Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from mmpose.core import build_optimizers | |
class ExampleModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model1 = nn.Conv2d(3, 8, kernel_size=3) | |
self.model2 = nn.Conv2d(3, 4, kernel_size=3) | |
def forward(self, x): | |
return x | |
def test_build_optimizers(): | |
base_lr = 0.0001 | |
base_wd = 0.0002 | |
momentum = 0.9 | |
# basic config with ExampleModel | |
optimizer_cfg = dict( | |
model1=dict( | |
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum), | |
model2=dict( | |
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum)) | |
model = ExampleModel() | |
optimizers = build_optimizers(model, optimizer_cfg) | |
param_dict = dict(model.named_parameters()) | |
assert isinstance(optimizers, dict) | |
for i in range(2): | |
optimizer = optimizers[f'model{i+1}'] | |
param_groups = optimizer.param_groups[0] | |
assert isinstance(optimizer, torch.optim.SGD) | |
assert optimizer.defaults['lr'] == base_lr | |
assert optimizer.defaults['momentum'] == momentum | |
assert optimizer.defaults['weight_decay'] == base_wd | |
assert len(param_groups['params']) == 2 | |
assert torch.equal(param_groups['params'][0], | |
param_dict[f'model{i+1}.weight']) | |
assert torch.equal(param_groups['params'][1], | |
param_dict[f'model{i+1}.bias']) | |
# basic config with Parallel model | |
model = torch.nn.DataParallel(ExampleModel()) | |
optimizers = build_optimizers(model, optimizer_cfg) | |
param_dict = dict(model.named_parameters()) | |
assert isinstance(optimizers, dict) | |
for i in range(2): | |
optimizer = optimizers[f'model{i+1}'] | |
param_groups = optimizer.param_groups[0] | |
assert isinstance(optimizer, torch.optim.SGD) | |
assert optimizer.defaults['lr'] == base_lr | |
assert optimizer.defaults['momentum'] == momentum | |
assert optimizer.defaults['weight_decay'] == base_wd | |
assert len(param_groups['params']) == 2 | |
assert torch.equal(param_groups['params'][0], | |
param_dict[f'module.model{i+1}.weight']) | |
assert torch.equal(param_groups['params'][1], | |
param_dict[f'module.model{i+1}.bias']) | |
# basic config with ExampleModel (one optimizer) | |
optimizer_cfg = dict( | |
type='SGD', lr=base_lr, weight_decay=base_wd, momentum=momentum) | |
model = ExampleModel() | |
optimizer = build_optimizers(model, optimizer_cfg) | |
param_dict = dict(model.named_parameters()) | |
assert isinstance(optimizers, dict) | |
param_groups = optimizer.param_groups[0] | |
assert isinstance(optimizer, torch.optim.SGD) | |
assert optimizer.defaults['lr'] == base_lr | |
assert optimizer.defaults['momentum'] == momentum | |
assert optimizer.defaults['weight_decay'] == base_wd | |
assert len(param_groups['params']) == 4 | |
assert torch.equal(param_groups['params'][0], param_dict['model1.weight']) | |
assert torch.equal(param_groups['params'][1], param_dict['model1.bias']) | |
assert torch.equal(param_groups['params'][2], param_dict['model2.weight']) | |
assert torch.equal(param_groups['params'][3], param_dict['model2.bias']) | |
# basic config with Parallel model (one optimizer) | |
model = torch.nn.DataParallel(ExampleModel()) | |
optimizer = build_optimizers(model, optimizer_cfg) | |
param_dict = dict(model.named_parameters()) | |
assert isinstance(optimizers, dict) | |
param_groups = optimizer.param_groups[0] | |
assert isinstance(optimizer, torch.optim.SGD) | |
assert optimizer.defaults['lr'] == base_lr | |
assert optimizer.defaults['momentum'] == momentum | |
assert optimizer.defaults['weight_decay'] == base_wd | |
assert len(param_groups['params']) == 4 | |
assert torch.equal(param_groups['params'][0], | |
param_dict['module.model1.weight']) | |
assert torch.equal(param_groups['params'][1], | |
param_dict['module.model1.bias']) | |
assert torch.equal(param_groups['params'][2], | |
param_dict['module.model2.weight']) | |
assert torch.equal(param_groups['params'][3], | |
param_dict['module.model2.bias']) | |