Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import base64 | |
import os | |
import mmcv | |
import torch | |
from mmpose.apis import (inference_bottom_up_pose_model, | |
inference_top_down_pose_model, init_pose_model) | |
from mmpose.models.detectors import AssociativeEmbedding, TopDown | |
try: | |
from ts.torch_handler.base_handler import BaseHandler | |
except ImportError: | |
raise ImportError('Please install torchserve.') | |
class MMPoseHandler(BaseHandler): | |
def initialize(self, context): | |
properties = context.system_properties | |
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = torch.device(self.map_location + ':' + | |
str(properties.get('gpu_id')) if torch.cuda. | |
is_available() else self.map_location) | |
self.manifest = context.manifest | |
model_dir = properties.get('model_dir') | |
serialized_file = self.manifest['model']['serializedFile'] | |
checkpoint = os.path.join(model_dir, serialized_file) | |
self.config_file = os.path.join(model_dir, 'config.py') | |
self.model = init_pose_model(self.config_file, checkpoint, self.device) | |
self.initialized = True | |
def preprocess(self, data): | |
images = [] | |
for row in data: | |
image = row.get('data') or row.get('body') | |
if isinstance(image, str): | |
image = base64.b64decode(image) | |
image = mmcv.imfrombytes(image) | |
images.append(image) | |
return images | |
def inference(self, data, *args, **kwargs): | |
if isinstance(self.model, TopDown): | |
results = self._inference_top_down_pose_model(data) | |
elif isinstance(self.model, (AssociativeEmbedding, )): | |
results = self._inference_bottom_up_pose_model(data) | |
else: | |
raise NotImplementedError( | |
f'Model type {type(self.model)} is not supported.') | |
return results | |
def _inference_top_down_pose_model(self, data): | |
results = [] | |
for image in data: | |
# use dummy person bounding box | |
preds, _ = inference_top_down_pose_model( | |
self.model, image, person_results=None) | |
results.append(preds) | |
return results | |
def _inference_bottom_up_pose_model(self, data): | |
results = [] | |
for image in data: | |
preds, _ = inference_bottom_up_pose_model(self.model, image) | |
results.append(preds) | |
return results | |
def postprocess(self, data): | |
output = [[{ | |
'keypoints': pred['keypoints'].tolist() | |
} for pred in preds] for preds in data] | |
return output | |