Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
import os.path as osp | |
import warnings | |
from argparse import ArgumentParser | |
import requests | |
from mmpose.apis import (inference_bottom_up_pose_model, | |
inference_top_down_pose_model, init_pose_model, | |
vis_pose_result) | |
from mmpose.models import AssociativeEmbedding, TopDown | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument('img', help='Image file') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument('model_name', help='The model name in the server') | |
parser.add_argument( | |
'--inference-addr', | |
default='127.0.0.1:8080', | |
help='Address and port of the inference server') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--out-dir', default='vis_results', help='Visualization output path') | |
args = parser.parse_args() | |
return args | |
def main(args): | |
os.makedirs(args.out_dir, exist_ok=True) | |
# Inference single image by native apis. | |
model = init_pose_model(args.config, args.checkpoint, device=args.device) | |
if isinstance(model, TopDown): | |
pytorch_result, _ = inference_top_down_pose_model( | |
model, args.img, person_results=None) | |
elif isinstance(model, (AssociativeEmbedding, )): | |
pytorch_result, _ = inference_bottom_up_pose_model(model, args.img) | |
else: | |
raise NotImplementedError() | |
vis_pose_result( | |
model, | |
args.img, | |
pytorch_result, | |
out_file=osp.join(args.out_dir, 'pytorch_result.png')) | |
# Inference single image by torchserve engine. | |
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name | |
with open(args.img, 'rb') as image: | |
response = requests.post(url, image) | |
server_result = response.json() | |
vis_pose_result( | |
model, | |
args.img, | |
server_result, | |
out_file=osp.join(args.out_dir, 'torchserve_result.png')) | |
if __name__ == '__main__': | |
args = parse_args() | |
main(args) | |
# Following strings of text style are from colorama package | |
bright_style, reset_style = '\x1b[1m', '\x1b[0m' | |
red_text, blue_text = '\x1b[31m', '\x1b[34m' | |
white_background = '\x1b[107m' | |
msg = white_background + bright_style + red_text | |
msg += 'DeprecationWarning: This tool will be deprecated in future. ' | |
msg += blue_text + 'Welcome to use the unified model deployment toolbox ' | |
msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' | |
msg += reset_style | |
warnings.warn(msg) | |