Spaces:
Build error
Build error
File size: 11,301 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
import numpy as np
from mmcv import Config
from mmpose.datasets import DATASETS
from mmpose.datasets.builder import build_dataset
def test_body3d_h36m_dataset():
# Test Human3.6M dataset
dataset = 'Body3DH36MDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/h36m.py').dataset_info
# test single-frame input
data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
_ = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=False)
custom_dataset = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=True)
assert custom_dataset.dataset_name == 'h36m'
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', 'n-mpjpe']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['N-MPJPE'], 0.0)
# test multi-frame input with joint_2d_src = 'detection'
data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causal=True,
temporal_padding=True,
joint_2d_src='detection',
joint_2d_det_file='tests/data/h36m/test_h36m_2d_detection.npy',
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
_ = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=False)
custom_dataset = dataset_class(
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=data_cfg,
dataset_info=dataset_info,
pipeline=[],
test_mode=True)
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', 'n-mpjpe']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['N-MPJPE'], 0.0)
def test_body3d_semi_supervision_dataset():
# Test Body3d Semi-supervision Dataset
dataset_info = Config.fromfile(
'configs/_base_/datasets/h36m.py').dataset_info
# load labeled dataset
labeled_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causall=False,
temporal_padding=True,
joint_2d_src='gt',
subset=1,
subjects=['S1'],
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl')
labeled_dataset_cfg = dict(
type='Body3DH36MDataset',
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=labeled_data_cfg,
dataset_info=dataset_info,
pipeline=[])
# load unlabled data
unlabeled_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
causal=False,
temporal_padding=True,
joint_2d_src='gt',
subjects=['S5', 'S7', 'S8'],
need_camera_param=True,
camera_param_file='tests/data/h36m/cameras.pkl',
need_2d_label=True)
unlabeled_dataset_cfg = dict(
type='Body3DH36MDataset',
ann_file='tests/data/h36m/test_h36m_body3d.npz',
img_prefix='tests/data/h36m',
data_cfg=unlabeled_data_cfg,
dataset_info=dataset_info,
pipeline=[
dict(
type='Collect',
keys=[('input_2d', 'unlabeled_input')],
meta_name='metas',
meta_keys=[])
])
# combine labeled and unlabeled dataset to form a new dataset
dataset = 'Body3DSemiSupervisionDataset'
dataset_class = DATASETS.get(dataset)
custom_dataset = dataset_class(labeled_dataset_cfg, unlabeled_dataset_cfg)
item = custom_dataset[0]
assert custom_dataset.labeled_dataset.dataset_name == 'h36m'
assert 'unlabeled_input' in item.keys()
unlabeled_dataset = build_dataset(unlabeled_dataset_cfg)
assert len(unlabeled_dataset) == len(custom_dataset)
def test_body3d_mpi_inf_3dhp_dataset():
# Test MPI-INF-3DHP dataset
dataset = 'Body3DMpiInf3dhpDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/mpi_inf_3dhp.py').dataset_info
# Test single-frame input on trainset
single_frame_train_data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_train.pkl')
# Test single-frame input on testset
single_frame_test_data_cfg = dict(
num_joints=17,
seq_len=1,
seq_frame_interval=1,
joint_2d_src='gt',
joint_2d_det_file=None,
causal=False,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_test.pkl')
# Test multi-frame input on trainset
multi_frame_train_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
joint_2d_src='gt',
joint_2d_det_file=None,
causal=True,
temporal_padding=True,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_train.pkl')
# Test multi-frame input on testset
multi_frame_test_data_cfg = dict(
num_joints=17,
seq_len=27,
seq_frame_interval=1,
joint_2d_src='pipeline',
joint_2d_det_file=None,
causal=False,
temporal_padding=True,
need_camera_param=True,
camera_param_file='tests/data/mpi_inf_3dhp/cameras_test.pkl')
ann_files = [
'tests/data/mpi_inf_3dhp/test_3dhp_train.npz',
'tests/data/mpi_inf_3dhp/test_3dhp_test.npz'
] * 2
data_cfgs = [
single_frame_train_data_cfg, single_frame_test_data_cfg,
multi_frame_train_data_cfg, multi_frame_test_data_cfg
]
for ann_file, data_cfg in zip(ann_files, data_cfgs):
_ = dataset_class(
ann_file=ann_file,
img_prefix='tests/data/mpi_inf_3dhp',
data_cfg=data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
custom_dataset = dataset_class(
ann_file=ann_file,
img_prefix='tests/data/mpi_inf_3dhp',
data_cfg=data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=True)
assert custom_dataset.test_mode is True
_ = custom_dataset[0]
results = []
for result in custom_dataset:
results.append({
'preds': result['target'][None, ...],
'target_image_paths': [result['target_image_path']],
})
metrics = ['mpjpe', 'p-mpjpe', '3dpck', 'p-3dpck', '3dauc', 'p-3dauc']
infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['P-MPJPE'], 0.0)
np.testing.assert_almost_equal(infos['3DPCK'], 100.)
