File size: 6,263 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import warnings

import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint

from mmpose.apis import multi_gpu_test, single_gpu_test
from mmpose.datasets import build_dataloader, build_dataset
from mmpose.models import build_posenet
from mmpose.utils import setup_multi_processes

try:
    from mmcv.runner import wrap_fp16_model
except ImportError:
    warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
                  'Please install mmcv>=1.1.4')
    from mmpose.core import wrap_fp16_model


def parse_args():
    parser = argparse.ArgumentParser(description='mmpose test model')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument('--out', help='output result file')
    parser.add_argument(
        '--work-dir', help='the dir to save evaluation results')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
        'the inference speed')
    parser.add_argument(
        '--gpu-id',
        type=int,
        default=0,
        help='id of gpu to use '
        '(only applicable to non-distributed testing)')
    parser.add_argument(
        '--eval',
        default=None,
        nargs='+',
        help='evaluation metric, which depends on the dataset,'
        ' e.g., "mAP" for MSCOCO')
    parser.add_argument(
        '--gpu_collect',
        action='store_true',
        help='whether to use gpu to collect results')
    parser.add_argument('--tmpdir', help='tmp dir for writing some results')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. For example, '
        "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def merge_configs(cfg1, cfg2):
    # Merge cfg2 into cfg1
    # Overwrite cfg1 if repeated, ignore if value is None.
    cfg1 = {} if cfg1 is None else cfg1.copy()
    cfg2 = {} if cfg2 is None else cfg2
    for k, v in cfg2.items():
        if v:
            cfg1[k] = v
    return cfg1


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # set multi-process settings
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = {
        **dict(seed=cfg.get('seed'), drop_last=False, dist=distributed),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           )),
        **dict((k, cfg.data[k]) for k in [
                   'seed',
                   'prefetch_num',
                   'pin_memory',
                   'persistent_workers',
               ] if k in cfg.data)
    }
    # step2: cfg.data.test_dataloader has higher priority
    test_loader_cfg = {
        **loader_cfg,
        **dict(shuffle=False, drop_last=False),
        **dict(workers_per_gpu=cfg.data.get('workers_per_gpu', 1)),
        **dict(samples_per_gpu=cfg.data.get('samples_per_gpu', 1)),
        **cfg.data.get('test_dataloader', {})
    }
    data_loader = build_dataloader(dataset, **test_loader_cfg)

    # build the model and load checkpoint
    model = build_posenet(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[args.gpu_id])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    eval_config = cfg.get('evaluation', {})
    eval_config = merge_configs(eval_config, dict(metric=args.eval))

    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)

        results = dataset.evaluate(outputs, cfg.work_dir, **eval_config)
        for k, v in sorted(results.items()):
            print(f'{k}: {v}')


if __name__ == '__main__':
    main()