Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import numpy as np | |
from mmpose.apis import (inference_bottom_up_pose_model, | |
inference_top_down_pose_model, init_pose_model, | |
process_mmdet_results, vis_pose_result) | |
from mmpose.datasets import DatasetInfo | |
def test_top_down_demo(): | |
# COCO demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'coco/res50_coco_256x192.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/coco/000000000785.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
person_result = [] | |
person_result.append({'bbox': [50, 50, 50, 100]}) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# AIC demo | |
pose_model = init_pose_model( | |
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'aic/res50_aic_256x192.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/aic/054d9ce9201beffc76e5ff2169d2af2f027002ca.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# OneHand10K demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'onehand10k/res50_onehand10k_256x256.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/onehand10k/9.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# InterHand2DDataset demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'interhand2d/res50_interhand2d_all_256x256.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/interhand2.6m/image2017.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# Face300WDataset demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'300w/res50_300w_256x256.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/300w/indoor_020.png' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# FaceAFLWDataset demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'aflw/res50_aflw_256x256.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/aflw/image04476.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# FaceCOFWDataset demo | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/' | |
'cofw/res50_cofw_256x256.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/cofw/001766.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
# test a single image, with a list of bboxes. | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_result, | |
format='xywh', | |
dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
def test_bottom_up_demo(): | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
'configs/body/2d_kpt_sview_rgb_img/associative_embedding/' | |
'coco/res50_coco_512x512.py', | |
None, | |
device='cpu') | |
image_name = 'tests/data/coco/000000000785.jpg' | |
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get( | |
'dataset_info', None)) | |
pose_results, _ = inference_bottom_up_pose_model( | |
pose_model, image_name, dataset_info=dataset_info) | |
# show the results | |
vis_pose_result( | |
pose_model, image_name, pose_results, dataset_info=dataset_info) | |
# test dataset_info without sigmas | |
pose_model_copy = copy.deepcopy(pose_model) | |
pose_model_copy.cfg.data.test.dataset_info.pop('sigmas') | |
pose_results, _ = inference_bottom_up_pose_model( | |
pose_model_copy, image_name, dataset_info=dataset_info) | |
def test_process_mmdet_results(): | |
det_results = [np.array([0, 0, 100, 100])] | |
det_mask_results = None | |
_ = process_mmdet_results( | |
mmdet_results=(det_results, det_mask_results), cat_id=1) | |
_ = process_mmdet_results(mmdet_results=det_results, cat_id=1) | |