Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from torch.nn.modules import GroupNorm | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmpose.models.backbones import MobileNetV3 | |
from mmpose.models.backbones.utils import InvertedResidual | |
def is_norm(modules): | |
"""Check if is one of the norms.""" | |
if isinstance(modules, (GroupNorm, _BatchNorm)): | |
return True | |
return False | |
def check_norm_state(modules, train_state): | |
"""Check if norm layer is in correct train state.""" | |
for mod in modules: | |
if isinstance(mod, _BatchNorm): | |
if mod.training != train_state: | |
return False | |
return True | |
def test_mobilenetv3_backbone(): | |
with pytest.raises(TypeError): | |
# pretrained must be a string path | |
model = MobileNetV3() | |
model.init_weights(pretrained=0) | |
with pytest.raises(AssertionError): | |
# arch must in [small, big] | |
MobileNetV3(arch='others') | |
with pytest.raises(ValueError): | |
# frozen_stages must less than 12 when arch is small | |
MobileNetV3(arch='small', frozen_stages=12) | |
with pytest.raises(ValueError): | |
# frozen_stages must less than 16 when arch is big | |
MobileNetV3(arch='big', frozen_stages=16) | |
with pytest.raises(ValueError): | |
# max out_indices must less than 11 when arch is small | |
MobileNetV3(arch='small', out_indices=(11, )) | |
with pytest.raises(ValueError): | |
# max out_indices must less than 15 when arch is big | |
MobileNetV3(arch='big', out_indices=(15, )) | |
# Test MobileNetv3 | |
model = MobileNetV3() | |
model.init_weights() | |
model.train() | |
# Test MobileNetv3 with first stage frozen | |
frozen_stages = 1 | |
model = MobileNetV3(frozen_stages=frozen_stages) | |
model.init_weights() | |
model.train() | |
for param in model.conv1.parameters(): | |
assert param.requires_grad is False | |
for i in range(1, frozen_stages + 1): | |
layer = getattr(model, f'layer{i}') | |
for mod in layer.modules(): | |
if isinstance(mod, _BatchNorm): | |
assert mod.training is False | |
for param in layer.parameters(): | |
assert param.requires_grad is False | |
# Test MobileNetv3 with norm eval | |
model = MobileNetV3(norm_eval=True, out_indices=range(0, 11)) | |
model.init_weights() | |
model.train() | |
assert check_norm_state(model.modules(), False) | |
# Test MobileNetv3 forward with small arch | |
model = MobileNetV3(out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 11 | |
assert feat[0].shape == torch.Size([1, 16, 56, 56]) | |
assert feat[1].shape == torch.Size([1, 24, 28, 28]) | |
assert feat[2].shape == torch.Size([1, 24, 28, 28]) | |
assert feat[3].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[4].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[5].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[6].shape == torch.Size([1, 48, 14, 14]) | |
assert feat[7].shape == torch.Size([1, 48, 14, 14]) | |
assert feat[8].shape == torch.Size([1, 96, 7, 7]) | |
assert feat[9].shape == torch.Size([1, 96, 7, 7]) | |
assert feat[10].shape == torch.Size([1, 96, 7, 7]) | |
# Test MobileNetv3 forward with small arch and GroupNorm | |
model = MobileNetV3( | |
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), | |
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, GroupNorm) | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 11 | |
assert feat[0].shape == torch.Size([1, 16, 56, 56]) | |
assert feat[1].shape == torch.Size([1, 24, 28, 28]) | |
assert feat[2].shape == torch.Size([1, 24, 28, 28]) | |
assert feat[3].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[4].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[5].shape == torch.Size([1, 40, 14, 14]) | |
assert feat[6].shape == torch.Size([1, 48, 14, 14]) | |
assert feat[7].shape == torch.Size([1, 48, 14, 14]) | |
assert feat[8].shape == torch.Size([1, 96, 7, 7]) | |
assert feat[9].shape == torch.Size([1, 96, 7, 7]) | |
assert feat[10].shape == torch.Size([1, 96, 7, 7]) | |
# Test MobileNetv3 forward with big arch | |
model = MobileNetV3( | |
arch='big', | |
out_indices=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)) | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 15 | |
assert feat[0].shape == torch.Size([1, 16, 112, 112]) | |
assert feat[1].shape == torch.Size([1, 24, 56, 56]) | |
assert feat[2].shape == torch.Size([1, 24, 56, 56]) | |
assert feat[3].shape == torch.Size([1, 40, 28, 28]) | |
assert feat[4].shape == torch.Size([1, 40, 28, 28]) | |
assert feat[5].shape == torch.Size([1, 40, 28, 28]) | |
assert feat[6].shape == torch.Size([1, 80, 14, 14]) | |
assert feat[7].shape == torch.Size([1, 80, 14, 14]) | |
assert feat[8].shape == torch.Size([1, 80, 14, 14]) | |
assert feat[9].shape == torch.Size([1, 80, 14, 14]) | |
assert feat[10].shape == torch.Size([1, 112, 14, 14]) | |
assert feat[11].shape == torch.Size([1, 112, 14, 14]) | |
assert feat[12].shape == torch.Size([1, 160, 14, 14]) | |
assert feat[13].shape == torch.Size([1, 160, 7, 7]) | |
assert feat[14].shape == torch.Size([1, 160, 7, 7]) | |
# Test MobileNetv3 forward with big arch | |
model = MobileNetV3(arch='big', out_indices=(0, )) | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert feat.shape == torch.Size([1, 16, 112, 112]) | |
# Test MobileNetv3 with checkpoint forward | |
model = MobileNetV3(with_cp=True) | |
for m in model.modules(): | |
if isinstance(m, InvertedResidual): | |
assert m.with_cp | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert feat.shape == torch.Size([1, 96, 7, 7]) | |