shape == torch.Size((1, 48, 56, 56))
def test_shufflenetv2_backbone():
with pytest.raises(ValueError):
# groups must be in 0.5, 1.0, 1.5, 2.0]
ShuffleNetV2(widen_factor=3.0)
with pytest.raises(ValueError):
# frozen_stages must be in [0, 1, 2, 3]
ShuffleNetV2(widen_factor=1.0, frozen_stages=4)
with pytest.raises(ValueError):
# out_indices must be in [0, 1, 2, 3]
ShuffleNetV2(widen_factor=1.0, out_indices=(4, ))
with pytest.raises(TypeError):
# pretrained must be str or None
model = ShuffleNetV2()
model.init_weights(pretrained=1)
# Test ShuffleNetV2 norm state
model = ShuffleNetV2()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
# Test ShuffleNetV2 with first stage frozen
frozen_stages = 1
model = ShuffleNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for param in model.conv1.parameters():
assert param.requires_grad is False
for i in range(0, frozen_stages):
layer = model.layers[i]
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ShuffleNetV2 with norm_eval
model = ShuffleNetV2(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ShuffleNetV2 forward with widen_factor=0.5
model = ShuffleNetV2(widen_factor=0.5, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size((1, 48, 28, 28))
assert feat[1].shape == torch.Size((1, 96, 14, 14))
assert feat[2].shape == torch.Size((1, 192, 7, 7))
# Test ShuffleNetV2 forward with widen_factor=1.0
model = ShuffleNetV2(widen_factor=1.0, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size((1, 116, 28, 28))
assert feat[1].shape == torch.Size((1, 232, 14, 14))
assert feat[2].shape == torch.Size((1, 464, 7, 7))
# Test ShuffleNetV2 forward with widen_factor=1.5
model = ShuffleNetV2(widen_factor=1.5, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size((1, 176, 28, 28))
assert feat[1].shape == torch.Size((1, 352, 14, 14))
assert feat[2].shape == torch.Size((1, 704, 7, 7))
# Test ShuffleNetV2 forward with widen_factor=2.0
model = ShuffleNetV2(widen_factor=2.0, out_indices=(0, 1, 2, 3))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == torch.Size((1, 244, 28, 28))
assert feat[1].shape == torch.Size((1, 488, 14, 14))
assert feat[2].shape == torch.Size((1, 976, 7, 7))
# Test ShuffleNetV2 forward with layers 3 forward
model = ShuffleNetV2(widen_factor=1.0, out_indices=(2, ))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert isinstance(feat, torch.Tensor)
assert feat.shape == torch.Size((1, 464, 7, 7))
# Test ShuffleNetV2 forward with layers 1 2 forward
model = ShuffleNetV2(widen_factor=1.0, out_indices=(1, 2))
model.init_weights()
model.train()
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 2
assert feat[0].shape == torch.Size((1, 232, 14, 14))
assert feat[1].shape == torch.Size((1, 464, 7, 7))
# Test ShuffleNetV2 forward with checkpoint forward
model = ShuffleNetV2(widen_factor=1.0, with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
|