Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmpose.models.backbones import ResNeXt | |
from mmpose.models.backbones.resnext import Bottleneck as BottleneckX | |
def test_bottleneck(): | |
with pytest.raises(AssertionError): | |
# Style must be in ['pytorch', 'caffe'] | |
BottleneckX(64, 64, groups=32, width_per_group=4, style='tensorflow') | |
# Test ResNeXt Bottleneck structure | |
block = BottleneckX( | |
64, 256, groups=32, width_per_group=4, stride=2, style='pytorch') | |
assert block.conv2.stride == (2, 2) | |
assert block.conv2.groups == 32 | |
assert block.conv2.out_channels == 128 | |
# Test ResNeXt Bottleneck forward | |
block = BottleneckX(64, 64, base_channels=16, groups=32, width_per_group=4) | |
x = torch.randn(1, 64, 56, 56) | |
x_out = block(x) | |
assert x_out.shape == torch.Size([1, 64, 56, 56]) | |
def test_resnext(): | |
with pytest.raises(KeyError): | |
# ResNeXt depth should be in [50, 101, 152] | |
ResNeXt(depth=18) | |
# Test ResNeXt with group 32, width_per_group 4 | |
model = ResNeXt( | |
depth=50, groups=32, width_per_group=4, out_indices=(0, 1, 2, 3)) | |
for m in model.modules(): | |
if isinstance(m, BottleneckX): | |
assert m.conv2.groups == 32 | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 4 | |
assert feat[0].shape == torch.Size([1, 256, 56, 56]) | |
assert feat[1].shape == torch.Size([1, 512, 28, 28]) | |
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) | |
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) | |
# Test ResNeXt with group 32, width_per_group 4 and layers 3 out forward | |
model = ResNeXt(depth=50, groups=32, width_per_group=4, out_indices=(3, )) | |
for m in model.modules(): | |
if isinstance(m, BottleneckX): | |
assert m.conv2.groups == 32 | |
model.init_weights() | |
model.train() | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert feat.shape == torch.Size([1, 2048, 7, 7]) | |