Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from torch.nn.modules import GroupNorm | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from mmpose.models.backbones import ShuffleNetV1 | |
from mmpose.models.backbones.shufflenet_v1 import ShuffleUnit | |
def is_block(modules): | |
"""Check if is ResNet building block.""" | |
if isinstance(modules, (ShuffleUnit, )): | |
return True | |
return False | |
def is_norm(modules): | |
"""Check if is one of the norms.""" | |
if isinstance(modules, (GroupNorm, _BatchNorm)): | |
return True | |
return False | |
def check_norm_state(modules, train_state): | |
"""Check if norm layer is in correct train state.""" | |
for mod in modules: | |
if isinstance(mod, _BatchNorm): | |
if mod.training != train_state: | |
return False | |
return True | |
def test_shufflenetv1_shuffleuint(): | |
with pytest.raises(ValueError): | |
# combine must be in ['add', 'concat'] | |
ShuffleUnit(24, 16, groups=3, first_block=True, combine='test') | |
with pytest.raises(AssertionError): | |
# inplanes must be equal tp = outplanes when combine='add' | |
ShuffleUnit(64, 24, groups=4, first_block=True, combine='add') | |
# Test ShuffleUnit with combine='add' | |
block = ShuffleUnit(24, 24, groups=3, first_block=True, combine='add') | |
x = torch.randn(1, 24, 56, 56) | |
x_out = block(x) | |
assert x_out.shape == torch.Size((1, 24, 56, 56)) | |
# Test ShuffleUnit with combine='concat' | |
block = ShuffleUnit(24, 240, groups=3, first_block=True, combine='concat') | |
x = torch.randn(1, 24, 56, 56) | |
x_out = block(x) | |
assert x_out.shape == torch.Size((1, 240, 28, 28)) | |
# Test ShuffleUnit with checkpoint forward | |
block = ShuffleUnit( | |
24, 24, groups=3, first_block=True, combine='add', with_cp=True) | |
assert block.with_cp | |
x = torch.randn(1, 24, 56, 56) | |
x.requires_grad = True | |
x_out = block(x) | |
assert x_out.shape == torch.Size((1, 24, 56, 56)) | |
def test_shufflenetv1_backbone(): | |
with pytest.raises(ValueError): | |
# frozen_stages must be in range(-1, 4) | |
ShuffleNetV1(frozen_stages=10) | |
with pytest.raises(ValueError): | |
# the item in out_indices must be in range(0, 4) | |
ShuffleNetV1(out_indices=[5]) | |
with pytest.raises(ValueError): | |
# groups must be in [1, 2, 3, 4, 8] | |
ShuffleNetV1(groups=10) | |
with pytest.raises(TypeError): | |
# pretrained must be str or None | |
model = ShuffleNetV1() | |
model.init_weights(pretrained=1) | |
# Test ShuffleNetV1 norm state | |
model = ShuffleNetV1() | |
model.init_weights() | |
model.train() | |
assert check_norm_state(model.modules(), True) | |
# Test ShuffleNetV1 with first stage frozen | |
frozen_stages = 1 | |
model = ShuffleNetV1(frozen_stages=frozen_stages, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for param in model.conv1.parameters(): | |
assert param.requires_grad is False | |
for i in range(frozen_stages): | |
layer = model.layers[i] | |
for mod in layer.modules(): | |
if isinstance(mod, _BatchNorm): | |
assert mod.training is False | |
for param in layer.parameters(): | |
assert param.requires_grad is False | |
# Test ShuffleNetV1 forward with groups=1 | |
model = ShuffleNetV1(groups=1, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 144, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 288, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 576, 7, 7)) | |
# Test ShuffleNetV1 forward with groups=2 | |
model = ShuffleNetV1(groups=2, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 200, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 400, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 800, 7, 7)) | |
# Test ShuffleNetV1 forward with groups=3 | |
model = ShuffleNetV1(groups=3, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 240, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 480, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 960, 7, 7)) | |
# Test ShuffleNetV1 forward with groups=4 | |
model = ShuffleNetV1(groups=4, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 272, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 544, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 1088, 7, 7)) | |
# Test ShuffleNetV1 forward with groups=8 | |
model = ShuffleNetV1(groups=8, out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 384, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 768, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 1536, 7, 7)) | |
# Test ShuffleNetV1 forward with GroupNorm forward | |
model = ShuffleNetV1( | |
groups=3, | |
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True), | |
out_indices=(0, 1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, GroupNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 3 | |
assert feat[0].shape == torch.Size((1, 240, 28, 28)) | |
assert feat[1].shape == torch.Size((1, 480, 14, 14)) | |
assert feat[2].shape == torch.Size((1, 960, 7, 7)) | |
# Test ShuffleNetV1 forward with layers 1, 2 forward | |
model = ShuffleNetV1(groups=3, out_indices=(1, 2)) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert len(feat) == 2 | |
assert feat[0].shape == torch.Size((1, 480, 14, 14)) | |
assert feat[1].shape == torch.Size((1, 960, 7, 7)) | |
# Test ShuffleNetV1 forward with layers 2 forward | |
model = ShuffleNetV1(groups=3, out_indices=(2, )) | |
model.init_weights() | |
model.train() | |
for m in model.modules(): | |
if is_norm(m): | |
assert isinstance(m, _BatchNorm) | |
imgs = torch.randn(1, 3, 224, 224) | |
feat = model(imgs) | |
assert isinstance(feat, torch.Tensor) | |
assert feat.shape == torch.Size((1, 960, 7, 7)) | |
# Test ShuffleNetV1 forward with checkpoint forward | |
model = ShuffleNetV1(groups=3, with_cp=True) | |
for m in model.modules(): | |
if is_block(m): | |
assert m.with_cp | |
# Test ShuffleNetV1 with norm_eval | |
model = ShuffleNetV1(norm_eval=True) | |
model.init_weights() | |
model.train() | |
assert check_norm_state(model.modules(), False) | |