Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmpose.models.backbones import HRNet | |
from mmpose.models.backbones.hrnet import HRModule | |
from mmpose.models.backbones.resnet import BasicBlock, Bottleneck | |
def is_block(modules): | |
"""Check if is HRModule building block.""" | |
if isinstance(modules, (HRModule, )): | |
return True | |
return False | |
def is_norm(modules): | |
"""Check if is one of the norms.""" | |
if isinstance(modules, (_BatchNorm, )): | |
return True | |
return False | |
def all_zeros(modules): | |
"""Check if the weight(and bias) is all zero.""" | |
weight_zero = torch.equal(modules.weight.data, | |
torch.zeros_like(modules.weight.data)) | |
if hasattr(modules, 'bias'): | |
bias_zero = torch.equal(modules.bias.data, | |
torch.zeros_like(modules.bias.data)) | |
else: | |
bias_zero = True | |
return weight_zero and bias_zero | |
def test_hrmodule(): | |
# Test HRModule forward | |
block = HRModule( | |
num_branches=1, | |
blocks=BasicBlock, | |
num_blocks=(4, ), | |
in_channels=[ | |
64, | |
], | |
num_channels=(64, )) | |
x = torch.randn(2, 64, 56, 56) | |
x_out = block([x]) | |
assert x_out[0].shape == torch.Size([2, 64, 56, 56]) | |
def test_hrnet_backbone(): | |
extra = dict( | |
stage1=dict( | |
num_modules=1, | |
num_branches=1, | |
block='BOTTLENECK', | |
num_blocks=(4, ), | |
num_channels=(64, )), | |
stage2=dict( | |
num_modules=1, | |
num_branches=2, | |
block='BASIC', | |
num_blocks=(4, 4), | |
num_channels=(32, 64)), | |
stage3=dict( | |
num_modules=4, | |
num_branches=3, | |
block='BASIC', | |
num_blocks=(4, 4, 4), | |
num_channels=(32, 64, 128)), | |
stage4=dict( | |
num_modules=3, | |
num_branches=4, | |
block='BASIC', | |
num_blocks=(4, 4, 4, 4), | |
num_channels=(32, 64, 128, 256))) | |
model = HRNet(extra, in_channels=3) | |
imgs = torch.randn(2, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 1 | |
assert feat[0].shape == torch.Size([2, 32, 56, 56]) | |
# Test HRNet zero initialization of residual | |
model = HRNet(extra, in_channels=3, zero_init_residual=True) | |
model.init_weights() | |
for m in model.modules(): | |
if isinstance(m, Bottleneck): | |
assert all_zeros(m.norm3) | |
model.train() | |
imgs = torch.randn(2, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 1 | |
assert feat[0].shape == torch.Size([2, 32, 56, 56]) | |
# Test HRNet with the first three stages frozen | |
frozen_stages = 3 | |
model = HRNet(extra, in_channels=3, frozen_stages=frozen_stages) | |
model.init_weights() | |
model.train() | |
if frozen_stages >= 0: | |
assert model.norm1.training is False | |
assert model.norm2.training is False | |
for layer in [model.conv1, model.norm1, model.conv2, model.norm2]: | |
for param in layer.parameters(): | |
assert param.requires_grad is False | |
for i in range(1, frozen_stages + 1): | |
if i == 1: | |
layer = getattr(model, 'layer1') | |
else: | |
layer = getattr(model, f'stage{i}') | |
for mod in layer.modules(): | |
if isinstance(mod, _BatchNorm): | |
assert mod.training is False | |
for param in layer.parameters(): | |
assert param.requires_grad is False | |
if i < 4: | |
layer = getattr(model, f'transition{i}') | |
for mod in layer.modules(): | |
if isinstance(mod, _BatchNorm): | |
assert mod.training is False | |
for param in layer.parameters(): | |
assert param.requires_grad is False | |