HaMeR / mmpose /models /detectors /posewarper.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
9.13 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
from ..builder import POSENETS
from .top_down import TopDown
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class PoseWarper(TopDown):
"""Top-down pose detectors for multi-frame settings for video inputs.
`"Learning temporal pose estimation from sparsely-labeled videos"
<https://arxiv.org/abs/1906.04016>`_.
A child class of TopDown detector. The main difference between PoseWarper
and TopDown lies in that the former takes a list of tensors as input image
while the latter takes a single tensor as input image in forward method.
Args:
backbone (dict): Backbone modules to extract features.
neck (dict): intermediate modules to transform features.
keypoint_head (dict): Keypoint head to process feature.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
loss_pose (None): Deprecated arguments. Please use
`loss_keypoint` for heads instead.
concat_tensors (bool): Whether to concat the tensors on the batch dim,
which can speed up, Default: True
"""
def __init__(self,
backbone,
neck=None,
keypoint_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
loss_pose=None,
concat_tensors=True):
super().__init__(
backbone=backbone,
neck=neck,
keypoint_head=keypoint_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
loss_pose=loss_pose)
self.concat_tensors = concat_tensors
@auto_fp16(apply_to=('img', ))
def forward(self,
img,
target=None,
target_weight=None,
img_metas=None,
return_loss=True,
return_heatmap=False,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss=True. Note this setting will change the expected inputs.
When `return_loss=True`, img and img_meta are single-nested (i.e.
Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta
should be double nested (i.e. List[Tensor], List[List[dict]]), with
the outer list indicating test time augmentations.
Note:
- number of frames: F
- batch_size: N
- num_keypoints: K
- num_img_channel: C (Default: 3)
- img height: imgH
- img width: imgW
- heatmaps height: H
- heatmaps weight: W
Args:
imgs (list[F,torch.Tensor[N,C,imgH,imgW]]): multiple input frames
target (torch.Tensor[N,K,H,W]): Target heatmaps for one frame.
target_weight (torch.Tensor[N,K,1]): Weights across
different joint types.
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: paths to multiple video frames
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
return_loss (bool): Option to `return loss`. `return loss=True`
for training, `return loss=False` for validation & test.
return_heatmap (bool) : Option to return heatmap.
Returns:
dict|tuple: if `return loss` is true, then return losses. \
Otherwise, return predicted poses, boxes, image paths \
and heatmaps.
"""
if return_loss:
return self.forward_train(img, target, target_weight, img_metas,
**kwargs)
return self.forward_test(
img, img_metas, return_heatmap=return_heatmap, **kwargs)
def forward_train(self, imgs, target, target_weight, img_metas, **kwargs):
"""Defines the computation performed at every call when training."""
# imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
assert imgs[0].size(0) == len(img_metas)
num_frames = len(imgs)
frame_weight = img_metas[0]['frame_weight']
assert num_frames == len(frame_weight), f'The number of frames ' \
f'({num_frames}) and the length of weights for each frame ' \
f'({len(frame_weight)}) must match'
if self.concat_tensors:
features = [self.backbone(torch.cat(imgs, 0))]
else:
features = [self.backbone(img) for img in imgs]
if self.with_neck:
features = self.neck(features, frame_weight=frame_weight)
if self.with_keypoint:
output = self.keypoint_head(features)
# if return loss
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, target, target_weight)
losses.update(keypoint_losses)
keypoint_accuracy = self.keypoint_head.get_accuracy(
output, target, target_weight)
losses.update(keypoint_accuracy)
return losses
def forward_test(self, imgs, img_metas, return_heatmap=False, **kwargs):
"""Defines the computation performed at every call when testing."""
# imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
assert imgs[0].size(0) == len(img_metas)
num_frames = len(imgs)
frame_weight = img_metas[0]['frame_weight']
assert num_frames == len(frame_weight), f'The number of frames ' \
f'({num_frames}) and the length of weights for each frame ' \
f'({len(frame_weight)}) must match'
batch_size, _, img_height, img_width = imgs[0].shape
if batch_size > 1:
assert 'bbox_id' in img_metas[0]
result = {}
if self.concat_tensors:
features = [self.backbone(torch.cat(imgs, 0))]
else:
features = [self.backbone(img) for img in imgs]
if self.with_neck:
features = self.neck(features, frame_weight=frame_weight)
if self.with_keypoint:
output_heatmap = self.keypoint_head.inference_model(
features, flip_pairs=None)
if self.test_cfg.get('flip_test', True):
imgs_flipped = [img.flip(3) for img in imgs]
if self.concat_tensors:
features_flipped = [self.backbone(torch.cat(imgs_flipped, 0))]
else:
features_flipped = [
self.backbone(img_flipped) for img_flipped in imgs_flipped
]
if self.with_neck:
features_flipped = self.neck(
features_flipped, frame_weight=frame_weight)
if self.with_keypoint:
output_flipped_heatmap = self.keypoint_head.inference_model(
features_flipped, img_metas[0]['flip_pairs'])
output_heatmap = (output_heatmap +
output_flipped_heatmap) * 0.5
if self.with_keypoint:
keypoint_result = self.keypoint_head.decode(
img_metas, output_heatmap, img_size=[img_width, img_height])
result.update(keypoint_result)
if not return_heatmap:
output_heatmap = None
result['output_heatmap'] = output_heatmap
return result
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor[N,C,imgH,imgW], or list|tuple of tensors):
multiple input frames, N >= 2.
Returns:
Tensor: Output heatmaps.
"""
# concat tensors if they are in a list
if isinstance(img, (list, tuple)):
img = torch.cat(img, 0)
batch_size = img.size(0)
assert batch_size > 1, 'Input batch size to PoseWarper ' \
'should be larger than 1.'
if batch_size == 2:
warnings.warn('Current batch size: 2, for pytorch2onnx and '
'getting flops both.')
else:
warnings.warn(
f'Current batch size: {batch_size}, for getting flops only.')
frame_weight = np.random.uniform(0, 1, batch_size)
output = [self.backbone(img)]
if self.with_neck:
output = self.neck(output, frame_weight=frame_weight)
if self.with_keypoint:
output = self.keypoint_head(output)
return output