Spaces:
Build error
Build error
#!/usr/bin/env bash | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import time | |
import torch | |
from mmcv import Config | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.parallel import MMDataParallel | |
from mmcv.runner.fp16_utils import wrap_fp16_model | |
from mmpose.datasets import build_dataloader, build_dataset | |
from mmpose.models import build_posenet | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='MMPose benchmark a recognizer') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('--bz', default=32, type=int, help='test config file path') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
# Since we only care about the forward speed of the network | |
cfg.model.pretrained=None | |
cfg.model.test_cfg.flip_test=False | |
cfg.model.test_cfg.use_udp=False | |
cfg.model.test_cfg.post_process='none' | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
# build the dataloader | |
dataset = build_dataset(cfg.data.val) | |
data_loader = build_dataloader( | |
dataset, | |
samples_per_gpu=args.bz, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=False, | |
shuffle=False) | |
# build the model and load checkpoint | |
model = build_posenet(cfg.model) | |
model = MMDataParallel(model, device_ids=[0]) | |
model.eval() | |
# get the example data | |
for i, data in enumerate(data_loader): | |
break | |
# the first several iterations may be very slow so skip them | |
num_warmup = 100 | |
inference_times = 100 | |
with torch.no_grad(): | |
start_time = time.perf_counter() | |
for i in range(num_warmup): | |
torch.cuda.synchronize() | |
model(return_loss=False, **data) | |
torch.cuda.synchronize() | |
elapsed = time.perf_counter() - start_time | |
print(f'warmup cost {elapsed} time') | |
start_time = time.perf_counter() | |
for i in range(inference_times): | |
torch.cuda.synchronize() | |
model(return_loss=False, **data) | |
torch.cuda.synchronize() | |
elapsed = time.perf_counter() - start_time | |
fps = args.bz * inference_times / elapsed | |
print(f'the fps is {fps}') | |
if __name__ == '__main__': | |
main() | |