HaMeR / mmpose /models /heads /deeppose_regression_head.py
geopavlakos's picture
Initial commit
d7a991a
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch.nn as nn
from mmcv.cnn import normal_init
from mmpose.core.evaluation import (keypoint_pck_accuracy,
keypoints_from_regression)
from mmpose.core.post_processing import fliplr_regression
from mmpose.models.builder import HEADS, build_loss
@HEADS.register_module()
class DeepposeRegressionHead(nn.Module):
"""Deeppose regression head with fully connected layers.
"DeepPose: Human Pose Estimation via Deep Neural Networks".
Args:
in_channels (int): Number of input channels
num_joints (int): Number of joints
loss_keypoint (dict): Config for keypoint loss. Default: None.
"""
def __init__(self,
in_channels,
num_joints,
loss_keypoint=None,
train_cfg=None,
test_cfg=None):
super().__init__()
self.in_channels = in_channels
self.num_joints = num_joints
self.loss = build_loss(loss_keypoint)
self.train_cfg = {} if train_cfg is None else train_cfg
self.test_cfg = {} if test_cfg is None else test_cfg
self.fc = nn.Linear(self.in_channels, self.num_joints * 2)
def forward(self, x):
"""Forward function."""
output = self.fc(x)
N, C = output.shape
return output.reshape([N, C // 2, 2])
def get_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
- batch_size: N
- num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss, nn.Sequential)
assert target.dim() == 3 and target_weight.dim() == 3
losses['reg_loss'] = self.loss(output, target, target_weight)
return losses
def get_accuracy(self, output, target, target_weight):
"""Calculate accuracy for top-down keypoint loss.
Note:
- batch_size: N
- num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
accuracy = dict()
N = output.shape[0]
_, avg_acc, cnt = keypoint_pck_accuracy(
output.detach().cpu().numpy(),
target.detach().cpu().numpy(),
target_weight[:, :, 0].detach().cpu().numpy() > 0,
thr=0.05,
normalize=np.ones((N, 2), dtype=np.float32))
accuracy['acc_pose'] = avg_acc
return accuracy
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output_regression (np.ndarray): Output regression.
Args:
x (torch.Tensor[N, K, 2]): Input features.
flip_pairs (None | list[tuple()):
Pairs of keypoints which are mirrored.
"""
output = self.forward(x)
if flip_pairs is not None:
output_regression = fliplr_regression(
output.detach().cpu().numpy(), flip_pairs)
else:
output_regression = output.detach().cpu().numpy()
return output_regression
def decode(self, img_metas, output, **kwargs):
"""Decode the keypoints from output regression.
Args:
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
output (np.ndarray[N, K, 2]): predicted regression vector.
kwargs: dict contains 'img_size'.
img_size (tuple(img_width, img_height)): input image size.
"""
batch_size = len(img_metas)
if 'bbox_id' in img_metas[0]:
bbox_ids = []
else:
bbox_ids = None
c = np.zeros((batch_size, 2), dtype=np.float32)
s = np.zeros((batch_size, 2), dtype=np.float32)
image_paths = []
score = np.ones(batch_size)
for i in range(batch_size):
c[i, :] = img_metas[i]['center']
s[i, :] = img_metas[i]['scale']
image_paths.append(img_metas[i]['image_file'])
if 'bbox_score' in img_metas[i]:
score[i] = np.array(img_metas[i]['bbox_score']).reshape(-1)
if bbox_ids is not None:
bbox_ids.append(img_metas[i]['bbox_id'])
preds, maxvals = keypoints_from_regression(output, c, s,
kwargs['img_size'])
all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
all_preds[:, :, 0:2] = preds[:, :, 0:2]
all_preds[:, :, 2:3] = maxvals
all_boxes[:, 0:2] = c[:, 0:2]
all_boxes[:, 2:4] = s[:, 0:2]
all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
all_boxes[:, 5] = score
result = {}
result['preds'] = all_preds
result['boxes'] = all_boxes
result['image_paths'] = image_paths
result['bbox_ids'] = bbox_ids
return result
def init_weights(self):
normal_init(self.fc, mean=0, std=0.01, bias=0)