Spaces:
Build error
Build error
#!/usr/bin/env bash | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import time | |
import torch | |
from mmcv import Config | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.parallel import MMDataParallel | |
from mmcv.runner.fp16_utils import wrap_fp16_model | |
from mmpose.datasets import build_dataloader, build_dataset | |
from mmpose.models import build_posenet | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMPose benchmark a recognizer') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument( | |
'--log-interval', default=10, help='interval of logging') | |
parser.add_argument( | |
'--fuse-conv-bn', | |
action='store_true', | |
help='Whether to fuse conv and bn, this will slightly increase' | |
'the inference speed') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
# build the dataloader | |
dataset = build_dataset(cfg.data.val) | |
data_loader = build_dataloader( | |
dataset, | |
samples_per_gpu=1, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=False, | |
shuffle=False) | |
# build the model and load checkpoint | |
model = build_posenet(cfg.model) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
if args.fuse_conv_bn: | |
model = fuse_conv_bn(model) | |
model = MMDataParallel(model, device_ids=[0]) | |
# the first several iterations may be very slow so skip them | |
num_warmup = 5 | |
pure_inf_time = 0 | |
# benchmark with total batch and take the average | |
for i, data in enumerate(data_loader): | |
torch.cuda.synchronize() | |
start_time = time.perf_counter() | |
with torch.no_grad(): | |
model(return_loss=False, **data) | |
torch.cuda.synchronize() | |
elapsed = time.perf_counter() - start_time | |
if i >= num_warmup: | |
pure_inf_time += elapsed | |
if (i + 1) % args.log_interval == 0: | |
its = (i + 1 - num_warmup) / pure_inf_time | |
print(f'Done item [{i + 1:<3}], {its:.2f} items / s') | |
print(f'Overall average: {its:.2f} items / s') | |
print(f'Total time: {pure_inf_time:.2f} s') | |
if __name__ == '__main__': | |
main() | |