File size: 5,595 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
import csv
import json
import os
import time

import cv2
import numpy as np

np.random.seed(0)


def get_poly_area(x, y):
    """Calculate area of polygon given (x,y) coordinates (Shoelace formula)

    :param x: np.ndarray(N, )
    :param y: np.ndarray(N, )
    :return: area
    """
    return float(0.5 *
                 np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))))


def get_seg_area(segmentations):
    area = 0
    for segmentation in segmentations:
        area += get_poly_area(segmentation[:, 0], segmentation[:, 1])
    return area


def save_coco_anno(data_annotation,
                   img_root,
                   save_path,
                   start_img_id=0,
                   start_ann_id=0,
                   kpt_num=17):
    """Save annotations in coco-format.

    :param data_annotation: list of data annotation.
    :param img_root: the root dir to load images.
    :param save_path: the path to save transformed annotation file.
    :param start_img_id: the starting point to count the image id.
    :param start_ann_id: the starting point to count the annotation id.
    :param kpt_num: the number of keypoint.
    """
    images = []
    annotations = []

    img_id = start_img_id
    ann_id = start_ann_id

    for i in range(0, len(data_annotation)):
        data_anno = data_annotation[i]
        image_name = data_anno[0]

        img = cv2.imread(os.path.join(img_root, image_name))

        kp_string = data_anno[1]
        kps = json.loads(kp_string)

        seg_string = data_anno[2]
        segs = json.loads(seg_string)

        for kp, seg in zip(kps, segs):
            keypoints = np.zeros([kpt_num, 3])
            for ind, p in enumerate(kp):
                if p['position'] is None:
                    continue
                else:
                    keypoints[ind, 0] = p['position'][0]
                    keypoints[ind, 1] = p['position'][1]
                    keypoints[ind, 2] = 2

            segmentations = []

            max_x = -1
            max_y = -1
            min_x = 999999
            min_y = 999999
            for segm in seg:
                if len(segm['segment']) == 0:
                    continue

                segmentation = np.array(segm['segment'])
                segmentations.append(segmentation)

                _max_x, _max_y = segmentation.max(0)
                _min_x, _min_y = segmentation.min(0)

                max_x = max(max_x, _max_x)
                max_y = max(max_y, _max_y)
                min_x = min(min_x, _min_x)
                min_y = min(min_y, _min_y)

            anno = {}
            anno['keypoints'] = keypoints.reshape(-1).tolist()
            anno['image_id'] = img_id
            anno['id'] = ann_id
            anno['num_keypoints'] = int(sum(keypoints[:, 2] > 0))
            anno['bbox'] = [
                float(min_x),
                float(min_y),
                float(max_x - min_x + 1),
                float(max_y - min_y + 1)
            ]
            anno['iscrowd'] = 0
            anno['area'] = get_seg_area(segmentations)
            anno['category_id'] = 1
            anno['segmentation'] = [
                seg.reshape(-1).tolist() for seg in segmentations
            ]

            annotations.append(anno)
            ann_id += 1

        image = {}
        image['id'] = img_id
        image['file_name'] = image_name
        image['height'] = img.shape[0]
        image['width'] = img.shape[1]

        images.append(image)
        img_id += 1

    cocotype = {}

    cocotype['info'] = {}
    cocotype['info']['description'] = 'MacaquePose Generated by MMPose Team'
    cocotype['info']['version'] = '1.0'
    cocotype['info']['year'] = time.strftime('%Y', time.localtime())
    cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
                                                     time.localtime())

    cocotype['images'] = images
    cocotype['annotations'] = annotations
    cocotype['categories'] = [{
        'supercategory':
        'animal',
        'id':
        1,
        'name':
        'macaque',
        'keypoints': [
            'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear',
            'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow',
            'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee',
            'right_knee', 'left_ankle', 'right_ankle'
        ],
        'skeleton': [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
                     [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
                     [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
    }]

    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    json.dump(cocotype, open(save_path, 'w'), indent=4)
    print('number of images:', img_id)
    print('number of annotations:', ann_id)
    print(f'done {save_path}')


dataset_dir = '/data/macaque/'
with open(os.path.join(dataset_dir, 'annotations.csv'), 'r') as fp:
    data_annotation_all = list(csv.reader(fp, delimiter=','))[1:]

np.random.shuffle(data_annotation_all)

data_annotation_train = data_annotation_all[0:12500]
data_annotation_val = data_annotation_all[12500:]

img_root = os.path.join(dataset_dir, 'images')
save_coco_anno(
    data_annotation_train,
    img_root,
    os.path.join(dataset_dir, 'annotations', 'macaque_train.json'),
    kpt_num=17)
save_coco_anno(
    data_annotation_val,
    img_root,
    os.path.join(dataset_dir, 'annotations', 'macaque_test.json'),
    start_img_id=12500,
    start_ann_id=15672,
    kpt_num=17)