np.testing.assert_almost_equal(infos['P-3DPCK'], 100.)
np.testing.assert_almost_equal(infos['3DAUC'], 30 / 31 * 100)
np.testing.assert_almost_equal(infos['P-3DAUC'], 30 / 31 * 100)
def test_body3dmview_direct_panoptic_dataset():
# Test Mview-Panoptic dataset
dataset = 'Body3DMviewDirectPanopticDataset'
dataset_class = DATASETS.get(dataset)
dataset_info = Config.fromfile(
'configs/_base_/datasets/panoptic_body3d.py').dataset_info
space_size = [8000, 8000, 2000]
space_center = [0, -500, 800]
cube_size = [80, 80, 20]
train_data_cfg = dict(
image_size=[960, 512],
heatmap_size=[[240, 128]],
space_size=space_size,
space_center=space_center,
cube_size=cube_size,
num_joints=15,
seq_list=['160906_band1', '160906_band2'],
cam_list=[(0, 12), (0, 6)],
num_cameras=2,
seq_frame_interval=1,
subset='train',
need_2d_label=True,
need_camera_param=True,
root_id=2)
test_data_cfg = dict(
image_size=[960, 512],
heatmap_size=[[240, 128]],
num_joints=15,
space_size=space_size,
space_center=space_center,
cube_size=cube_size,
seq_list=['160906_band1', '160906_band2'],
cam_list=[(0, 12), (0, 6)],
num_cameras=2,
seq_frame_interval=1,
subset='validation',
need_2d_label=True,
need_camera_param=True,
root_id=2)
with tempfile.TemporaryDirectory() as tmpdir:
_ = dataset_class(
ann_file=tmpdir + '/tmp_train.pkl',
img_prefix='tests/data/panoptic_body3d/',
data_cfg=train_data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
with tempfile.TemporaryDirectory() as tmpdir:
test_dataset = dataset_class(
ann_file=tmpdir + '/tmp_validation.pkl',
img_prefix='tests/data/panoptic_body3d',
data_cfg=test_data_cfg,
pipeline=[],
dataset_info=dataset_info,
test_mode=False)
import copy
gt_num = test_dataset.db_size // test_dataset.num_cameras
results = []
for i in range(gt_num):
index = test_dataset.num_cameras * i
db_rec = copy.deepcopy(test_dataset.db[index])
joints_3d = db_rec['joints_3d']
joints_3d_vis = db_rec['joints_3d_visible']
num_gts = len(joints_3d)
gt_pose = -np.ones((1, 10, test_dataset.num_joints, 5))
if num_gts > 0:
gt_pose[0, :num_gts, :, :3] = np.array(joints_3d)
gt_pose[0, :num_gts, :, 3] = np.array(joints_3d_vis)[:, :, 0] - 1.0
gt_pose[0, :num_gts, :, 4] = 1.0
results.append(dict(pose_3d=gt_pose, sample_id=[i]))
_ = test_dataset.evaluate(results, metric=['mAP', 'mpjpe'])
|